
Part I

1 2

3

4

5 7 9 11 13

15 16 17

18 19 20

10 12 146 8

Part II Part III

Part IV

Figure Preface Chapter dependencies, not quite in UML!

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Borrow
journal

Update
catalog

Browse

Return
journal

Figure 3.1 Use case diagram for the library.

BookBorrower

Borrow copy
of book

Return copy
of book

Return
journalJournalBorrower

Borrow
journal

Figure 3.2 Use case diagram for the first iteration.

Books and journals The library contains books and journals. It may have several copies of a given book.

Some of the books are for short term loans only. All other books may be borrowed by any library member

for three weeks. Members of the library can normally borrow up to six items at a time, but

members of staff may borrow up to 12 items at one time. Only members of staff may borrow jour-

nals.

Borrowing The system must keep track of when books and journals are borrowed and returned, enforcing

the rules described above.

Figure 3.3 Nouns and noun phrases in the library.

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

0..1 0..*

0..1 0..*

borrows/returns

borrows/returns

borrows/returns

0..1

0..*

is a copy of

Figure 3.4 Initial class model of the library.

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

0..1 0..*

0..1 0..*

borrows/returns

borrows/returns

is a copy of

Figure 3.5 Revised library class model.

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

aMember : BookBorrower

Figure 3.6 Interaction shown on a sequence diagram.

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

Figure 3.7 State diagram for class Book.

Analysis

Design

Implementation

Testing

Maintenance

Figure 4.1 A simple waterfall process.

Evaluate

Analyze risks and

plan
Analyze requirements

for this iteration

Engineer:

design,

implement

test

Figure 4.2 A simple spiral process.

Book

Figure 5.1 A very simple class model.

BookCopy
is a copy of

Figure 5.2 Simple association between classes.

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

Figure 5.3 A simple class model, with attribute and
operation.

LibraryMember

MemberOfStaff

Figure 5.4 A simple generalization.

LibraryMember

Responsibilities Collaborators
Maintain data about copies currently borrowed

Meet requests to borrow and return copies Copy

Copy

Responsibilities Collaborators
Maintain data about a particular copy of a book

Inform corresponding Book when borrowed and returned Book

Book

Responsibilities Collaborators
Maintain data about one book

Know whether there are borrowable copies

Figure 5.5 Example of CRC cards for the library.

HonoursCourse Module

1..* 6..*

Figure 6.1 An aggregation.

Board Square
9

1

Figure 6.2 A composition.

Director of

Studies

Student
directeeDoS

Figure 6.3 An association shown with role names.

Student
Module

is taking

1..* 6

Figure 6.4 Association with no navigability shown.

Student
Module

is taking

1..*
6

Figure 6.5 Association with one-way navigability shown.

Board Square
91

Figure 6.6 Plain association between Square and
Board.

Board
row:{1,2,3}

column:{1,2,3}
Square

11

Figure 6.7 Qualified association.

Board row:{1,2,3}

column:{1,2,3}
Square

11

Figure 6.8 Qualified composition.

Student
Module

is taking

Lecturer

teaches course
/teaches student

Figure 6.9 A derived association.

Copy

is a copy of
Book

Journal

is a copy of

0..1

0..1

1..*

1..*

Figure 6.10 An under-constrained diagram.

Copy

is a copy of
Book

Journal

is a copy of

{xor}

0..1

0..1

1..*

1..*

Figure 6.11 Using an or-constraint.

Student
Module

is taking

is taking

mark : int

1..* 6

Figure 6.12 An association class.

Student
Module

is taking

mark : int

Mark

1
1

6 1..*

61..*

Figure 6.13 Avoiding an association class.

pr
in

ts

Stringifiable

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

<<use>>

...

Figure 6.14 An interface and its use.

<<interface>>
Stringifiable

stringify() : String

Printer

pr
in

ts

Stringifiable

Module

stringify() : String

...

...

Figure 6.15 More parsimonious notation for interface
dependency.

T
List

add(t:T, pos:int)

get(i:int) : T

List<Game>

StudentList

<<bind>>(Student)

Figure 6.16 A parameterized class and its uses.

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Borrow
journal

Update
catalog

Browse

Return
journal

Figure 7.1 Use case diagram for the library.

