
A simple game-theoretic approach to checkonly

QVT Relations

Perdita Stevens
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

December 2009

Abstract

The QVT Relations (QVT-R) transformation language allows the def-
inition of bidirectional model transformations, which are required in cases
where a two (or more) models must be kept consistent in the face of
changes to either. A QVT-R transformation can be used either in check-
only mode, to determine whether a target model is consistent with a
given source model, or in enforce mode, to change the target model. Al-
though the most obvious semantic issues in the QVT standard concern the
restoration of consistency, in fact even checkonly mode is not completely
straightforward; this mode is the focus of this paper. We need to consider
the overall structure of the transformation as given by when and where
clauses, and the role of trace classes. In the standard, the semantics of
QVT-R are given both directly, and by means of a translation to QVT
Core, a language which is intended to be simpler. In this paper, we argue
that there are irreconcilable differences between the intended semantics
of QVT-R and those of QVT Core, so that the translation cannot be
helpful. Treating QVT-R directly, we propose a simple game-theoretic
semantics. We demonstrate its behaviour on examples and show how it
can be used to compare QVT-R transformations. We demonstrate that
consistent models may not possess a single trace model whose objects can
be read as traceability links in either direction. We briefly discuss the ef-
fect of variations in the rules of the game, to elucidate some design choices
available to the designers of the QVT-R language.

1 Introduction

Model-driven development (MDD) is widely agreed to be an important ingredi-
ent in the development of reliable, maintainable multi-platform software. The
Object Management Group, OMG, is the industry’s consensus-based standards
body, so the standards it proposes for model-driven development are necessarily

1



important. In the area of MDD, a key standard is Queries, Views and Trans-
formations (QVT, [5]), a specification of three different languages for defin-
ing transformations between models, which may include defining a restricted
view of a model which abstracts away from aspects of the model not relevant
to a particular class of intended user. Rather disappointingly, however, the
Queries, Views and Transformations languages have been slow to be adopted.
Few tools are available for any of the languages: notably, it sometimes happens
that even those tools which use “QVT” in their marketing literature do not
actually provide any of the three QVT languages, but rather, provide a “QVT-
like” language. In this paper we will consider QVT Relations (QVT-R), the
language which best permits the high-level, declarative specification of bidirec-
tional transformations. There have been two candidate implementations of this:
Medini QVT1 and ModelMorf2. ModelMorf is the more faithful to [5], and will
be discussed further in this article.

Why has the uptake of QVT been so low? Optimistically, we may point to
the fact that, while the QVT standard has been under development for a long
time, it has only recently been standardised. However, the same applied to other
OMG standards, most notably UML, and did not prevent their adoption before
finalisation. Lack of support for important engineering activities like testing and
debugging may also play a role, but this does not explain why there do exist
several tools each of which uses its own transformation language other than the
OMG standard ones, and case studies of successful use of these tools. Perhaps a
contributory factor is that, whereas the UML standard was developed following
years of widespread use of various somewhat similar modelling languages, the
model transformation arena is still far more sparsely populated. Therefore,
how to define, or recognise, a good model transformation language for use on
a particular problem is less well understood. We consider that the difficulty
developers have in understanding the semantics of QVT may play a role, and
we develop a game-theoretic semantics which we hope may be more accessible.

In this paper, we only consider transformations in checkonly mode. That
is, we are interested in the case where a QVT-R transformation is presented
with two or more models, and the transformation engine must return true if the
models are consistent according to the definition of consistency embodied in the
transformation, or false otherwise. Perhaps surprisingly, it turns out that this
already raises some interesting issues.

Related work This is an extended version of a paper [11] presented at the
International Conference on Model Transformations in June 2009. As well as
giving more formal details, this paper adds two new sections: Section 6, which
applies the new semantics to a family of examples and compares the results with
those from ModelMorf, and Section 7, which shows how the game semantics can
be exploited to prove results about the (anti-)equivalence of checkonly QVT-R

1http://projects.ikv.de/qvt/, version 1.6.0 current at time of writing
2http://www.tcs-trddc.com/ModelMorf/index.htm, but this page is (once again) not avail-

able at time of writing. This is a known problem [6]

2



transformations. We also discuss the nature and role of trace objects in QVT-R
more thoroughly. The papers follow on from earlier work by the present author,
[10], in which questions answered here, specifically the role of relation invocation
in when and where clauses (relation definition applied to particular arguments),
were left open. Discussion of the foundations of, and range of approaches to,
bidirectionality, not specific to QVT, are presented in [9] and [8] respectively.

