
Towards sound, optimal, and flexible building
from megamodels

Perdita Stevens

School of Informatics

University of Edinburgh

Perdita.Stevens@ed.ac.uk

ABSTRACT
The model-driven development of systems involves multiple

models, metamodels and transformations. Transformations –

which may be bidirectional – specify, and provide means to

enforce, desired “consistency” relationships between models.

We can describe the whole configuration using a megamodel.

As development proceeds, and various models are modified,

we need to be able to restore consistency in the megamodel,

so that the consequences of decisions first recorded in one

model are appropriately reflected in the others. At the same

time, we need to minimise the amount of recomputation

needed; in particular, we would like to avoid reapplying a

transformation when no relevant changes have occurred in

the models it relates. In general, however, different results

are obtained depending on which models are allowed to be

modified and on the order and direction of transformation

application. In this paper we propose using an orientation

model to make important choices explicit. We explain the

relationship between software build systems and the meg-

amodel consistency problem. We show how to extend the

formalised build system pluto to provide a means of restoring

consistency in a megamodel that is, in appropriate senses,

flexible, sound and optimal.

KEYWORDS
megamodel, build system, model transformation, bidirection-

ality, orientation model

ACM Reference Format:
Perdita Stevens. 2018. Towards sound, optimal, and flexible building,

from megamodels. In ACM/IEEE 21th International Conference on

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00

https://doi.org/10.1145/3239372.3239378

Model Driven Engineering Languages and Systems (MODELS ’18),
October 14–19, 2018, Copenhagen, Denmark. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3239372.3239378

1 INTRODUCTION
Model-driven development (MDD) is now well-established

in a number of niches such as automotive software [22]. It

has potential to fundamentally transform software develop-

ment by enabling genuine separation of concerns so that

decisions about software behaviour can be taken by those

best placed to make them, where appropriate without the

intervention of software specialists. However, it has been

slow to emerge from its niches and become the dominant

mode of software development. There are many reasons for

this, some technical, some organisational.

Among those reasons is that we so far lack a good under-

standing of how collections of models can be robustly and

efficiently managed. The time taken to apply model trans-

formation tool chains is already a problem [11], motivating

our attention to optimality, but flexibility is an even greater

concern. The Object Management Group (OMG)’s original

ideal of MDA [8] was basically unidirectional and tree-like:

a highly abstract, platform-independent model would be

transformed into a platform-specific model from which code

would be generated. Megamodeling [2] recognises that real

large-scale software development will typically require more

flexibility than was envisaged originally: e.g., models will be

related in graphs, not trees, and there are more relationships

than “generates”. A bidirectional transformation between ad-

jacent models in the graph captures the appropriate notion

of consistency between them (which might be standard, e.g.

conformance between a model and metamodel, or project-

specific), and specifies how to restore consistency when it is

lost. Unidirectional transformation is then a special case; for

example, in compilation, the object code is considered con-

sistent with the source precisely when it is the result of com-

piling the source; restoring consistency means recompiling.

(Note that throughout this paper we take an “everything’s a

model” perspective: metamodels, code, etc. included.)

In [19] we discussed networks of models connected by

model transformations (which might be bidirectional) and

1

https://doi.org/10.1145/3239372.3239378
https://doi.org/10.1145/3239372.3239378

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Perdita Stevens

pointed out, for example, that the result of consistency restora-

tion will normally be different, depending on the order (and

direction, for bidirectional transformations) in which the in-

dividual model transformations’ consistency restoration pro-

cesses are used. Here is an example which we will consider

in more detail in Section 3. Figure 1 informally illustrates a

small megamodel derived from [19]. The circles represent

model spaces within which different teams work, and the

lines represent relationships that are supposed to hold be-

tween the models. So, at some point in development, there

may be a design model (in M) which is supposed to con-

form to a metamodel (in MM); there may be some code (in

Code) which is supposed to satisfy some round-tripping

relationship with the design model, such as providing an

implementation for all and only the classes mentioned there;

there may also be a test suite (in Tests) and a safety model

(in Safety), with a more complex ternary relationship be-

tween them which we will return to. At a certain point, a

modification has been made to the design model, such that

it no longer conforms with the metamodel, nor satisfies the

round-trip relationship. Perhaps a change has simultane-

ously been made to the test-suite. What should be done?

There is no straightforward answer, because the right thing

to do depends on the circumstances. For example, if the

metamodel to which the model is supposed to conform is

the standard UML metamodel, then it is not sensible to try

to restore that conformance relationship by modifying the

metamodel, which should rather be considered authorita-
tive; however, if the model is in an evolving domain-specific

modelling language, it may be. For another example, even

if the individual transformations roundtripconforms and
safeconforms each provide a means of updating the code to

bring it into consistency with the design model, respectively

with the tests, the result of applying these transformations

will in general depend on the order in which they are applied.

Worse, quite likely neither order will produce a desirable re-

sult, and some reconciliation between their actions will be

required. Nevertheless, wewould like to do better than giving

up and assuming totally manual control of the application of

the transformations and the reconciliation of their results.

It turns out that the concerns that arise when managing

multiple models in an MDD process are related to, yet not

subsumed by, those that arise when managing multiple pro-

gram units in a conventional development process. In this

paper we bring recent advances in formalisation and opti-

misation of build processes to bear on megamodeling, to

address these concerns. Our contributions are as follows.

(1) We clarify the relationship between building software

and maintaining consistency in a megamodel which

may include bidirectional relationships, not just unidi-

rectional generation relationships.

MMM

Code Tests

Safety

m conforms to mm

roundtripconforms(m,code)

safeconforms(code,tests,safety)

Figure 1: Megamodel derived from [19]. (Notation: lower-
case model is instance of upper-case Model)

(2) We propose the use of an orientation model to manage

key decisions about how to restore consistency.