BookCopy

is a copy of

Figure 7.2 Simple association between classes.

BookBorrower

Reserve book

Figure 7.3 Simple communication between an actor
and a use case.

Browser

Librarian

JournalBorrower

BookBorrower

Library system

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Browse

Update
catalog

Borrow
journal

Return
journal

Figure 7.4 Use case diagram for the library.

<<include>>

<<include>>

Extend loan

Check for reservation

BookBorrower

Borrow copy
of book

Figure 8.1 Use case reuse: ¿usesÀ.

ReservationChecker

for
reservation

Check

Figure 8.2 A use case diagram describing a component.

BookBorrower

<<extend>> Refuse loan

Borrow copy of book

Figure 8.3 ¿extendsÀ.

BookBorrower

Refuse loan

extension points
status validation:

after confirming identity

Borrow copy of book

<<extend>>
too many books on loan

Figure 8.4 ¿extendsÀ with extension point.

BookBorrower

JournalBorrower

Figure 8.5 Generalization between actors.

BookBorrower

<<actor>>

BookBorrower

Figure 8.6 These two symbols mean the same.

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

Figure 9.1 A simple collaboration, showing no
interaction.

LibraryMember

Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

borrow(theCopy)

1: okToBorrow

2 :borrow

2.1: borrowed

Figure 9.2 Interaction shown on a collaboration
diagram.

aMember : BookBorrower

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

Figure 9.3 Interaction shown on a sequence diagram.

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

Figure 9.4 Bad design, breaking the Law of Demeter.

borrow(theCopy)

2: borrow
2.1: borrowed

:LibraryMember :Copy : Book

1: okToBorrow

aMember : BookBorrower

Figure 9.5 Interaction shown on a sequence diagram,
with optional features.

Complex collaboration Identifying a sub-collaboration Replacing with a package

Figure 9.6 Using a package to simplify a collaboration.

:Lecturer

:DirectorOfStudies

:UTO
1: n := getName()

2: new DirectorOfStudies (n)

3:destroy()

Figure 9.7 Sequence diagram: creation and deletion of
objects, and use of return value.

:Lecturer

:UTO

1: n := getName()

{destroyed}

:DirectorOfStudies {new}

3:destroy()

2: new DirectorOfStudies (n)

Figure 9.8 Collaboration diagram: creation and
deletion of objects, and use of return value.

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

{C - A < 5 sec}

aMember : BookBorrower

C

A

{borrowed′ - borrowed < 1 sec}

Figure 9.9 Showing timing constraints on a sequence
diagram.

[i = 0] foo()

[i = 1] bar()

m : Mung

[i = 0] foo()

[i = 1] bar()

m : Mung

Figure 10.1 Two sequence diagram fragments.

m : Mung f : Froboz

7.1:[i = 0] foo()

7.2:[i = 1] bar()

Figure 10.2 Fragment of sequence diagram with
branching lifeline.

3.1:*[i := 1..2] a()

:Foo :Bar :Baz

3.1.1:b()

Figure 10.3 Sequence diagram fragment: iteration
showing messages abab.

3.1:*[i := 1..2] a()

3.1.1:*[i := 1..2] b()

:Foo :Bar :Baz

Figure 10.4 Sequence diagram fragment: iteration
showing messages abbabb.

Interaction type Symbol Meaning

Synchronous or call –I The ‘normal’ procedural situ-

ation. The sender loses con-

trol until the receiver finishes

handling the message, then gets

control back, which can option-

ally be shown as a return arrow.

Return <– – Not a message, but a return from

an earlier message. Unblocks a

synchronous send.

Flat → The message doesn’t expect a

reply; control passes from the

sender to the receiver, so the

next message (in this thread)

will be sent by the receiver of

this message.

Asynchronous ⇁ The message doesn’t expect a

reply, but unlike the flat case,

the sender stays active and may

send further messages.

Figure 10.5 Variants of message sending in sequence
diagrams.