Greenyer and Kindler [3] presented at MODELS 2007 a discussion of the
relationship between QVT Core and Triple Graph Grammars, together with
an outline of a translation from QVT Core to TGGs. Romeikat and others [7]
translated QVT-R transformations to QVT Operational. Garcia [1] formalised
aspects of QVT-R in Alloy, permitting certain well-formedness errors to be
detected.

Formal games have been widely used in computer science; the most relevant
strand for this paper is surveyed in [12]. In modelling, the GUIDE tool [13] uses
games to support design exploration and verification.

2 Background

QVT Relations A QVT-R transformation is structured as a number of re-
lations, connected by referencing one another in when and where clauses. The
idea is that an individual relation constrains a tuple of models in a rather simple,
local, way, by matching patterns rooted at model elements of particular kinds.
The power, and the complexity, of the transformation comes from the way in
which relations are connected. A relation may also have a when clause and/or
a where clause. In these clauses, other relations are invoked with particular
roots for their own patterns to be matched. In this way, global constraints on
the models being compared can be constructed from a web of local constraints.
The allowed dependencies between the choices made of values for variables –
in a typical implementation, the order in which these choices are made – are
such that the when functions as a kind of pre-condition; the where clause im-
poses further constraint on the values chosen during the relation to which it is
attached (it is, in a way, a post-condition).

The reader is referred to [5] for details: the relevant sections are Chapter 7
and Appendix B. A key point is that the truth of a relation is defined using a
logical formula which states that for every legal assignment of values to certain
variables, there must exist an assignment of values to certain other variables,
such that a given condition is satisfied.

Logic In logical terms, this is expressed as a “for all–there exists” formula;
more precisely, such a formula is called a Π2 formula, provided that the formula
which follows these two quantifiers is itself quantifier-free.

The difficulty in QVT-R is that actually, the truth of a complete transforma-
tion is expressed by a much more complex formula. Appendix B only expresses
the truth of an individual relation, but this is defined in terms of the truth of the
relations which may appear in its when and where clauses, so that, in fact, the

3



number of alternations between universal and existential quantifiers (the length
of a forall-thereexists-forall-thereexists... formula which would be equivalent to
a whole QVT-R transformation evaluating to true) is unbounded. For example,
consider the well-known example of transformation between UML class diagrams
and RDBMS schemas, in which packages correspond to schemas, classes to ta-
bles and attributes to columns. Looking at [5] p197, we see that ClassToTable
invokes relation AttributeToColumn in its where clause. The invocation gives
explicit values for the root variables of the patterns in AttributeToColumn, but
even though those are fixed, the usual rule applies as regards the rest of the valid
bindings to be found in AttributeToColumn. Thus, for each valid binding of one
pattern in ClassToTable (and of the when variables), there must exist a valid
binding of the other pattern in ClassToTable, such that for each valid binding of
the remaining variables of one pattern in AttributeToColumn (and of the when
variables, except that in this case there are none), there exists a valid binding
of the remaining variables of the other pattern in AttributeToColumn.3 Note
that, if there was more than one choice for the second binding in ClassToTable,
it is entirely possible that it turns out that only one of these choices satisfies the
rest of the condition, concerning the matching in AttributeToColumn: thus any
evaluation, whether mental or by a tool, of ClassToTable has to be prepared
either to consider both relations together, or to backtrack in the case that the
first choice of binding made is not the best.

Therefore, while one might at first glance hope to be able to understand,
and evaluate, the meaning of a QVT-R transformation by studying the relations
individually, in fact, no such “local” evaluation is possible, because of the way
the relations are connected.

Fortunately, similar situations arise throughout logic and computer science,
and much work has been done on how to handle them. In particular, this is
exactly the situation in which games have found to be a useful aid to developing
intuition, as well as to formal reasoning.