(3) We show how to adapt the formalism of the sound

and optimal incremental build system pluto1 [4] to this
setting, appropriately combining use of the orienta-

tion model with encapsulated decisions about how to

update each model.

(4) We demonstrate that a soundness result and an incre-

mentality result can then (with care) be derived using

those proved in [4], and we discuss the relevance of

these results in an MDD setting.

The rest of the paper is structured as follows. First, in

Section 2, we discuss related work and take the opportunity

to introduce elements of it on which we shall build. In Sec-

tion 3 we describe examples and scenarios, and in Section 4

explain how custom stampers can help. We go on to provide

a formalisation and soundness result in Section 5. Section 6

adds some further discussion, and Section 7 concludes.

2 RELATEDWORK AND BACKGROUND
2.1 Build in MDD
Work on the build process in MDD has generally been mod-

elled closely on conventional software build, and has used

only unidirectional model transformations. Representative

examples are [5, 10, 13]; note that [5], though it shares an

author with [4], does not build on pluto and has concerns

largely orthogonal to ours.

Turning to the special needs of building in megamodels

that might include automatically interrelated sources, two re-

cent papers illustrate, in different ways, how far there is to go.

In [19] I discussed what is lost by limiting bidirectional model

1
http://pluto-build.github.io/: not to be confused with Apache Pluto

2

http://pluto-build.github.io/

Towards sound, optimal, and flexible building. . . MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

transformations to relate just two models. I suggested that in

many cases this is tolerable, so that MDD projects could work

with networks of binary bidirectional transformations, and I

pointed out that in such networks many problematic issues

arise. These include the (non-)existence of a globally consis-

tent state, its (un-)reachability by means of the consistency

restoration functions of the bidirectional transformations,

and the fact that different sequences of applications of these

may yield different results. That paper did not attempt to

solve these problems, beyond pointing out some special cases

in which consistency restoration is possible, and it did not

address incrementality.

More positively, Di Rocco et al. [17] described an attempt

at a concrete solution to this problem implemented in the

web-based modeling platform MDEForge [1]. However, this

solution was very limited in scope, because it disallows the

cases identified as problematic by [19]: it requires that a

reachable globally consistent state exists and not only that it

be unique, but more, that it be reachable in only one way.

2.2 Building software
In conventional software build, we start from a collection

of human-authored source artefacts (hereinafter we will say

“files”: see Section 6) and combine these via a number of

intermediate stages into runnable software. Intermediate

stages may involve generating files from a subset of the

sources and/or other generated files. Such a generation step

is a function, which takes some sources and produces one

or more generated files. We need to be slightly more precise:

it is a partial function, because it may happen that a given

set of sources is inconsistent in the sense that it does not

correspond to any set of generated files: the build step gives

an error.

Wemay see the build process as being a process of restoring
consistency to the whole collection of files, source, interme-

diate and target. Each generated file is considered consistent

with its sources if it has been built from them in the intended

way, and the whole collection is consistent if this is true of

the running software and everything it depends on (directly

or indirectly).
2
Problems arise if a source is changed and

something that depends on it is not rebuilt, or if the intended

relationship between sources and generated file is changed

without changing the generated file accordingly. Typically

a clean build, in which all generated files are deleted and

everything is regenerated from sources, is straightforward

to get right, but expensive. The difficulty is to ensure correct

incremental building: when some sources change, we prefer

2
Subtlety: if, in the current configuration, a generated artefact is not used,

it may not be required to satisfy a consistency relation with its sources that

would be needed if it were used. I.e. the set of consistency relations that are

relevant may, in general, change.

to save time by rebuilding only the generated files that are no

longer consistent with their sources, iterating this process ap-

propriately so that the final software is correctly built. What

we mean by correctly built is, typically, that it is identical
with what would be achieved by a clean build. Because there

is a clean separation between sources (never automatically

modified) and generated files (never manually modified), and

because the generation steps are (partial) functions, so that

at each stage there is at most one automatic way to restore

consistency, this is (informally) equivalent to saying that the

whole collection of files is consistent.

2.3 Model-driven development
MDD separates concerns into different models, which may

be worked on by different people. To get full benefit, we

must allow more than one model to be simultaneously “live”,

that is, able to have decisions recorded in it. However, typi-

cally, these models are not perfectly independent: a change

in one may necessitate a change in another. These factors

are identified as the “essence of bidirectionality” in [20]. To-

day, restoring such models to a consistent state is often done

manually. However, this is sometimes inconvenient or im-

possible. The models may be under the control of different

humans, none of whom have sufficient familiarity with them

all to be able to reconcile them manually easily and safely

(e.g. the PIM and PSM in classic MDA [8]). And/or the notion

of consistency between the models may make the reconcilia-

tion required very burdensome (e.g. round-tripping between

a UML model and code). In either case, having to restore

consistency manually may negate the benefit of separating

the concerns in the first place.

A bidirectional transformation (bx) is a means of maintain-

ing consistency between two or more such models. Many

approaches to defining bx exist, and this paper places few

restrictions. We will assume that the bx, at least, specifies a

consistency relation between the models, so that we know

when nothing needs to be done. Note that this relation will

not usually be bijective (if it were, the models would just be

recording the same information in different forms). The bx’s

other job is to restore consistency when it is lost. It may do

this deterministically (probably using the current state of

more than one model) or non-deterministically, using search,

or even with user interaction; it is allowed to fail. However,

we will define a separate builder for each of the models that

must be automatically updated, so (for now) we expect the

bx to provide a means to restore consistency by modifying

just one model (as do bx in all major bx languages, and, of

course, unidirectional transformations).

