18<---19=---20

Part |
.3
l1<---2"_
-4
//4
Part |1 Part 11l |
5 7 9 11 13
oAb R
Coor B ERRREEEE T T 15 16 17
6 8 10 12 14
=
Pat 1V | °

Figure Preface Chapter dependencies, not quite in UML!

X

BookBorrower

Browser
Borrow copy
of book
Return copy
of book

Update
catalog

Librarian

X

Return
Journal Borrower journal

Figure 3.1 Use case diagram for the library.

Borrow
journal
Borrow copy
of book
Return
BookBorrower JournalBorrower journal

Return copy
of book

Figure 3.2 Use case diagram for the first iteration.

Books and journals The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by any library member
for three weeks. Members of the library can normally borrow up to six items at a time, but
members of staff may borrow up to 12 items at one time. Only members of staff may borrow jour-
nals.

Borrowing The system must keep track of when books and journals are borrowed and returned, enforcing
the rules described above.

Figure 3.3 Nouns and noun phrases in the library.

Book

1
Isacopy of
1.*

LibraryMember borrows/returns Copy

0.1 0.*

0.*
borrows/returns
0.1

M emberOf Staff borrows/returns Journd

0.1 0.*

Figure 3.4 Initial class model of the library.

Book

1
Isacopy of
1.*
LibraryMember borrows/returns Copy
ZX 0.1 0.*
MemberOf Staff borrows/returns Journal
0.1 0..*

Figure 3.5 Revised library class model.

borrow(theCopy) _

1: okToBorrow

f——

2: borrow

2.1: borrowed

Figure 3.6 Interaction shown on a sequence diagram.

returned()

-

4 I 4 I
returned()
not borrowable borrowable

borrowed()[last copy] L Y,

_/

borrowed()[not last copy]

Figure 3.7 State diagram for class Book.

Anaysis /\

Design /\\

| mplementation /\

Testing /\\

Mal ntenance

Figure 4.1 A simple waterfall process.

Engineer:

|
! Evauate
design, |
implement)
test :
|
|
|
|
|
|
_________________ e
|
|
|
|
|
|
| .
Analyze requirements | Analyze risks and
plan

for thisiteration

Figure 4.2 A simple spiral process.

Book

Figure 5.1 A very simple class model.

IS a copy of
Book

Copy

Figure 5.2 Simple association between classes.

Book

title : String

copilesOnShelf() : Integer
borrow(c:Copy)

Figure 5.3 A simple class model, with attribute and
operation.

LibraryMember

A

MemberOfStaff

Figure 5.4 A simple generalization.

LibraryMember

Responsibilities Collaborators
Maintain data about copies currently borrowed
Meet requests to borrow and return copies Copy

Copy
Responsibilities Collaborators

Maintain data about a particular copy of a book
Inform corresponding Book when borrowed and returned | Book

Book
Responsibilities Collaborators
Maintain data about one book

Know whether there are borrowable copies

Figure 5.5 Example of CRC cards for the library.

HonoursCourse

1.*

O

Figure 6.1

Module

An aggregation.

Board

PN ;

Square

Figure 6.2 A composition.

Director of DoS directee Student

Studies

Figure 6.3 An association shown with role names.

IS taking Module

Student

Figure 6.4 Association with no navigability shown.

S — IS taking Module

Figure 6.5 Association with one-way navigability shown.

Board Square

Figure 6.6 Plain association between Square and
Board.

Board

row:{1,2,3}
column:{1,2,3}

Square

Figure 6.7 Qualified association.

Board

row:{1,2,3}
column:{1,2,3}

1

¢

Figure 6.8 Qualified composition.

Square

Student

IS taking

/teaches student A

Module

L ecturer

teachescourse A

Figure 6.9 A derived association.

: 0.1
Is a copy of

Copy Book

Isacopy of

Journal

Figure 6.10 An under-constrained diagram.

Copy

0.1

IS a copy of

IS acopy of

Figure 6.11

Book

Journal

Using an or-constraint.