Ada Lovelace : CS4Student Dr. J. Bloggs : CS4DirectorOfStudies

:DirectorOfStudies

email

confirmChoice(m1,...,m6,self)

chooseModules(m1,...m6)

:Student

Figure 10.6 Asynchronous message-passing.

return()

borrow()

on loan on the shelf

Figure 11.1 State diagram of class Copy.

on loan on the shelf
return() /book.returned(self)

borrow()/book.borrowed(self)

Figure 11.2 State diagram of class Copy, with actions.

return()

borrow()

on loan on the shelf

entry/book.borrowed(self) entry/book.returned(self)

Figure 11.3 State diagram of class Copy, with entry
actions.

return()

borrow()

on loan on the shelf

exit/book.returned(self) exit/book.borrowed(self)

Figure 11.4 State diagram of class Copy, with exit
actions.

/bar()

exit/baz() entry/foo()

someEventaState anotherState

Figure 11.5 Several actions in one diagram.

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

Figure 11.6 State diagram for class Book.

prepare for
next member

find book
on shelf

wait in queue

borrowing

record

record
return

put book back
on shelf

[borrower]

[returner]

[returning]

[borrowing]

member librarian

Figure 11.7 Business level activity diagram of the library.

reset() / sum := 0 / observations := 0

report() / printSummary() / sum := 0 /observations := 0

entry / startTime := now()

update(val : Real) / sum := sum + val/observations++

Figure 12.1 State diagram for class Average: not good
style!

[not nextEvent=Finished]

[nextEvent=Finished]
in event list

active

include/activeDetail

when(evTime=now())

Figure 12.2 State diagram for class Customer.

entry/trace("Start")
exit/evTime:=evTime+2;
 nextEvent :=2;

exit/evTime:=evTime+2;
entry/trace("Work")

 nextEvent :=3;

[nextEvent=1]

[nextEvent=2]

[nextEvent=3] entry/trace("Finish")

exit/nextEvent :=Finished;

Figure 12.3 Nested state diagram activeDetail for
class Customer’s active state.

(a) State with internal concurrency

(b) Equivalent state with external synchronization

Figure 12.4 State diagrams with concurrency.

streams.o

library>><<

MyApp

<<executable>>

MyIO
<<link>>

<<compile>>

Figure 13.1 A component diagram showing compile
time dependencies.

GameEngine

PlayerInterface

<<rmi>>

Figure 13.2 A component diagram showing runtime
dependencies.

<<LAN>>
craro : PCshillay : Workstation

Figure 13.3 A deployment diagram without the
software.

P2:PllayerInterface

OXO:GameEngine

P1:PlayerInterface

shillay : Workstation
craro : PC

<<LAN>>

Figure 13.4 A deployment diagram with the software.

P

Q

A

foo:??

B

C

R

D

E

S

Figure 14.1 Packages and visibility example.

CS3CourseOrganizer
CS4CourseOrganizer

UTO

CS4Student

CS4DirectorOfStudies

CS4Lecturer

Create CS4 list

Produce
course handbook

Register for
modules

Figure 15.1 Use case model.

Lecturer

Module

HonoursCourseStudent

GraduatingStudent

DirectorOfStudies

NonGraduatingStudent

teaches

takes

directs

is on

6

1..* 1..*

6..*

1

0..*

0..*

1

1

0..*

Figure 15.2 Class model.

Lecturer

Module

HonoursCourseStudent

GraduatingStudent

DirectorOfStudies

NonGraduatingStudent

teaches

takes

directs

is on

6

1..* 1..*

6..*

1

0..*

0..*

1

1

0..*

UI

knows about

knows about

knows about

Figure 15.3 Another class model.

Class name:

CollaboratorsResponsibilities

Class name:

CollaboratorsResponsibilities

Class name:

CollaboratorsResponsibilities

Module

HonoursCourse

Keep collection of
modules

Module

DirectorOfStudies

Provide human DoS’s
interface to the system

Generate course
handbook text

Keep description of
course

Keep Lecturer of course

Figure 15.4 CRC cards needed for Produce course
handbook.

Determine
modules

Allocate
duties

Update
module entry

Update
core sections

Print
handbook

Generate
HTML version

syllabus
committee

head of
department

lecturer

UTO CS4 course organizer

Figure 15.5 An activity diagram for course handbook
preparation.