When, and how often, consistency must be restored is

itself an interesting question (see Section 6) but typically

a set of models will have to be consistent before code is

3

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Perdita Stevens

generated from it, and indeed, the generation of code can be

seen as a process of restoring consistency. As “everything’s

a model” the megamodel consistency restoration problem

subsumes software build.

2.4 Problems and progress in build systems
Unfortunately, the engineering of conventional build sys-

tems is itself not a solved problem. It is recognised that build

scripts are often hard to read and maintain (prominent es-

timates of the proportion of development effort devoted to

the development of build scripts are 12% [12] and 27% [14]!)

and error-prone. Developers using complex build scripts of-

ten end up feeling compelled, in an attempt to avoid being

affected by subtle errors, to do clean rather than incremental

builds (e.g. defaulting to make clean; make all). Corre-
spondingly, maintainers of build scripts often shy away from

incrementality for fear of introducing subtle problems. The

result is often that builds are unacceptably slow. Heroic ef-

forts (e.g. [15]) have been made to force make into doing the

right thing as well as to replace it with better systems; yet

problems persist.

Nevertheless, in [4] Erdweg, Lichter and Weiel succeeded

in proving soundness and optimal incrementality in a for-

malised build system called pluto, in the sense that (subject

to certain assumptions) as few builders (units of the build

system, e.g. compilations) will be run as possible, and within

that, as few checks will be carried out as possible. A key

contribution is that they formalise the idea of custom stamps.

Improving on the traditionally-used timestamps, these give

a more general, customisable notion of what it means for

one file to be up-to-date with respect to others.

There is a large literature on build systems, which we do

not have space to survey, and correctness and incrementality

are topics of increasing interest. We choose to build on pluto
because, as well as being both a formalism and an open-

source software framework, it incorporates two unusual

capabilities that are useful in an MDD setting: the afore-

mentioned custom stamps, and dynamic dependencies, such

as the possibility that the content of one model determines

whether or not a change to a second model necessitates a

change to a third.

2.5 Summary of pluto
We need to introduce some background on pluto, but space
limits forbid reproducing the technicalities in detail. We ex-

plain the parts we need
3
tersely, and refer the reader to [4]

4

for more detail.

3
e.g. the reader familiar with pluto should consider that we take the input

type to be unit

4
and/or to a video of the corresponding talk, at https://youtu.be/

QsgLSDMLLTo

Pluto is a formalism and software framework incorporat-

ing a build algorithm that accepts a build request (a request
to (re)build a particular generated file) and determines when

to invoke the build method of a builder. Each generated file

is a responsibility of just one builder, whose build method

describes how its file(s) shall be generated, including what

other builders must be up-to-date to do this properly: the

developer of the builder must satisfy certain requirements

on which the soundness and optimality of building rely. Es-

pecially, it uses framework-provided methods to record what

files it reads and writes. Formally a build method operates

on a file system, and produces a record called a build unit
which it saves for later inspection. The build unit records,

in a list, what other builders were required (e.g. breq b indi-

cating that this builder requested that builder b be rerun if

necessary), what files were read (e.g. freq f indicating that

file f was read) and written (e.g. gen д indicating that this

builder wrote file д). This information is later used by the

algorithm to decide whether it is necessary to invoke the

builder’s build method again.

It is important to understand that requiring (breqing) a
builder does not invoke the build method of that builder

directly: rather, it sends another build request to the pluto
build algorithm, so that it can check whether or not a rebuild

is required. That is done using stamps.

Stamps. Each file said to have been read (“freqed”) in the

build unit is identified by giving a path, and, crucially, a

stamp. This is a value determined by the builder for this use
of this file.5 Each stamp is associated with a stamper; the
idea is that the builder chooses a stamper, which produces

the stamp (there are provided stampers that produce, for

example, the last modification time of a file, a hash of its

contents, or a boolean for whether it exists). Formally what

the stamper has to be able to do is to take a path and a file

system and compute a stamp for the file (if any) which is

currently found at that path. A key part of the algorithm’s

checking whether a build unit is up to date, i.e. whether its

builder needs to be re-run, is: look at the path and stamp of

each file that it records having read; get the stamper from

that stamp; ask the stamper to compute the stamp associated

with the path in the current file system; compare this stamp

with the one recorded. The file is considered up to date iff

the recorded stamp is the same as the current stamp (e.g. the

last modification time has not changed). The generality of

the stamper set-up means, however, that a stamp could be

anything convenient.

5
In fact the same is true of each generated file: but we will assume (for tech-

nical reasons) that gen entries are always stamped with the finest possible

stamp, which changes when the file is modified in any way detectable by

any other stamper used on that file (in practice, last modified time).

4

https://youtu.be/QsgLSDMLLTo
https://youtu.be/QsgLSDMLLTo

Towards sound, optimal, and flexible building. . . MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Thus, the choice of stamp(er) is made by the developer

of the builder, and it is the key element in defining what it

means for the system to be “built correctly”: the choice must

ensure that if two versions of the file at a given path have

the same stamp then they are interchangeable to this builder,

in the sense that a change from one to the other does not

necessitate rerunning it. So the easiest, safest choice for the

developer of a builder is to use the finest possible stamper,

in which any change at all to a file will change the stamp;

last-modified-time, supported by the operating system, is

traditional. As in conventional build, this can already avoid

a lot of unnecessary work. In practice, though, it can happen

that a file changes in a way which definitely does not cause

a rebuild to be necessary. For example, if only comments in

a source file change, it is (barring strange compiler bugs!)

unnecessary to recompile it.
6
Therefore, we might be able to

save rebuild effort by deciding that a stamp on a file should

be computed ignoring the comments, so that changes to com-

ments alone do not change the stamp. In our megamodel

setting, this kind of thing happensmore than in conventional

system build, because it is normal that only part – perhaps

only a small part – of the information contained in a model is

relevant to a particular bidirectional transformation involv-

ing it. For example, if the roundtripconforms relationship

in Figure 1 only depends on a class diagram part of theModel,

but the Model also includes other diagrams, the developer

of the builder that builds the Code might choose to stamp

its use of the Model with a stamp computed from the class

diagram part alone. We return to this in Section 4.