Games There is a long history in logic of formulating the truth of a logical
proposition as the existence of a winning strategy in a two-player game. For
example, the formula ∀x.∃y.y > x (where x and y are integers, say) can be
turned into a game between two players. The player who is responsible for
picking a value for x is variously called ∀belard, Player I, Spoiler, Refuter,
depending on the community defining the game, while the player responsible
for picking a value for y is called ∃louise, Player II, Duplicator or Verifier. We
will go with Refuter and Verifier. Refuter’s aim is, naturally, to refute the
formula, while Verifier’s aim is to verify it. In this game, Refuter has to pick
a value for x, then Verifier has to pick a value for y. Verifier then wins this
play of the game if y > x, while Refuter wins this play otherwise. This is an
example of a two-player game of perfect information (that is, both players can

3Actually, the version in [5] is a little more complicated than this: AttributeToColumn
invokes further relations in its where clause, and it is those which require the binding of
remaining variables: but the point is the same.

4



see everything about one another’s moves). In fact, in this case, Verifier has a
winning strategy for the game: that is, she has a way of winning the game in
the face of whatever moves Refuter may choose. For example, she could decide
always to obtain her value of y by adding 42 to whatever value of x is chosen
by Refuter.

Formally speaking, we define a game as follows. Notice that our definition
allows for the possibility of plays of a game being infinite, although it may
happen that a particular game is defined in such a way that all plays are finite.
We will use Player P , Player P to mean Verifier and Refuter in either order;
that is, if Player P is Verifier then Player P is Refuter, and vice versa.

Definition 1. A game G is (Pos, Initial,moves, λ,WR,WV ) where:

• Pos is a set of positions. We use u, v, . . . for positions.

• λ : Pos→ {Verifier,Refuter} defines who moves from each position.

• Initial ∈ Pos is the starting position: for purposes of this paper, λ(Initial) =
Refuter.

• moves ⊆ Pos×Pos defines which moves are legal. A play is in the obvious
way a finite or infinite sequence of positions, starting with Initial, where
pj+1 ∈ moves(pj) for each j. We write pij for pi . . . pj.

• WR,WV ⊆ Posω such that WR ∪WV = Posω are disjoint sets of infinite
plays, and (for technical reasons) WP includes every infinite play p such
that there exists some i such that for all k > i, λ(pk) = P .

Player P wins a play p if either p = p0n and λ(pn) = P and moves(pn) = ∅
(you win if your opponent can’t go), or else p is infinite and in WP .

Then a strategy for such a game is, informally, a set of instructions for one
player, telling the player how to move in response to any (legal) move of the
opponent. A strategy may be deterministic – it tells the player exactly how
to move – or non-deterministic – it gives a set of possible moves. In general,
the move prescribed by the strategy may depend on the entire play so far. A
strategy in which the moves prescribed only depend on the current position (not
on the way in which the current position was reached) is called memoryless or
history-free. More formally:

Definition 2. A (nondeterministic) strategy S for player P is a partial func-
tion from finite plays pu with λ(u) = P to sets of positions (singletons, for
deterministic strategies), such that S(pu) ⊆ moves(u) (that is, a strategy may
only prescribe legal moves). A play q follows S if whenever p0n is a proper finite
prefix of q with λ(pn) = P then pn+1 ∈ S(p0n). Thus an infinite play follows S
whenever every finite prefix of it does. It will be convenient to identify a strategy
with the set of plays following the strategy and to write p ∈ S for p follows S.
S is a complete strategy for Player P if whenever p0n ∈ S and λ(pn) = P then
S(p0n) 6= ∅. It is a winning strategy for P if it is complete and every p ∈ S is

5



either finite and extensible or is won by P . It is history-free (or memoryless) if
S(pu) = S(qu) for any plays pu and qu with a common last position. A game
is determined if one player has a winning strategy.

All the games we need to consider are determined by standard game theory
[4]: in fact, one player or the other will have a memoryless deterministic winning
strategy. In this simpler situation, and for games that have no infinite plays, a
strategy for Player P will simply be a partial function S from positions u that
have λ(u) = P to positions, such that S(u) ∈ moves(u), that is, the strategy
only prescribes legal moves. For practical purposes, it will suffice to define
the strategy at positions that are actually reachable by following the strategy
(allowing, of course, for all possible choices by the opponent, Player P ).