&%
'$

&%
'$

�
�
�
�
�
�
�
��

@
@

@
@

@
@

@
@@

�
�
�
�
�
�
�
��

@
@

@
@

@
@

@
@@

�
�
�
�
�
�
�
��

@
@

@
@

@
@

@
@@

Figure 16.1 Noughts and Crosses (Tic-Tac-Toe).

Figure 16.2 Chess.

PlayerX : PlayerActor

3:validate(m)
:Board

2:new(s,X)

s:Square

4:confirm()

4.1:new(X)

1:isIn(x,y)

4.2:addToken(t)

mousePressed(e)

t:OXOToken {new}

m : OXOMove {transient}

:OXOGame

Figure 16.3 Collaboration diagram for an X move in
Noughts and Crosses.

OXOGame

OXOGame(b:Board)

validate(m:Move) : Result

OXOMove

OXOMove(p:Player,s:Square)

confirm()

findSquare(i:Int,j:Int) : Square
owner(i:Int,j:Int) : Player
message(s:String)
init()
paint(g:Graphics)

BoardSquare

Square
isIn(i:Int,j:Int) : boolean

owner():Player
paint(g:Graphics)

OXOToken

OXOToken(p:Player)

owner() : Player

(i:Int,j:Int,h:Int,w:Int)

addToken(t:OXOToken)

paint(p:Player,x:Int,y:Int)

0..1

1 1

0..1

0..1

1

9 1
1

1

1

0..1

Figure 16.4 Class diagram for Noughts and Crosses.

Token

Move

Game

CurrentPosition

Figure 16.5 Class diagram for games framework.

Game over

A to move

B to move
when(toMove = null)

when(toMove = null)

when(toMove = A) when(toMove = B)

Figure 16.6 State diagram for CurrentPosition.

Scheduler

schedules

1..*

1

1..*

ExternalDataset

1
driven by

Report

AverageCount

PassiveEntity

BufferResource

1..*

invokes

1

1..*

asks summary from

1

1

makes requests to

1

updates

1
asks time from

1

0..*

set by

1

1..*

1

ActiveEntity

{abstract}

{abstract}

Statistic

Figure 17.1 Class diagram of discrete event simulation
system.

PassiveEntity

BufferResource

Statistic

AverageCount

summarizes for

Report 1<<use>> <<use>>

Recorder
<<interface>>

1..*
1..*

summarizes for

1

(a) Using an interface to show common behavior

(b) One way to use generalization to show common behavior

Recorder

PassiveEntity

BufferResource

Statistic

AverageCount

Report
summarizes for

1 1..*

Recorder

Recorder

Figure 17.2 Some alternatives for classes used in
reporting behavior.

collect statistics

Developer

<<extend>>

<<include>>

create model

run a model

<<include>>

observe behavior

Experimenter

Figure 17.3 Use case diagram of discrete event
simulation system.

ExternalDataset

+ giveValue() : Real

- evList: TimeOrderedList
- reports: Collection

Report

1..* - stats: Collection
+ report()

Resource

invokes

Scheduler

1..*

1

PassiveEntity

1

myStat : Statistic
blocked : FIFOList

+ wait(a : ActiveEntity)
+ now() : Real

- avail : boolean

+ acquire(a:ActiveEntity)
+ release()

1

1
set by

0..*

asks time from

driven by
1

1..*

+trace(m : Text)
+ reschedule()

+ getTime() : Real

makes
requests to

updates

1
1

input : ExternalDataset

ActiveEntity
{abstract}

- total : Integer

Count

+ update(r:Real)
+ update(r:Real)

+ report()

- sum : Real

Average

+ report()

1

schedules

1..*

+ run(runTime:Real)

input : ExternalDataset
s : Scheduler

evTime : Real
nextEvent : Integer

Buffer

+ reset()
+ reset()

+ report()

1
asks for summary from

0..*
1..*

{abstract}
observations : Integer
clock : Scheduler
startTime : Real
+ reset()
+ update(r:Real)

+ act()

Statistic

Figure 17.4 Detailed class diagram for a simulation
experiment.

in event list
[nextEvent=Finished]include/activeDetail

active

[not nextEvent=Finished]s.wait(self)

act()

Figure 17.5 State diagram of the generic
ActiveEntity.

available in use

release()[blocked.empty()]

acquire(a:ActiveEntity) /blocked.add(a)

acquire(a:ActiveEntity) /a.reschedule()

release()[not blocked.empty()] /a:=blocked.next() /a.reschedule()

Figure 17.6 State diagram of Resource.