Correctness, soundness and optimality. When a builder com-

pletes, a file it generates (gens) is considered correctly built,

provided every file the builder read (freqed) was stamped

with the same stamp as is computed from the current version

of the file. The gened file is up-to-date for as long as this

remains true.

A build unit is internally consistent, at a given moment

when the builder returns, if all required and generated files

are up-to-date (that is, their recorded stamps are indeed equal

to what their stampers produce on the files at this moment),

and build units exist for all required builders.

We elide the details of what it means for a build system

to be sound, but informally, it means that a non-failing build

produces an internally consistent build unit for each build

request, and for any build requests generated in the process

of carrying these out, and that they are all properly linked

with no stomping on one another’s files. Crucially, only one

build unit is allowed to have generated the file at any given

path.

6
Note that “only comments change” rules out (un)commenting code since

that adds or removes code too!

MM

M1

Delta

M2

m1 conforms to mm m2 conforms to mm

compare (m1,m2) = delta

patch (m1,delta) = m2

Figure 2: Megamodel derived from [17]. (Notation: lower-
case model is instance of upper-case Model)

Requirements that builders must satisfy. Conditions that
the developer of a builder must satisfy are formally given

as requirements on the build unit that the builder produces;

these are then assumed in the proofs of soundness and op-

timality. In practice, the software framework provides con-

siderable support for meeting these requirements. Our meg-

amodel extensionwill help evenmore: wewill give a skeleton

form of a build method which ensures all these conditions

are met.

• breq before freq: If any file is required that is a gen-

erated file of another builder, then that builder must

be required earlier in the build unit’s list of require-

ments than the file. This ensures that an out-of-date

generated file is not used.

• The builder must either fail, or produce a build unit

which is internally consistent. This is Assumption 4.1

in [4], and enables the soundness result.

• Enabling the optimality result, [4] has a further as-

sumption (4.2), essentially that the list of requirements

captures enough information to describe differences in

the dynamic behaviour of the builder. We omit details

for space reasons.

3 EXAMPLES
3.1 Unidirectional example
Figure 2 illustrates a megamodel, derived from [17], with a

metamodel (mm), two models (m1 and m2), and a delta (delta).
The collection is consistent if: the models conform to the

metamodel, the delta is the result of applying the compare
operation to the models, and m2 is the result of applying

patch to m1 and delta. Now, as a specification, this is re-

dundant: as explained in [17], compare and patch have the
5

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Perdita Stevens

usual joint specification, where compare(m1,m2) = delta iff
patch(m1,delta) = m2. The main purpose of the compare
and patch functions is that they provide means of restoring

consistency when it is lost.

In [17] the idea is that consistency is restored after every

change, and so the scenarios considered are those that start

from a consistent set of models, just one of which is then

changed. Even then, we must note that there may be a choice

of how to restore consistency. If m1 is changed, wemay either

apply the compare function to the new m1 and the old m2 to

get a new delta, leaving m2 unchanged, or we may apply the

patch function to the new m1 and the old delta to get a new
m2, leaving delta unchanged. There is no a priori reason to

prefer one of these solutions over the other: it depends on

which of m2 and delta should be taken to be authoritative.

Figure 3 represents those two situations using what we

will shortly formalise as an orientation model. Solid blobs

represent authoritative models; e.g., we suppose that the

metamodel will always be authoritative (though as noted

in Section 1, this is a fact about this example: not every

metamodel will be always-authoritative). Di Rocco et al.’s

assumption is that the changed model, in this case m1, should
always be authoritative; this makes sense in this setting, be-

cause we have no consistency restoration functions available

that can take an old version of a model into account and

produce a new version of that same model, so the only alter-

native would be to overwrite the changes just made entirely,

which is presumably undesirable.

The [17] megamodel specifies that the models should con-

form to the metamodel, but it provides no operations to en-

sure this. The orientation models in Figure 3 reflect a choice

that, therefore, this consistency will be ensured and checked

externally.

3.2 Bidirectional example
Recall from Section 1 that Figure 1 illustrates a megamodel

adapted from [19]. Here we see a design model that needs to

conform to a metamodel; some code that must be consistent

with the model via a standard round-tripping relation; and

a more interesting ternary relation between the code, a test

suite and a safety model. The idea is that, at least, the code

should pass the tests (otherwise no triple involving that code

and those tests will be considered consistent) but also that

the safety model records (amongmuch other information not

relevant here) whether or not the system is considered safety-

critical. If it is, then the tests are also required to satisfy a

coverage criterion.

Soundness. Even if we are provided with a bidirectional

transformation that can restore each individual relation in

themegamodel, we still need a disciplinedway to roll changes

through the network. For example, in Figure 4(b), if we want

MM

M1

Delta

M2

compare (m1,m2) = delta

(a)

MM

M1

Delta

M2

patch (m1,delta) = m2

(b)

Figure 3: Orientation models (grey=authoritative,
black=always-authoritative)

up-to-date tests, we must restore roundtripconforms first,

then safeconforms.
Figure 4(a) represents the situation discussed in Section 1.

Our framework allows us to encapsulate the reconciliation

of different consistency relations impacting the same model

in the builder of each model (here Code). The orientation

model records the contracts of the builders. Note that such
builders must in general be allowed to fail, as there may be

no way to satisfy all the required relations.