Returning to our example of the logic game based on ∀x.∃y.y > x, let us
point out that it is of course entirely possible that a player has more than one
winning strategy. When a Π2 formula is true, a Skolem function expresses a
particular set of choices that constitute a winning strategy: given x, it returns
the chosen y. Different Skolem functions may exist which justify the truth of
the same formula. In the example above, one choice of Skolem function maps x
to x+1, another maps x to x+17, another maps 1 to 23, 2 to 4, 3 also to 4, and
so on. Clearly the trace model in QVT has something in common with a Skolem
function: it expresses a way in which parts of one structure may be mapped
to “corresponding” parts of another. We do not yet have a game for QVT
transformations that would enable us to make this notion of correspondence
precise, however: we will return to the issue in Section 8.2.

Another family of examples, which may get us closer, comes from concur-
rency theory. Processes are modelled as labelled transition systems (LTSs),
that is, an LTS is a set of states S including a distinguished start state i ∈ S,
a set of labels L, and a ternary relation →⊆ S × L × S: we write s

a→ t for
(s, a, t) ∈→. The question of when two processes should be deemed to have
consistent behaviour can be answered in many ways depending on context. One
simple choice is simulation. A process B = (SB , iB , LB ,→B) is said to simulate
a process A = (SA, iA, LA,→A) if there exists a simulation relation S ⊆ SA×SB

containing (iA, iB). The condition for the relation to be a simulation relation is
the following:

(s, t) ∈ S ⇒ (∀a, s′ .(s a→ s′ ⇒ ∃t′ . t
a→ t′ ∧ (s′, t′) ∈ S))

This can very easily be encoded as a game: starting at the start state of A,
Refuter picks a transition. Verifier has to pick a transition from the start state of
B which has the same label. We now have a new pair of states, the targets of the
chosen transitions, and the process repeats: again, Refuter chooses a transition
from A and Verifier has to match it. Play continues unless or until one player
cannot go: either Refuter cannot choose a transition, because there are no
transitions from his state, or Verifier cannot choose a transition because there
is no transition from her state which matches the label on the transition chosen
by Refuter. A player wins if the other player cannot move. If play continues
for ever, Verifier wins. It is easy to show that in fact, Verifier has a winning

6



strategy for this game exactly when there exists a simulation relation between
the two processes; indeed, in a sense which can be made precise, a simulation
relation is a winning strategy for Verifier. (As with the Skolem functions for Π2

formulae, there may be more than one simulation relation between a given pair
of processes.)

A curious and relevant fact about simulation is that even if B simulates A
by simulation relation S and A simulates B by simulation relation T , it does
not follow that A simulates B by the reverse of S, nor even that there must
exist some relation which works as a simulation in both directions. This is the
crucial difference between simulation equivalence and the stronger relation of
bisimulation equivalence; see for example [2].

We will shortly define the semantics of QVT-R using a similar game, but
first, we must consider an alternative approach.

3 The translation from QVT Relations to QVT
Core

In an attempt to help readers and connect the several languages it defines, [5]
defines the semantics of QVT Relations both directly, and by translation to
QVT Core. Both specifications are informal (notwithstanding some minor use
of logic e.g. in Appendix B). [5] does not specify what should happen in the case
of conflicts between the two, nor does it explicitly argue for their consistency.
Therefore any serious attempt to provide a formally-based semantics for QVT-R
needs to take both methods into consideration. In this section, we consider the
translation, with the aid of a very simple example QVT-R transformation. We
then argue that, not only is what we believe to be the intended translation of
this transformation not semantically equivalent, but also, the intended seman-
tics of QVT Core appear to be such that it simply cannot express semantics
equivalent to those of our simple QVT-R example. That is, even if our reading
of the translation is incorrect, the problem remains: no translation can correctly
reproduce the semantics of QVT-R. If the reader is convinced by the argument,
it follows that the translation of QVT-R to QVT Core cannot contribute to an
understanding of QVT-R.

Consider an extremely simple MOF metamodel which we will call Sim-
plestMM. It defines one metaclass, called ModelElement, which is an instance
of MOF’s Class. It defines nothing else at all, so models which conform to this
metamodel are simply collections (possibly empty) of instances of ModelEle-
ment. (Of course, in the usual object-oriented fashion, there is no obstacle to
having several instances of ModelElement which are indistinguishable except by
their identities.) We will refer to three models which conform to SimplestMM,
having zero, one and two ModelElements respectively. We will imaginatively
call them Zero, One and Two. Indeed, models conforming to SimplestMM can
be identified in this way with natural numbers: a natural number completely
determines such a model, and vice versa.