Student

1.*

istaking

Module

Istaking

mark : int

Figure 6.12 An association class.

1.* Istaking 6 Module

Student

Mark

6 mark : int 1.*

Figure 6.13 Avoiding an association class.

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Stringifiable

Y Printer

Figure 6.14 An interface and its use.

<<interface>> Module
Stringifiable

stringify() : Strin
stringify() : String gify() g

Stringifiable

prints

Printer

Figure 6.15 More parsimonious notation for interface
dependency.

|
|

_ |

List L — _ _ _

add(t: T, pos:int)

get(i:int) : T

/:\ List<Game>

<<bind>>(Student)

StudentList

Figure 6.16 A parameterized class and its uses.

X

BookBorrower

Browser
Borrow copy
of book
Return copy
of book
Borrow
journal
Return
Journal Borrower journal

Figure 7.1 Use case diagram for the library.

Update
catalog

Librarian

Isacopy of
Book

Copy

Figure 7.2 Simple association between classes.

Reserve book

N

BookBorrower

Figure 7.3 Simple communication between an actor
and a use case.

Library system

Borrow copy
of book
Return copy
of book
Update
catalog —
journal
/ - Librarian
T Return
Journal Borrower journal

Browser

BookBorrower

Figure 7.4 Use case diagram for the library.

Extend loan

S~ <<include>>

Check for reservation

BookBorrower

\

Borrow copy " <<include>>

of book

Figure 8.1 Use case reuse: <uses>>.

Check

for
/\ reservation

ReservationChecker

Figure 8.2 A use case diagram describing a component.

BookBorrower

<<extend>> __ Refuse loan

-

Borrow copy of book <=~

Figure 8.3 <<extends>.

BookBorrower <<extend>>
too many books on loan
Refuse loan

_ -
—

Borrow copy of book """

extension points
status validation:
after confirming identity

Figure 8.4 <<extends>>> with extension point.

BookBorrower

A

JournalBorrower

Figure 8.5 Generalization between actors.

@

<<actor>>
BookBorrower

N\

BookBorrower

Figure 8.6 These two symbols mean the same.

Figure 9.1 A simple collaboration, showing no
Interaction.

o

theBook : Book
borrow(theCopy) y ‘ T 2.1: borrowed
LibraryMember
— =
</ 2 :borrow
—

1: okToBorrow

Figure 9.2 Interaction shown on a collaboration
diagram.

Q thel ibraryMember : theCopy :Copy theBook : Book
AL
| borrow(theCopy) : E E
1: okToBorrow E E
-« : :
2: borrow E E
= 2.1: borrowed !

Figure 9.3

Interaction shown on a sequence diagram.

EverythingController JobController
—— —
1 0.*
getJC(j:Job) : JobController
1 1
0. 0.+

Job

Figure 9.4 Bad design, breaking the Law of Demeter.

] borrow(theCopz)

1: okToBorrow

2: borrow

>~ 2.1: borrowed
-]

Figure 9.5 Interaction shown on a sequence diagram,
with optional features.

= =

—

Complex collaboration | dentifying a sub-collaboration Replacing with a package

Figure 9.6 Using a package to simplify a collaboration.

I =

1. n ;= getName()

2: new DirectorOfStudies (n)

3:destroy() >l<

Figure 9.7 Sequence diagram: creation and deletion of
objects, and use of return value.

1: n:= getName()

L ecturer { destroyed}

3:destroy()

:UTO -

l 2: new DirectorOfStudies (n)

‘DirectorOfStudies { new}

Figure 9.8 Collaboration diagram: creation and
deletion of objects, and use of return value.

| |

R borrow(theCopy) : :
| | |

1: okToBorrow : :

| |

B _ . {borrowed - borrowed < 1sec} |

{C-A<5%q 2: borrow _ !
2.1: borrowed |

\ :

- :

| |

C e T : :
! : :

| | |

| | |

L] | | |

Figure 9.9 Showing timing constraints on a sequence
diagram.

|.______
|.______

[i = 0] foo() [i = 0] foo()

— i = 1] bar() — [1=1] bar()

Figure 10.1 Two sequence diagram fragments.