Incrementality. We may suppose that checking the rela-

tionship between code and tests is expensive: we do not want

to redo it more often than necessary. In particular, since the

only change to the safety model that is relevant to this rela-

tionship is the one bit record of whether the system is safety

critical or not, we do not want to recheck the relationship be-

tween code and model every time the safety model changes

in any respect. We can achieve this using a custom stamp:

see below.

Flexibility. Conventionally, e.g. in [19], we think about

restoring consistency to the whole network. In practice, how-

ever, that may not be the right thing to do. For example, in

the case that an operation changes in the model, thereby

breaking consistency with the code and the tests, it may not

be sensible to update the tests immediately (especially if, say,

6

Towards sound, optimal, and flexible building. . . MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

MMM

Code Tests

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(a)

MMM

Code Tests

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(b)

Figure 4: Orientation models (grey=authoritative,
black=always-authoritative)

three more changes will follow in quick succession). What

we should be able to ensure is that someone who is rely-

ing on the tests is able to ensure that they are indeed using

an up-to-date version of the tests. We will therefore use a

demand-driven approach. Rather than pushing the changes

from model to tests, as the approach in [17] does, we will say:

the person who wants to use the tests will submit a build

request for the tests. This will in turn submit a build request

for any model on which the tests depend, before using those

updated models to recheck the consistency relation on the

tests. The pluto algorithm determines which builders actually

need to be run in order to satisfy the build request.

4 CUSTOM STAMPERS AND
BIDIRECTIONALITY

In build system work a traditional rule is “if the target is

already up to date with respect to the sources, do not run the

builder”. As explored by [4], the naive version of this, using

time stamps, can lead to inefficiencies: a target may be out

of date only because a source has changed in a respect that

is irrelevant to the relationship between source and target. In
effect pluto’s stamps impose a builder-specific equivalence

relation on the set of possible instances of a file needed by

the builder: instances are equivalent iff they have the same

stamp.

A related idea in MDD is hippocraticness: “if the target

model is already consistent with the source(s), do not apply a

consistency restorer”. This helps avoid disruptive and unnec-

essary changes to models, but it does not necessarily save

computational effort, because checking consistency may it-

self be arbitrarily expensive. For example, checking whether

a given triple of code, tests and safety model are consistent

will involve re-running the tests and computing a coverage

metric. On the other hand, if we know that the only aspect

of the safety model that is relevant to this consistency is the

one bit that says the system is safety-critical, we may safely

say that a change to the safety model that does not flip that

bit does not necessitate rechecking the consistency relation,

because the two versions of the safety model are equivalent

as far as this consistency relation is concerned.

The idea of models being equivalent if they differ only in

ways that never affect their consistency with another model

via a given bidirectional transformation has been explored

in [18]; e.g.m �RF m′
iff for any model n, the result of using

R to modify n so as to be consistent withm is the same as

the result of using R to modifying n to be consistent with

m′7
. In many (but not all) natural cases, the equivalence

class of m modulo �RF is easily reified as the information

fromm that R looks at. In the safety case, there will be just

two equivalence classes of the safety model, determined by

the safety-critical bit. Or ifm is a Java source file and R is

maintaining consistency between the Java source file and an

HTML documentation page, we may identify an equivalence

class of Java sources files with the file comprising a particular

set of extracted docstrings, discarding all the code.
8

An interesting challenge in the context of a particular

transformation language (related to slicing) would be: given

a transformation, automatically generate stampers. There is,

of course, a pragmatic question about the trade-off between

the expense of computing the stamp on a file, and the expense

of re-running a transformation. We might expect that in

the case where a stamp is derived by looking in a safety

model for a single bit, and seeing that it has not changed

may save substantial effort, this is worthwhile; however,

using a custom stamper in the Java/HTML case is less likely

to be useful, because computing the stamp may be almost as

expensive as regenerating the documentation.

7F in �RF is for Forward: notation of [18]

8
For a concrete example, see the orientation stampers at https://github.com/

PerditaStevens/megamodelbuild.

7

https://github.com/PerditaStevens/megamodelbuild
https://github.com/PerditaStevens/megamodelbuild

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Perdita Stevens

5 FORMALISATION
In this section we sketch

9
how a simple formalisation of a

megamodel can be interpreted in the pluto formalism and

augmented by a variable orientation model. We give a skele-

ton for builders of models, and hence derive soundness and

optimality results for megamodel consistency restoration.

Recall that a megamodel is a way of specifying a collec-

tion of modelling artefacts and relationships between them.

These relationships may include that one model conforms

to another, that one is generated from another, etc. Formally,

let us give a very general description, in which we do not, for

example, assume there are consistency restoration functions,

nor make any distinction between models and metamodels,

nor between different kinds of relationships between models.

Definition 5.1. A megamodelM comprises:

• a set Node of model sets. That is, an N ∈ Node is itself
a set of models, which may be interpreted as a type.

• a possibly empty AAuth ⊆ Node, the nodes that are
always-authoritative.

• a set Edge ofmodel relationships. That is, a (hyper)edge
E ∈ Edge connecting distinct nodes N1, . . .Nk is a

subset of N1 × · · · × Nk .

(More formally, we have a hypergraph, and a valuation of

its nodes and edges into model sets and relations on them.

However, since the valuation is fixed, we elide the distinction

and trust no confusion results.)

An instance of a megamodel is a collection of one model

n in each N in Node. The instance is consistent if all the
relationships are satisfied, i.e. whenever ni1 ∈ Ni1 , . . . ,nik ∈

Nik aremodels in this instance and E ⊆ Ni1×· · ·×Nik ∈ Edge
we have (ni1 , . . .nik) ∈ E.

Notice that this encompasses two MDD situations:

(1) all the nodes are models, and the transformations be-

tween them are encoded as edges;

(2) some of the nodes themselves represent transforma-

tions. (“Transformations are models!”)