7



transformation Translation (m1 : SimplestMM ; m2 : SimplestMM)
{
top relation R
{
checkonly domain m1 me1:ModelElement {};
checkonly domain m2 me2:ModelElement {};

}
}

Figure 1: A very simple transformation

Next, consider a very simple QVT-R transformation between two models
each of which conforms to SimplestMM. Figure 1 show the text of the transfor-
mation (we use ModelMorf syntax here).

Suppose that we use the QVT-R semantics to execute this transformation
in the direction of m2 (we will return to the issue of directionality of checkonly
transformations below, in Section 4). When executed in the direction of m2, it
should return true if and only if, for every valid binding of me1 there exists a
valid binding of me2. There are no constraints beyond the type specification,
so this is equivalent to: if model m1 is non-empty, then model m2 must also
be non-empty. If model m1 is empty, then there is no constraint on model
m2. Thus, when invoked on the six possible pairs of models from Zero, One
and Two, the transformation should return false on the pairs (One,Zero) and
(Two,Zero), otherwise true. Conversely, if we check in the direction of m1,
the transformation returns false if m1 is empty and m2 is not, otherwise true.
Reassuringly, ModelMorf gives exactly these results.

QVT-R works this way because its semantics are specified using logical “for
all–there exists” formulae, without reference to a trace model or any other means
of enforcing a permanent binding of one model element to another, such that
a model element might be considered “used up”. While [5] says that running
a QVT-R transformation “implicitly” generates a trace model, the definition of
the transformation does not rely upon its existence. It is simply assumed that
an implementation will build a trace model, and use it, for example, to allow
small changes to one model to be propagated to another without requiring all
the computation involved in running a transformation to be redone. However,
because the definition of QVT-R is independent of any trace model or its prop-
erties, there is no obstacle to the same model element being used more than
once, which is why the transformation has the semantics discussed, rather than
enforcing any more restrictive condition, such as that the two models have the
same number of model elements. This helps to provide QVT-R the ability to
express non-bijective transformations in the sense discussed in [10]; this ability
in turn is essential to allow the expression of transformations between models
which abstract away different things. The absolute requirement to be able to do
this is most obvious when we consider a transformation between a fully-detailed

8



model and an abstracted view onto it, where either the full model or the view
may be updated (this is called the “view update problem” in databases). Even
in transformations between models we might regard as equally detailed, though,
it turns out that non-bijectiveness is essential. For example, in a realistic in-
terpretation of a transformation between UML packages and RDBMS schemas,
there are many schemas which are consistent with a given package, and many
packages consistent with a given schema. See [10] for more discussion.

Now, taking [5] at face value, we expect to be able to translate this simple
QVT-R transformation into a QVT Core transformation which has the same
behaviour, and which, in particular, will return the same values when invoked
on our simple models. The specification of the translation is not so clear that
mistakes are impossible (e.g., possibly the multiple importing of the same meta-
model is unnecessary), but this is what the author believes to be the intended
translation:

module SimpleTransformation imports SimplestMM {

transformation Translation {

m1 imports SimplestMM;

m2 imports SimplestMM;

}

class TR {

theM1element : ModelElement;

theM2element : ModelElement;

}

map R in Translation {

check m1() {

anM1element : ModelElement

}

check m2() {

anM2element : ModelElement

}

where () {

realize t:TR|

t.theM1element = anM1element;

t.theM2element = anM2element;

}

The effect of this QVT Core transformation is to construct for every model
element in m1 an object of the trace class TR which connects this model element
to a corresponding model element in m2. However, [5] says several times that in
QVT Core, valid bindings must be unique. For example, p133 says:

There must be (exactly) one valid-binding of the bottom-middle pat-
tern and (exactly) one valid binding of the bottom-domain pattern of
a checked domain, for each valid combination of valid bindings of all
bottom-domain-patterns of all domains not equal to the checked do-
main, and all these valid bindings must form a valid combination to-
gether with the valid bindings of all guard patterns of the mapping.

and this sentiment is then repeated in a logical notation. In executing the QVT
Core version of our transformation on the models (Two,One), this condition

9



would fail because, given the valid binding of the single ModelElement in One to
variable me2, there would have to be two valid bindings to me1, one binding each
of the ModelElements in Two. What is not so clear is whether this condition is
intended to be satisfied if we run the example on (Two,Two): a literal reading
would seen to suggest not, yet it seems impossible that QVT Core is intended
to be unable to express the identity relation. The problem is where exactly the
valid binding is supposed to be unique: in the model, or just in the mapping?
That is, given a model element in m2, must there exist only one model element
in m1 which could validly be linked to it, or is it, more plausibly, enough that
there is only one model element which actually is linked to it by some trace
object? Either way, though, (Two,One) will still fail.