/trace("Start")[nextEvent=1] /evTime:=evTime+2/nextEvent:=2

[nextEvent=3]/trace("Work")/evTime:=evTime+2/nextEvent:=4

[nextEvent=4]/trace("Finish")/nextEvent:=Finished/spanner.release()

reschedule()/evTime:=s.now()
blocked

[nextEvent=2]/trace("Acq")/nextEvent:=3/spanner.acquire(self)

Figure 17.7 activeDetail state diagram of class
Worker.

reset() / sum := 0 / observations := 0

report() / printSummary() / sum := 0 /observations := 0

entry / startTime := now()

update(val : Real) / sum := sum + val/observations++

Figure 17.8 State diagram of Average.

sartre : Philosopher

fork2 : Resource

1
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()

2
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()

3
: [

pl
at

o.
ev

T
im

e>
=

s.
no

w
()

]a
ct

()

s : Scheduler

fork1 : Resource

hegel : Philosopher

fork3 : Resource

2.1 : acquire(plato)

2.1.1 : reschedule()

1.1 : acquire(plato)

1.1.1 : reschedule()

3.1 : release()
3.2 : release()

1.1.1.1 : w
ait(plato)

2.1.1.1 : w
ait(plato)

3.3 : w
ait(plato)

plato : Philosopher________________

Figure 17.9 Collaboration diagram of the dining
philosophers.

blocked

[nextEvent=1]/trace("Think")/evTime:=evTime+2/nextEvent:=2

[nextEvent=4]/trace("Eat")/evTime:=evTime+2/nextEvent:=5

reschedule()/evTime:=s.now()

[nextEvent=3]/trace("F2")/nextEvent:=4/ lFork.acquire(self)

[nextEvent=2]/trace("F1")/nextEvent:=3/rFork.acquire(self)

[nextEvent=5]/trace("Finished")/nextEvent:=1/rFork.release() / lFork.release()

Figure 17.10 activeDetail state diagram of class
Philosopher.

LibraryMember

MemberOfStaff

Book

Copy

Journal

Library

Facade

Facade

Subsystem class

Subsystem class

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

is a copy of

Figure 18.1 The Façade pattern applied to the library.

C
op

y
B

oo
k

is
 c

op
y

of
1.

.*
1

A
ss

o
ci

at
io

n
 w

it
h

 m
u

lt
ip

lic
it

ie
s

an
d

 n
av

ig
ab

ili
ty

B
oa

rd
ro

w
:{

1,
2,

3}
co

lu
m

n:
{1

,2
,3

}
Sq

ua
re

Q
u

al
if

ie
d

 a
ss

o
ci

at
io

n

Sq
ua

re
B

oa
rd

C
o

m
p

o
si

ti
o

n

-
st

at
s

: C
ol

le
ct

io
n

R
ep

or
t

+
 r

ep
or

t(
)

: v
oi

d

St
ud

en
tL

is
t

M
ed

ia
n

M
ea

n

St
at

is
tic

R
ep

or
t

St
at

is
tic

R
ec

or
de

r

<
<

in
te

rf
ac

e>
>

R
ec

or
de

r

C
op

y

C
la

ss
 w

it
h

 a
tt

ri
b

u
te

an
d

 o
p

er
at

io
n

S
im

p
le

 c
la

ss

<
<

bi
nd

>
>

(S
tu

de
nt

)

P
ar

am
et

er
iz

ed
 c

la
ss

an
d

 it
s

u
se

s

G
en

er
al

iz
at

io
n

C
la

ss
es

 -
 C

h
ap

te
rs

 5
 a

n
d

 6

St
ud

en
t

M
od

ul
e

is
 ta

ki
ng

m
ar

k:
in

t

A
ss

o
ci

at
io

n
 c

la
ss

L
is

t

+
 a

dd
(t

:T
,p

os
:in

t)

T

+
 g

et
(i

:in
t)