E.g. if bidirectional transformation R (the currently pro-

grammed transformation from a set R of transformations)

between model setsM and N specifies a consistency relation,

we may choose whether or not to encode the transformation

itself as a node. If we do not, we will simply have an edge

R betweenM and N , specifying thatm and n are consistent

precisely when R(m,n) holds. If we do, we will have nodesM ,

N , and R, with a hyperedge between them specifying that

m, n and R are consistent precisely when R(m,n) holds. The
latter gives us the flexibility to react automatically (without

needing to modify builders) to changes in the definition of

9
more detail, omitted for space reasons, is in [21]

the transformation. Our framework permits both variants

without further ado.

Typically, there will be some nodes in a megamodel which

it is helpful to include, but never appropriate to change au-

tomatically. (For example, we never want our automated

consistency restoration procedure to modify the UML meta-

model.) These are the always-authoritative nodes. For others,
whether we permit them to change, or take them as authori-

tative, depends on the situation. We use a special model to

capture such variations in the situation.

Definition 5.2. An orientation model over a megamodel

M = (Nodes,AAuth, Edges) comprises the nodes of themeg-

amodel and a subset of the edges. It designates a subset of

its nodes as authoritative, and it orients each of its edges, i.e.

designates one node as target. It is well-formed if it (strictly,

the underlying hypergraph) is acyclic and no target node is

authoritative.

Given this setting we equip our megamodel with pluto
builders, and use its algorithm to restore consistency. In the

formalism, we are specifying the build units the builders

produce, and their effect on the filesystem. In the imple-

mentation, if the builder (e.g.) calls the framework-provided

requireBuild method, this (as well as guiding the pluto
algorithm) writes a breq entry to the build unit.

Definition 5.3. A pluto build system for a megamodelM

comprises a builder for each nodeM in the megamodel that

is not always-authoritative. Given an instance of M and a

well-formed orientation model O forM, the build method

of theM-builder must (unless it fails):

(1) freq the orientation model O (adding an freq entry for

its path and the appropriate stamp (see below) to the

build unit).

(2) Determine, from O , the set E of directed (hyper)edges

havingM as target; let N be the set of nodes that are

sources of these edges.

(3) breq the N -builder for each N ∈ N (such that N is not

always-authoritative) (adding breq entries).

(4) freq all the models which are the values of nodes inN

in the current instance (adding freq entries).

(5) Calculate, and write, a new version of modelm ∈ M
that makes all the relationships in E hold.

(6) genm, i.e. record thatm has been (re)generated.

(7) Return a build unit recording this sequence of require-

ments and generation.

The builder must use stamps fine enough to ensure that if a

file changes without changing the stamp, consistency will

not be lost. It may stamp O just with a record of its own

authority status and which edges target it.

8

Towards sound, optimal, and flexible building. . . MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Remarks.

(1) Generally theM-builder’s newly calculatedm will de-

pend on the old value ofm, as well as on any linked

models. This is unusual in conventional build systems,

but essential for bidirectional transformations. A care-

ful read of [4]’s proofs shows that it is unproblematic

and does not require breqing this builder (which would
result in a build cycle) nor freqing this model.

(2) Because an authoritative model is never the target of

a (hyper)edge, the builder of a model that is authorita-

tive in the current orientation model will, as expected,

neither freq any model nor breq any builder, but just

restamp this model. (E.g. Test-Builder according to Fig-

ure 4(a).) We are using pluto’s dynamic dependency

capabilities here: the builder’s requirements depend

on the current contents of the orientation model.

(3) The real work is done in Step 5. If there is a single

incoming edge, and if the megamodel is associated

with a way to restore consistency along this edge –

e.g. the compare or patch function in Example 3.1,

or the consistency restoration function of an individ-

ual bidirectional transformation – then all the builder

has to do is apply it. In practice this may be done by

invoking a separate transformation engine.

(4) If there is more than one incoming edge (e.g. Code-

Builder according to Figure 4(a)), or if the megamodel

is not associated with the means to restore consistency

along its edges, then more interesting work is required.

This might involve adjustment of the result of apply-

ing transformations, search, or even user interaction.

The choice is encapsulated inside this builder: the re-

quirement is just somehow to deliver a consistentm.

The attempt must be allowed to fail, however, because

as discussed in [19] there might simply be no solution.

Soundness in this setting, as in conventional software

build, does not mean that consistency will always be

restored, but rather that if the algorithm succeeds then

the result really is consistent.

Soundness. The builders in such a build system will au-

tomatically obey the requirements we placed on builders;

in particular, the sequence of requirements changes only if

the orientation model changes (hence Assumption 4.2 of [4]

holds). These builders are now used with the standard pluto
build algorithm, and we get:

Theorem 5.4 (Soundness). Invoking the pluto build al-
gorithm with a build request for the builder of any modelM in
the megamodel will either fail, or produce a new megamodel
instance which is correct in the sense that consistency holds
in the subgraph of the orientation model from which M is
reachable.

Sketch. Since the orientation model is always acyclic and

each builder ensures that its model is consistent with the

models that have arrows into it, induction on the length of

the longest directed path in the orientation model, which is

finite by assumption, together with Theorem 5.3 of [4]. □

Note that this is a stronger result than Theorem 5.3 of

[4] because of the additional requirement we put on the

megamodel builders, that they restore consistency along

certain relationships (or fail). We cannot get a guarantee that

all relationships in the megamodel hold, because this may

be impossible.