7.1:[1 = Q] foo()

7.2:[i = 1] bar()

Figure 10.2 Fragment of sequence diagram with
branching lifeline.

3.1*[i:=1.2] &)

|.______

3.1.1:b()

Figure 10.3 Sequence diagram fragment: iteration
showing messages abab.

|.______

3.1*[i:=1.2] &)

3.1.1:*[i := 1..2] b()

Figure 10.4 Sequence diagram fragment: iteration
showing messages abbabb.

Interaction type Symbol | Meaning

Synchronous or call| —» | The ‘normal’ procedural situ-
ation. The sender loses con-
trol until the receiver finishes
handling the message, then gets
control back, which can option-
ally be shown as a return arrow.
Return <-— | Notamessage, but areturn from
an earlier message. Unblocks a
synchronous send.

Flat — The message doesn’t expect a
reply; control passes from the
sender to the receiver, so the
next message (in this thread)
will be sent by the receiver of
this message.

Asynchronous — | The message doesn’t expect a
reply, but unlike the flat case,
the sender stays active and may
send further messages.

Figure 10.5 Variants of message sending in sequence
diagrams.

=]]

chooseM odules(mi,...m6)

confirmChoice(mi,..., m6,se||f)

>
emalil
< ______________

Figure 10.6 Asynchronous message-passing.

[on loan }(return)(on the shelf
borrow() L

Figure Il.1 State diagram of class Copy.

-

) return()/book.returned(self) g
on loan on the shelf
borrow() / book.borrowed(self) L

Figure 11.2 State diagram of class Copy, with actions.

on loan

return()

on the shelf

Lentry/book.borrowed(self) <
J

borrow()

.

entry/book.returned(self)

Lo

Figure 11.3 State diagram of class Copy, with entry

actions.

return()

on the shelf

exit/book.returned(self)

[ontoar
L

J

borrow()

.

exit/book.borrowed(self)

J

Figure 11.4 State diagram of class Copy, with exit

actions.

aState someEventbar()

[
L

exit/baz()

anotherState

g

entry/foo()

Figure 11.5 Several actions in one diagram.

returned()

=

4 I 4 I
returned()

not borrowable borrowable

borrowed()[last copy] L J

_/

borrowed()[not last copy]

Figure 11.6 State diagram for class Book.

member librarian
< [borrower] find book
on shelf
[returner]

(waitinqueue }—ﬂ
g [returning]

[borrowing]
record put book back
return on shelf
record
borrowing

prepare for
next member

@

Figure 11.7 Business level activity diagram of the library.

report() / printSummary() / sum := 0 /observations:=0

p
entry / startTime := now()

update(val : Real) / sum := sum + val/observations++
- /

reset() / sum := 0/ observations := 0

Figure 12.1 State diagram for class Average: not good
style!

when(evTime=now()) p N

<)
‘ active
inevent list include/ activeDetall [nextEvent=Finished]
&

J J
[not nextEvent=Finished]

Figure 12.2 State diagram for class Customer.

entry/trace(" Start")
exit/evTime: eleme+2
nextEvent :=2

[nextEvent=2] (try/trace("Work) W
‘ - entry/trac or
L exit/evTime: eleme+2, J @
nextEvent :=3

[nextEvent=1]

[nextEvent=3] (entry/trace(" Finish")

Lexn/ nextEvent :=Finished;

Figure 12.3 Nested state diagram activeDetail for
class Customer’s active state.

%
.
|
\H/
T

J/

(b) Equivalent state with external synchronization

Figure 12.4 State diagrams with concurrency.

<<link>>

streams.o - - MylO

<<library>>

=

~
~

_ -7 <<compile>>

~
~

MyApp

<<executable>>

Figure 13.1 A component diagram showing compile
time dependencies.

