
NOTES ON 2016 EXAM PAPER

Generally, I was quite pleased with how this exam, the first for the new course, was done.

These notes are not model solutions, but they describe some common issues, which may be

of interest to people who took the exam and to future students revising.

QUESTION 1

This question was compulsory and, as I explained in the final lecture, a major reason for this

was to disincentivise missing out chunks of the material when revising. Most people clearly

had revised the whole course. Most of it was straightforward. A few specifics focusing on the

less bookworky parts:

(e) Even though I italicised aim some answers still explained what LSP is rather than what it

aims to achieve. I wanted you to say something like "Clients written in terms of the

superclass shouldn't break when they are given objects of a subclass instead.".

(f) Yes: there's no overriding, and a client written in terms of A will never invoke

doSomethingElse, so it can't break. (This question is so easy it might almost qualify as a

trick question... but it's important to understand what kind of coding patterns are and are not

dangerous!)

(g) This was well done; of course, it's very similar to examples you had seen.

Winner:

 Individual | Syndicate;

Individual:

 'individual' name=ID;

Syndicate:

 'syndicate' name=ID '{'

 (members+=Individual)*

 '}';

(i) The "why" part: If your model transformation is bijective, then the models it relates capture

essentially the same information, even if they show it differently. So if you can only express

bijective bidirectional transformations, you can't relate different models that capture

information about different aspects of the system design - which is the main point of MDD.

QUESTION 2

This was almost everyone's choice of long question. It was generally well done. (a) was

bookwork. (b) was deliberately very open; for example, you could come down either for or

against using a modelling tool and get the marks, provided your reasons were sensible. I did

raise my eyebrows at the people who suggested this company go straight to hard-core

MDD, defining PIMs and PSMs and model transformations between them, given that you

were told they had no UML experience; that would really be tough! Lots of people made that

very point, though, that they could do that in principle but that it would probably be too big a

step to take immediately. A easier angle on the "six different operating systems" issue to

argue convincingly was that greater attention to design quality would make it easier for them

to isolate and make explicit what was the same vs what was different between these

versions, and hence to avoid needless duplication. Some people wasted time by

regurgitating a bunch of material from the course but not relating it clearly to the question

being asked. (c) was a bit harder than you might think at first sight. Most people correctly

said that the Composite design pattern was relevant, but you have to think quite hard about

how to apply it in this particular case (what is the parent class, what aggregates what?) I

marked it quite generously.

QUESTION 3

This question was very much less popular than Question 2! I don't think it was particularly

harder (when it was done, it was done well), but perhaps it was less attractive because it

involved material taught quite late. (a)-(c) are bookwork. I think (d) was pretty straightforward

for those who had done the labs; the hardest part was probably identifying pros and cons of

the different methods. I expected you to say that the textual DSL might fit in better with the

company's existing processes than the graphical one, since they were used to working with

email, but that on the other hand it might be harder for non-programmers to use. For the

non-DSL alternative, I thought the obvious suggestion was that they could just standardise

their existing processes a bit more, e.g. introduce templates to use in the mails to make sure

nothing got omitted. This would have the advantage of avoiding dependence on any

complex tool, but the disadvantage that they wouldn't be able to generate input for the other

systems from the templates. However, other answers were possible. The activity diagram at

the end is straightforward.

	NOTES ON 2016 EXAM PAPER
	QUESTION 1
	QUESTION 2
	QUESTION 3