 :
T

A
g

g
re

g
at

io
n

D
eg

re
eC

ou
rs

e
M

od
ul

e

L
is

t<
G

am
e>

In
te

rf
ac

es

L
ib

ra
ry

Fa
ca

de

fa
ca

de

su
bs

ys
te

m
cl

as
s

B
oo

k

P
at

te
rn

 -
 C

h
ap

te
r

18

A
ct

iv
it

y
d

ia
g

ra
m

s
-

C
h

ap
te

r
11

S
eq

u
en

ce
 d

ia
g

ra
m

s
-

C
h

ap
te

rs
 9

 a
n

d
 1

0

U
se

 c
as

es
 -

 C
h

ap
te

rs
 7

 a
n

d
 8

ob
se

rv
e

be
ha

vi
or

co
lle

ct
st

at
is

tic
s

m
od

el
ru

n

E
xp

er
im

en
te

r

cr
ea

te
 m

od
el

<
<

ex
te

nd
>

>

<
<

in
cl

ud
e>

><
<

in
cl

ud
e>

>
D

ev
el

op
er

1.
4:

 d
es

tr
oy

():I
te

m

:U
se

r

1.
2:

 i
:=

 q
ue

ry
()

s:
St

or
e

1.
3:

 c
he

ck
(i

)

1.
1:

 n
ew

It
em

(3
)

L
oc

at
e

R
et

ur
n

R
ec

or
d

St
am

p

[b
or

ro
w

in
g]

[r
et

ur
ni

ng
]

1:
 r

eq
ue

st
()

:U
se

r

:I
te

m

W
or

ki
ng

en
tr

y/
 i+

+
ex

it
/ i

--
W

ai
tin

g

C
o

lla
b

o
ra

ti
o

n
 d

ia
g

ra
m

s
-

C
h

ap
te

rs
 7

 a
n

d
 8

T
yp

es
 o

f
m

es
sa

ge

as
yn

ch
ro

no
us

sy
nc

hr
on

ou
s

fl
at

re
tu

rn

di
ag

ra
m

s
an

d
co

lla
bo

ra
tio

n
us

ed
 in

 s
eq

ue
nc

e

S
ta

te
 d

ia
g

ra
m

s
-

C
h

ap
te

rs
 1

1
an

d
 1

2

1.
2:

 i
:=

 q
ue

ry
()

1.
4:

 d
es

tr
oy

()

{t
ra

ns
ie

nt
}

1:
 r

eq
ue

st
()1.

3:
 c

he
ck

(i
)

1.
1:

 n
ew

It
em

(3
)

s:
St

or
e

[r
ea

dy
]d

oW
or

k(
j:J

ob
)/

p.
te

ll(
j)

fi
ni

sh
ed

W
or

k(
)

A
w

ai
tin

g
co

nf
ir

m
at

io
n

co
nf

ir
m

()

H
ol

di
ng

Se
nd

in
g

af
te

r(
5

s)
w

he
n(

em
pt

y)

N
es

te
d

 c
o

n
cu

rr
en

t
st

at
e

d
ia

g
ra

m

Pl
ay

er
In

te
rf

ac
e

G
am

eE
ng

in
e

<
<

rm
i>

>

sh
ill

ay
:W

or
ks

ta
tio

n
cr

ar
o:

PC

<
<

L
A

N
>

>

G
ra

ph
ic

s

C
o

n
te

n
ts

 h
id

d
en

P
ac

ka
g

es

Im
p

le
m

en
ta

ti
o

n
 d

ia
g

ra
m

s
-

C
h

ap
te

r
13

D
ep

en
d

en
cy

 b
et

w
ee

n
 t

w
o

 c
o

m
p

o
n

en
ts

<
<

rm
i>

>

cr
ar

o:
PC

sh
ill

ay
:W

or
ks

ta
tio

n

P
h

ys
ic

al
 n

o
d

es
 w

it
h

o
u

t
so

ft
w

ar
e

<
<

L
A

N
>

>

S
o

ft
w

ar
e

d
ep

lo
ye

d
 o

n
 n

o
d

es

 -
 C

h
ap

te
r

14

g:
G

am
eE

ng
in

e
p:

Pl
ay

er
In

te
rf

ac
e

G
ra

ph
ic

s

C
o

n
te

n
ts

 s
h

o
w

n