GameEngine [N -

Playerinterface

Figure 13.2 A component diagram showing runtime

dependencies.

<<LAN>>

Figure 13.3 A deployment diagram without the
software.

shillay : Workstation << AN>>

Figure 13.4 A deployment diagram with the software.

o

foo:??

Figure 14.1

Packages and visibility example.

O
PN

CHACourseOrganizer

Produce
)G — O

CHAL ecturer

Q Register for
modules Q
I

CHADirectorOfStudies

CHAStudent

Figure 15.1 Use case model.

DirectorOf Studies

1
L ecturer teaches
0.*
takes
directs
\ 1.
0..* Student
0.*

NonGraduatingStudent

GraduatingStudent

Figure 15.2 Class model.

Module

O 1.*

HonoursCourse

1
Ison

teaches

Lecturer

DirectorOfStudies

knows about Modl
odule
| knowsabou—
Ul 6 6..*
takes
knows\about
directs *
\ 1.* o L
o.* | Student HonoursCourse
A 1
Ison
0.*
NonGraduatingStudent GraduatingStudent

Figure 15.3 Another class model.

Class name: HonoursCourse

Class name: DirectorOfStudies

Responsibilities

Collaborators

Responsibilities Collaborators

Keep collection of
modules

Generate course
handbook text

Module

Provide human DoS's
interface to the system

Figure 15.4

Class name: Module

Responsibilities Collaborators

Keep description of
course

Keep Lecturer of course

CRC cards needed for Produce course

handbook.

Determine
modules \

syllabus
committee

Allocate
duties

head of
department

Update
module entry

lecturer

Print
handbook

uTo

Update
core sections

Generate
HTML versio

C$4 course organi zer

Figure 15.5 An activity diagram for course handbook
preparation.

SHD

Figure 16.1 Noughts and Crosses (Tic-Tac-Toe).

Figure 16.2 Chess.

t:0XOToken { new} [— ~—_ 4-1:new(X)

. —| -m:OXOMove({transient}
| s.Square

-
4.2:addToken(t)
| / 2:new(s,X)
L:isin(x,y) \ 4:confirm() :OXOGame
mousePr%SG\d(;) -Board 3:validate(m)

Figure 16.3 Collaboration diagram for an X move in
Noughts and Crosses.

OXOToken

OXOToken(p:Player)
owner() : Player
paint(p:Player,x:Int,y:Int)

0.1

1

OXOMove

0.1

0.1

OXOMove(p:Player,s.Square)
confirm()

\1

0.1

OXOGame

OXOGame(b:Board)
validate(m:Move) : Result

Square

Square (i:Int,j:Int,h:Int,w:Int)
isin(i:Int,j:Int) : boolean
addToken(t:OXOToken)
owner():Player

paint(g: Graphics)

Board

1

9

findSquare(i:Int,j:Int) : Square
owner(i:Int,j:Int) : Player
message(s. String)

Yinito

paint(g:Graphics)

Figure 16.4 Class diagram for Noughts and Crosses.

Move

Token Game

CurrentPosition

Figure 16.5 Class diagram for games framework.

/0

when(toMove = null)

A to move }

[Game over } when(toMove 3 A)

when(toMove = B)

when(toMove = null)
B to move

Figure 16.6 State diagram for CurrentPosition.

Scheduler 1 1.x

invokes Report
1 1 _ 1
asks time from
asks summary from
schedules 1 1.*
Statistic
{abstract}
1
1.* ‘f
ActiveEntity
{ abstract) updates
1 * 1\ makes requests to Count Average
driven by 1
1 1%
External Dataset 1 0.* PassiveEnti ty
set by Zﬁ
Buffer

Resource

Figure 17.1 Class diagram of discrete event simulation
system.