Unfortunately no implementation of QVT Core seems to be available. Var-
ious sources refer to a pre-release of Compuware OptimalJ, but OptimalJ no
longer exists. Therefore we cannot investigate what actual QVT Core tools do.

It is noteworthy, though, that this misapprehension that model elements, or
at least patterns of them, must correspond one-to-one in order to make bidi-
rectional transformations possible is pervasive: it appears even in the docu-
mentation for Medini QVT, which intends to be an implementation of QVT-R
(see Medini QVT Guide, version 1.6, section QVT Relations Language, Bidirec-
tionality). Indeed, Medini rejects many QVT-R transformations that are legal
according to [5] and accepted by ModelMorf. For this reason we do not consider
Medini any further.

Could we write a QVT Core transformation which did have the same be-
haviour as our simple QVT-R transformation? Unfortunately not. A moment’s
thought will show that the requirement that valid bindings correspond one-
to-one (even if only in the constructed trace model) precludes any QVT Core
transformation that could return true on both (One,Two) and (Two,One) but
false on (One,Zero).

4 Transformation direction

The reader who is familiar with [10] may have noticed an inconsistency between
the treatment of bidirectional transformations in that paper and the way we
described checkonly transformations above. The framework in [10] is based on
a direction-free notion of consistency: a transformation between sets of models
M and N specifies, for any pair (m,n) ∈M×N , whether or not m is consistent
with n. In the above, however, our consistency check had a direction: checking
Translation in the direction of m2 is not the same as checking it in the direction
of m1 and indeed, can give different answers. When Translation is checked in
the direction of m1 on the pair of models (Zero, One), it returns true, since there
are no model elements on the left to be matched. When the same transformation
is checked on the same pair of models in the other direction, it returns false.

The standard [5] is slightly ambivalent about whether a checkonly QVT-
R transformation has a direction. Compare p13, which talks about “checking
two models for consistency” and implicitly contrasts execution for enforcement,

10



which has a direction, with execution for checking, which implicitly does not,
with the details of the QVT-R definition which clearly assume that checking
has a direction. The resolution seems to be (p19, my emphasis):

A transformation can be executed in “checkonly” mode. In this mode, the
transformation simply checks whether the relations hold in all directions, and
reports errors when they do not.

That is, the notion of consistency intended by the QVT-R standard is given
by conjunction: m1 is consistent with m2 according to transformation R if and
only if R’s check evaluates to true in both directions.

In fact, ModelMorf requires a transformation execution to have a direction
specified, even when it is checkonly: to find out what the final result of a check-
only transformation is, one has to manually run it in each direction and conjoin
the results. Medini, by contrast, makes it impossible to run a transformation
in checkonly mode: if you run a transformation in the direction of a domain
which is marked enforce, there is no way to make the transformation engine
return false if it finds that the models are inconsistent, rather than modifying
the target model. These seems to be a misinterpretation of [5] and indeed is on
the bug list. However, it is a superficial matter, because QVT-R is supposed
to have “check then enforce” semantics: that is, it is not supposed to modify
a model unless it is necessary to do so to enforce consistency. Therefore, given
a QVT engine which was compliant with [5] except that it did not provide the
ability to run transformations in checkonly mode, it would be easy to construct
a fully compliant engine using a wrapper. The wrapper would save the target
model, run the transformation, and compare the possibly modified target model
with the original. If the target model had been modified, it would restore the
original version and return false; otherwise, it would return true.

5 A game-theoretic semantics for checkonly QVT-
R

Given a set of metamodels, a set of models conforming to the metamodels,
a transformation written in a simplified version of QVT-R, and a direction
for checking, we will define a formal game which explains the meaning of the
transformation in the following sense. The game is played between Verifier and
Refuter. Refuter’s aim in the game is to refute the claim that the check should
succeed; Verifier’s aim is to verify that the check should succeed. The semantics
of QVT is then defined by saying that the check returns true if and only if
Verifier has a winning strategy for the game. If this is not the case, then (since
by Martin’s standard theorem on Borel determinacy [4] the game we will define
will be determined, that is, one or other player will have a winning strategy)
Refuter will have a winning strategy, and this corresponds to the check returning
false.