Optimality. Theorem 5.7 of [4]:

Theorem 5.5 (Optimality). The number of builders exe-
cuted by the build algorithm (in response to any build request)
is minimal.

transfers directly. Informally, this holds because the algo-

rithm caches previous build results, repeating builds only

when they are invalidated because of file changes that the

stamps indicate are significant, and then only when they are

genuinely required to build the requested artefact. In our

setting, we see in particular that the only builders invoked

in response to a build request for a model M are those of

models from which there is a path to M in the orientation

model; each of these is invoked at most once (by acyclicity),

and only if required. For example, with the orientation model

of Figure 4(b), if from a consistent state just Safety is altered,

and then Test-builder is invoked, the Code-builder will not

be invoked.

Note, however, that minimality means a builder is never

rerun if it should have been apparent from the stamps that

this was unnecessary. Of course, we cannot exclude that the

model was, as it happened, still consistent with its neigh-

bours – manual changes could have “by chance” maintained

consistency in a way that is invisible to the build system

until the builder is run.

Flexibility. Wehave externalised the decisions aboutwhich

models are authoritative etc. into the orientation model,

which, being a model like any other, can be changed, such

that affected models can be automatically rebuilt in response

to the change while unaffected ones need not be. We have

shown how decisions about consistency restoration can be

encapsulated inside relevant builders. We think this will be

more dependable than using a complex build script, espe-

cially where developers need to automatically reconcile the

effects of several transformations, or use transformations pro-

vided by vendors or others and then systematically “tweak”

their results.

9

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Perdita Stevens

6 DISCUSSION
Management of the orientation model. Because the orien-

tation model is just a model (though always-authoritative,

i.e., only manually changed!) it will be managed in a config-

uration management system as usual, and edited, probably

by a project manager, to reflect current circumstances of

the project, such as which models should be permitted to be

modified by the build system. A typical project might have

several versions of an orientation model over its lifetime; for

example, a model may become authoritative after it is signed

off by a customer. We may even have several variants that

are interchanged as appropriate, e.g. one that labels a model

as authoritative, for use while its own developers are work-

ing on it, another that does not. As we have seen the system

automatically maintains soundness even if the orientation

model changes.

Changes to the megamodel itself. For simplicity, we have

assumed here that the megamodel does not change, although

the orientation model may. That is, we use pluto’s dynamic

dependency capability only to react to changes in the orien-

tation model. It would be possible, however, to use it more;

it is unclear whether this would be useful, or rather would

diminish the value of the megamodel.

Files. In order to make use of the existing pluto software,
which is based around the notion of file, we have adopted

here the assumption that models are realised in files, and

we have not considered serialisation and deserialisation ex-

plicitly. In [10] the authors make the point that for practical

purposes it is highly advantageous for a model management

workflow to avoid parsing the same model more than once,

and they discuss how to use features of Ant to make this

work. The concerns are orthogonal to those discussed here,

however, and the use of the file system is not essential to

anything we have proposed.

Demand-driven versus global consistency restoration. Fol-
lowing pluto we have adopted here a demand-driven ap-

proach to consistency restoration: we provide a mechanism

that will not necessarily restore all of the consistency rela-

tions in the megamodel, but only those that must be restored

in order to produce an up-to-date version of the requested

model. This approach is a contrast to earlier work on meg-

amodel consistency, e.g. [17, 19]. We think that, for MDD, it

is an advance
10
, but note that it is still possible that a rebuild

of one model forces an update to another (e.g. Test-Builder

in Figure 4(b) may cause Code to be rebuilt, if it is currently

inconsistent with the Model). This relates to:

10
even though S. Erdweg says pluto has recently been looking at the opposite

strategy for conventional software build

Always-consistent versus stable. In modern software engi-

neering there is an interesting tension between (a) the desire

to avoid duplicating information, and (b) the perceived need

to tolerate inconsistency to permit creative flow [7] that may

lead to step improvements. Prioritising (a) leads to a prefer-

ence for having a “golden copy” of any piece of data; in an

MDD context it suggests that any inconsistency should be

repaired immediately [6, 17]. [16] argues for (b); in an MDD

context, [11] makes the point that engineers want to work

independently on copies of the same model and then need

good tool support for reintegration. At issue is the length
of time for which it is appropriate for some expert (group)

to proceed with changing an artefact independently, before

bringing it into consistency with all other artefacts. Too short

a time, and nobody achieves flow: everyone is constantly

interrupted by their artefacts changing underneath them to

take account of other people’s decisions. Too long a time,

and development returns to the bad old days of months-long

integration phases. This work does not offer a silver bullet,

but it does help to ease the management of such decisions.

Making the right choice in a given setting will inevitably

require skill and experience.

7 CONCLUSIONS AND FUTUREWORK
We have proposed an approach to sound, optimal and flexible

megamodel-based building, extending the work of Erdweg

et al. [4] to tackle the problem of Di Rocco et al. [17], and to

address some of the challenges raised by Stevens [19].

A specialised open-source framework for building from

megamodels
11
, on top of pluto, is work in progress: manually

implementing appropriate builders, as described, is routine,

but we would further like to incorporate: wrappers to let

builders invoke existing model transformation engines; au-

tomatic generation of builders from a megamodel expressed

in an appropriate language such as MegaL/Forge [17]; con-
nections with further megamodelling work such as [3, 9];

generation of custom stamps from transformations; valida-

tion of orientation models; exploration of scalability; etc. By

permitting, for low effort, trustworthy and fully incremental

build of model-driven systems, this is a step towards contin-
uous model-driven engineering, as requested for example in

[6].

ACKNOWLEDGMENTS
I thank the reviewers, and the Bx’18 audience

12
, especially

Sebastian Erdweg and Jeremy Gibbons, for helpful discus-

sion.