<<interface>>
Recorder
. N
. <
<use>> Report 1 . <<use>>
, > ~
Recorder 'summarizes for N
Q 1.* summarizes foi 5 §CP Recorder

Statistic PassiveEntity

f f

Count

Average Resource Buffer
(a) Using an interface to show common behavior
summarizes for
Report Recorder
1 1
i < |
Statistic PassiveEntity
Count
Average Resource Buffer

(b) One way to use generalization to show common behavior

Figure 17.2 Some alternatives for classes used in
reporting behavior.

X

Devel Ope\

create model

"~ - _<<include>>

~
~
~

~

observe behavior S-S
% / <<include>>

<<extend>>

Experimenter

collect statistics

Figure 17.3 Use case diagram of discrete event
simulation system.

Scheduler Report
; - stats: Collection
- reports: Collection L L= report()
- evList: TimeOrderedList 1 1
+now() : Real _ asks time from 1 * asks for summary from
+ wait(a: ActiveEntity) . -
+ run(runTime:Real) 0. {gtbasmtl sti(t:}
1 rac
observations : Integer
schedules # clock : Scheduler
startTime : Real
1+ + reset()
ActiveEntity + update(r: Real)
abstract} + report()
#evTime: Real updates -
nextEvent : Integer I ‘
#s: Scheduler « Count Average
; . makes
#input : External Dataset requeststo - total : Integer " - Redl
+trace(m : Text) + update(r:Real) _
+ reschedule() 1 + report() + update(r:Real)
+ act() 1 + reset() + report()
+ getTime() : Real » Spe=—y + reset()
1.*)
0% # blocked : FIFOLIist
driven by 1 “—1 #myStat : Statistic
1 m #input : External Dataset
External Dataset Zﬁ
+ giveVaue() : Red

Resource Buffer

- avail : boolean

+ acquire(a:ActiveEntity)
+ release()

Figure 17.4 Detailed class diagram for a simulation
experiment.

act() - D

h active
‘ inevent list @
_include/activeDetail) [nextEvent=Finished]

J
[not nextEvent=Finished]s.wait(self)

Figure 17.5 State diagram of the generic
ActiveEntity.

rel ease()[not blocked.empty()] / a:=blocked.next()/a.reschedul &)

J

acquire(acActiveEntity)/a.reschedul &) 4
. available In use

) rel ease()[bl ocked.empty()] 9

acquire(a:ActiveEntity)/blocked.add(a)

Figure 17.6 State diagram of Resource.

[nextEvent=1] /trace("Start") /evTime:=evTime+2/nextEvent:=2

® / [nextEvent=3]/trace("Work")/evTime:=evTime+2/nextEvent:=4 \
\/\ [nextEvent=4]/trace(" Finish")/nextEvent:=Finished/ spanner.rel ease()

reschedule()/evTime:=s.now()

blocked
[nextEvent=2]/trace(" Acq")/nextEvent:=3/ spanner.acquire(self)

Figure 17.7 activeDetail state diagram of class
Worker.

report() / printSummary() / sum := 0 /observations := 0

p
entry / startTime := now()

update(val : Real) / sum := sum + val/observations++
- /

reset() / sum := 0/ observations:=0

Figure 17.8 State diagram of Average.

3.1: release()
1.1: acquire(plato

1.1.1: rescheduV

forkl : Resource

sartre : Philosopher

=s.now()]act()

3: [plato.evTime>

plato : Philosopher

-

\

|)
[A
5| 3 D
= c =
E| E 5
I
g 1]
S g
N -

&2\ release()
2.1 : acquire(plato)
\ \ﬁ reschedul ()

fork3 : Resource

(ordnem: TTTZ
(ord)iem: g

—
-
—
-

s Scheduler

|

fork2 : Resource

hegel : Philosopher

Figure 17.9 Collaboration diagram of the dining
philosophers.

[nextEvent=1]/trace(" Think")/evTime:=evTime+2/nextEvent:=2

‘ / [nextEvent=4]/trace("Eat")/evTime:=evTime+2/nextEvent:=5

[nextEvent=5]/trace(" Finished")/nextEvent:=1/rFork.release() /I Fork.rel ease()

[nextEvent=2]/trace(" F1")/nextEvent:=3/rFork.acquire(self)

blocked reschedule()/evTime:=s.now()

[nextEvent=3]/trace("F2")/nextEvent:=4/|Fork.acquire(self)

Figure |7.10 activeDetail state diagram of class
Philosopher.