This approach has several advantages. Most importantly, it separates out the
specification of what the answer should be from the issue of how to calculate

11



the answer efficiently. Calculating a winning strategy is often much harder
(in both informal, and formal complexity, senses) than checking that a given
strategy is in fact a winning strategy. Indeed, it can be useful to calculate a
strategy using heuristics or other unsound or unproved methods, and then use
a separate process to check that it is winning: this is the game equivalent of a
common practice in formal proof, the separation between the simple process of
proof checking and the arbitrarily hard process of proof finding. Nevertheless,
although this paper does not address the issue of how winning strategies can
be calculated efficiently, it is worth noting that formulating the problem in this
way makes accessible a wealth of other work on efficient calculation of winning
strategies to similar games.4

We may also hope to be able to use the game to explain the meaning of
particular transformations, or of the QVT-R language in general, to developers
or anyone else who needs to understand it: similar approaches have proven
successful in teaching logic and concurrency theory.

Finally, a game-theoretic approach is a helpful framework in which to con-
sider the implications of minor variations in decisions about what the meaning of
a QVT-R transformation should be, since many such differences arise as minor
variations in the rules of the game.

In order to specify a two-player game of perfect information, we need, fol-
lowing Definition 2, to provide definitions of the positions, the legal moves, the
way to determine which player should move from a given position, and the
circumstances under which each player shall win.

We fix a set of models, where each mi conforms to a metamodel Mi, and a
transformation definition given in a simplified version of QVT-R. Specifically,
we consider that when and where clauses are only allowed to contain (conjunc-
tions of lists of) relation invocations, not arbitrary OCL. We do not consider
extension or overriding of transformations or relations. Further, our semantics
is parametrised over a notion of pattern matching and relation-local constraint
checking: in other words, we do not give semantics for these, but assume that an
oracle is given to check the correctness, according to the relevant metamodel, of
a player’s allocation of values to variables, and local constraints such as identity
of values between variables in different domains.

We will first define a game Gk which corresponds to the evaluation of a QVT-
R checkonly transformation in the direction of one of its typed models, mk. For
ease of understanding we will explain the progress of the game informally first:
Figure 2 defines the positions and the moves of the game more systematically.
The player whose turn it is to move is encoded directly as the first element of
the current position; Refuter moves from the initial position. At every stage, if
it is a player’s turn to move, but that player has no legal moves available, then
the other player wins. As we shall discuss in a moment, we forbid infinite plays,
so this completes the elements needed for a formal game definition, as listed in
Definition 1.

4For the most complex games we consider here, such work is collated in the PGSolver
project, http://www.tcs.ifi.lmu.de/pgsolver/. If we insist that the graph of relations
should be a DAG, as discussed later in this section, simpler automata-based techniques suffice.

12



To begin a play of game Gk, Refuter picks a top relation (call it R) and valid
bindings for all patterns except that from mk, and for any when variables (that
is, variables which occur as arguments in relation invocations in the when clause
of R). Notice that he is required to pick values which do indeed constitute valid
bindings and satisfy relation-local constraints, as confirmed by the oracle men-
tioned earlier. Play moves to a position which we will notate (Verifier, R, B, 1),
indicating that Verifier is to move, that the relation in play is R, that bindings
in set B have been fixed, and that only one of the players has yet played a part
in this relation.

Verifier may now have a choice.

1. She may pick a valid binding for the as-yet-unbound variables from the mk

domain (if any), such that the relation-local constraints such as identity
of values of particular variables are satisfied according the oracle. Let the
complete set of bindings, including those chosen by both players, be B′.
(If there are no more variables to bind, Verifier may still pick this and
B′ = B.) In this case, play moves to a position which we will notate
(Refuter, R, B′, 2) indicating that Refuter is to move, that the relation in
play is still R, that the bindings in set B′ have been fixed, and that both
players have now played their part in this relation.