11
https://github.com/PerditaStevens/megamodelbuild

12
for a related talk https://youtu.be/Pp1BsQyHoMs with no accompanying

paper

10

https://github.com/PerditaStevens/megamodelbuild
https://youtu.be/Pp1BsQyHoMs

Towards sound, optimal, and flexible building. . . MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES
[1] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle,

Ludovico Iovino, and Alfonso Pierantonio. 2014. MDEForge: an Exten-

sible Web-Based Modeling Platform. In CloudMDE, Vol. 1242. CEUR
Workshop Proceedings, 10. http://ceur-ws.org/Vol-1242/paper10.pdf

[2] Jean Bézivin, Frédéric Jouault, and Pierre Valduriez. 2004. On the need

for megamodels. In Proc. OOPLSA/GPCE workshop: Best Practices for
Model-Driven Software Development.

[3] Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. 2013. Mapping-

Aware Megamodeling: Design Patterns and Laws. In SLE (Lecture Notes
in Computer Science), Vol. 8225. Springer, 322–343.

[4] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound

and optimal incremental build system with dynamic dependencies. In

OOPSLA. ACM, 89–106.

[5] Sebastian Erdweg and Klaus Ostermann. 2017. A Module-System

Discipline for Model-Driven Software Development. Programming
Journal 1, 2 (2017), 9. https://doi.org/10.22152/programming-journal.

org/2017/1/9

[6] Jokin Garcia. 2018. Continuous Model-driven Engineering.

https://modeling-languages.com/continuous-model-driven-

engineering/.

[7] Jeff Gray and Bernhard Rumpe. 2017. The importance of flow in

software development. Software and System Modeling 16, 4 (2017),

927–928.

[8] Object Management Group. 2014. Model Driven Architecture (MDA)

MDA Guide rev. 2.0. http://www.omg.org/cgi-bin/doc?ormsc/

14-06-01

[9] Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Brambilla,

and Jordi Cabot. 2011. MoScript: A DSL for Querying and Manipu-

lating Model Repositories. In SLE (Lecture Notes in Computer Science),
Vol. 6940. Springer, 180–200.

[10] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2008. A

framework for composing modular and interoperable model manage-

ment tasks. In In Model-Driven Tool and Process Integration Workshop.
79–90.

[11] Adrian Kuhn, Gail C. Murphy, and C. Albert Thompson. 2012. An

Exploratory Study of Forces and Frictions Affecting Large-Scale Model-

Driven Development. In MoDELS (Lecture Notes in Computer Science),
Vol. 7590. Springer, 352–367.

[12] Epperly T Kumfert G. 2002. Software in the DOE: The Hidden Overhead
of “The Build”. Technical Report UCRL-ID-147343. Lawrence Livermore

National Laboratory, CA, USA.

[13] Ralf Lämmel. 2017. Relationship Maintenance in Software Language

Repositories. The Art, Science, and Engineering of Programming Journal
1 (2017), 27. Issue 1.

[14] Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei,

and Ahmed E. Hassan. 2011. An empirical study of build maintenance

effort. In ICSE. ACM, 141–150.

[15] AndreyMokhov, NeilMitchell, Simon Peyton Jones, and SimonMarlow.

2016. Non-recursive make considered harmful: build systems at scale.

In Haskell. ACM, 170–181.

[16] Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo. 2001.

Making inconsistency respectable in software development. Journal
of Systems and Software 58, 2 (2001), 171–180. https://doi.org/10.1016/

S0164-1212(01)00036-X

[17] Juri Di Rocco, Davide Di Ruscio, Marcel Heinz, Ludovico Iovino, Ralf

Lämmel, and Alfonso Pierantonio. 2017. Consistency recovery in inter-

active modeling. In EXE at MODELS. 6. http://www.modelexecution.

org/media/EXE2017/papers/EXE_2017_paper_6.pdf

[18] Perdita Stevens. 2012. Observations relating to the equivalences in-

duced on model sets by bidirectional transformations. EC-EASST 049

(2012), 16.

[19] Perdita Stevens. 2017. Bidirectional transformations in the large. In

MODELS. IEEE, 1–17.
[20] Perdita Stevens. 2018. Is Bidirectionality Important?. In Modelling

Foundations and Applications - 14th European Conference, ECMFA 2018,
Held as Part of STAF 2018, Toulouse, France, June 26-28, 2018, Proceedings
(Lecture Notes in Computer Science), Alfonso Pierantonio and Salvador

Trujillo (Eds.), Vol. 10890. Springer, 1–11. https://doi.org/10.1007/

978-3-319-92997-2_1

[21] Perdita Stevens. 2018. Supplemental note to “Towards Sound, Optimal

and Flexible Building from Megamodels”. (July 2018). Available from

http://homepages.inf.ed.ac.uk/perdita/MegamodelBuild.

[22] Jon Whittle, John Edward Hutchinson, and Mark Rouncefield. 2014.

The State of Practice in Model-Driven Engineering. IEEE Software 31,
3 (2014), 79–85.

11

http://ceur-ws.org/Vol-1242/paper10.pdf
https://doi.org/10.22152/programming-journal.org/2017/1/9
https://doi.org/10.22152/programming-journal.org/2017/1/9
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1016/S0164-1212(01)00036-X
http://www.modelexecution.org/media/EXE2017/papers/EXE_2017_paper_6.pdf
http://www.modelexecution.org/media/EXE2017/papers/EXE_2017_paper_6.pdf
https://doi.org/10.1007/978-3-319-92997-2_1
https://doi.org/10.1007/978-3-319-92997-2_1
http://homepages.inf.ed.ac.uk/perdita/MegamodelBuild

	Abstract
	1 Introduction
	2 Related work and background
	2.1 Build in MDD
	2.2 Building software
	2.3 Model-driven development
	2.4 Problems and progress in build systems
	2.5 Summary of pluto

	3 Examples
	3.1 Unidirectional example
	3.2 Bidirectional example

	4 Custom stampers and bidirectionality
	5 Formalisation
	6 Discussion
	7 Conclusions and future work
	Acknowledgments
	References