Book

‘. Subsystem class

1 \ _
isacopy of I Library
\\
\
1.* N :
\ /
\ /
LibraryMember borrows/returns Copy N \ / Facade
1 0.* o
] //
' Facade j
\ /
M emberOf Staff borrows/returns Journa g Subsystem class
1 0.*

Figure 18.1 The Fagade pattern applied to the library.

g1 Ja1dey) - ulaned Joploley
_ - <<9deJRII>>
e ~ < SERIEIVEN|
(mﬂwumﬂ_ \ - \Q q/ N
TN apeey e AN
/ sse| NN o
. Modey | - - - - - = >0— JISIeIS
yoog | LeRSIS Mg BpI0ooN
uonezijelauss
SSB[2 UO0IJBID0SSY
Uelpoo N ues |\
i ew
buixel si
I
" v
|
3|NPO N ! uepnIS 21SIRIS
uoijisodwod uoijebo.bby
akenbs | @ Pieog 9INPOIN <> 8sInoDsalbeg

uolneloosse paiiend

Algebineu pue
sa1j1o1diInw yim uojeloossy

arenbs Eelhun® | prog soog [HQAAOSLI fhon
T T
uoieisado pue
sasn sjI pue 1SITUSpNIS aInqlie yim ssejo
SSe|o paziidjeweled _
! ploA : ()uodal +
(Juepnis)<<pulg>> |
v uoNd|[0D : SIS -
SURD>ISIT 1 Qui)meb + Jodoy

(ursod‘ 1 :1)ppe +

sselo a)dwis

B

AdoD

9 pue g sia1dey) - sasse|D

=

(Aonsep T

(oeyd €T

o_Cm:Ac =121
|
<y NG
e)wel|Mau T'T
© "(enben T 5
_ e [Buuinipi]
JI0KS
[Buimouioq]
0T pue g sis1deyd 1T J21deyd
- swelbelp asuanbag - swelbeip AlIANOY
Salsiels
1091|090
<<pURIXO>> |
A |||||||||||
<<dpNnoul>>
<<OpPNPUI>> .

~

[BpOL 31230

g pue / sia1dey) - sased asn

Em.\mm.\ﬁ 9]P]S 1Uualinouod pPalsoN

\ N\
ﬂ
(Owunuoo | UOHEWILUOD Buemy
(®) G P gl ool
(fdue)leym 2T s g)eue
) J
(>iopmpausiuly
4
-1/ 11X
bu _H% e
(D1prd/(gor:Nxopmop[Apesi] SuBom p
-

ZT pue TT sJto1dey)d - swelibelp arels

snouoJyouise

el

B BT
SNoUOJYouAs

swelibelp
uoIeloge||0d pue
aousnbas ul pasn
abessow Jo sadA |

{iwesuen }
T

(€)wenMmeu H/H/
()Asenb =: | W7

-

/ (senbeu T
—OI05S

()/Aonsap wﬁ/ (1)>0elp s T

g pue / siardey)d - swelibelp uoleloqe||o)

Sapou uo paAojaap alemljos

0d:0reid

GOS0 /1S

NVI1>>
<<

SoeeuRARegd 1| _ _ _ _ _ _ _ L ____ QN VEEED RS
<<IWI>>

8./8M]JOS 1NOYIM S8pou [aISAyd

Adoen UOTRSYIOM A [1US
<<NVI>>

sjuauodw oo om) usamiaq Aouapuadag

aje LU |pBied — - - - — - - - >| aulbuzawes
<<IWI>>

e1 J1a1dey) - sweubelp uoleluawa|dwy

umoys sjuajuo)d

uappIy sjuaIuo)

solydel

solydes I

¥T J91dey)D - sabeyoed