2. Or, she can challenge one of the relation invocations in the when clause (if
there are any), say S (whose arguments, note, have already been bound
by Refuter). Then play moves to S, and before finishing her turn, she
must pick valid bindings for all patterns of S except that from mk, and
for any when variables of S. Say that this gives a set of bindings C, in
which the bindings of the root variables of all domains are those from B,
and bindings of the other variables are those just chosen by Verifier. The
new position is (Refuter, S, C, 1).

If Verifier chose 2., play proceeds just as it did from (Verifier, R, B, 1) except
that, notice, the roles of the players have been reversed. It is now for Refuter to
choose one of the two options above, in the new relation S.

If Verifier chose 1., Refuter’s only option is to challenge one of the relation
invocations in the where clause, say T (whose arguments, note, are bound). (If
there are none, he has no valid move, and Verifier wins this play.) Then play
moves to T , and, before finishing his turn, Refuter must pick valid bindings for
all patterns of T except that from mk, and for any when variables of T . Say
that this gives a set of bindings D, in which the bindings of the root variables of
all domains are those from B′, and bindings of the other variables are those just
chosen by Refuter. The new position is (Verifier, T, D, 1). Play now continues
just as above.

The final thing we have to settle is what happens if play never reaches a
position where one of the players has no legal moves available: who wins an
infinite play? We may choose just to forbid this to happen, e.g., by insisting
as a condition on QVT-R transformations that the graph in which nodes are
relations and there is an edge from R to S if R invokes S in a where or when

13



Position Next position Notes
Initial (Verif., R, B, 1) R is any top relation; B comprises valid bindings for

all variables from domains other than k, and for any
when variables. B is required to satisfy domain-local
constraints on all domains other than k.

(P,R, B, 1) (P ,R, B′, 2) B′ comprises B together with bindings for any remain-
ing variables. B′ is required to satisfy domain-local con-
straints on all domains.

(P,R, B, 1) (P , S,C, 1) S is any relation invocation from the when clause of
R; C comprises B’s bindings for the root variables of
patterns in S, together with valid bindings for all vari-
ables from domains other than k in S, and for any when
variables of S. C is required to satisfy domain-local
constraints on all domains other than k.

(P,R, B, 2) (P , T, D, 1) T is any relation invocation from the where clause of
R; D comprises B’s bindings for the root variables of
patterns in T , together with valid bindings for all vari-
ables from domains other than k in T , and for any when
variables of T . D is required to satisfy domain-local con-
straints on all domains other than k.

Figure 2: Summary of the legal positions and moves of the game Gk: note that
the first element of the Position says who picks the next move, and that we write
P for the player other than P , i.e. Refuter = Verifier and vice versa. Recall that
bindings are always required to satisfy relevant metamodel and relation-local
constraints.

clause, should be acyclic. There is probably5 a reasonable alternative that
achieves sensible behaviour by allowing the winner of an infinite play to be
determined by whether the outermost clause which is visited infinitely often is
a where clause or a when clause: but this requires further investigation. Note
that [5] has nothing to say about this situation: it corresponds to infinite regress
of its definitions. For now, we will forbid infinite plays, and declare any QVT-R
transformation with a cyclic when-where graph to be ill-formed.

5.1 Discussion of the treatment of when clauses

Most of the above game definition is immediate from [5], but the treatment of
when clauses requires discussion. From Chapter 7, ([5], p14): “The when clause
specifies the conditions under which the relationship needs to hold, so the relation
ClassToTable needs to hold only when the PackageToSchema relation holds between
the package containing the class and the schema containing the table.”

5by thinking from first principles about cases in which a play goes through a when (rsp.
where) clause infinitely often, but only finitely often through where (rsp. when) clauses; or
by intriguing analogy with µ calculus model-checking

14



The naive way to interpret this would have been to say that both Refuter and
Verifier choose their values, and then, if it turns out that the when clause is not
satisfied given their choices, Verifier wins this play. This interpretation is not
useful, however, as it often gives Verifier a way to construct a winning strategy
which does not tell us anything interesting about the relationship between the
models. When challenged by Refuter to pick a value for her domain, all she
would need to do would be to pick a binding such that the when clause was not
satisfied. In the case discussed by [5], whenever Refuter challenged with a class,
she would reply with any table from a schema not corresponding to the package
of his class, the when clause would not be satisfied, and she would win.

So the sense in which a when clause is a precondition must be more subtle
than this. In programming, giving a function a precondition makes it easier
for the function satisfy its specification, but here the idea is rather to restrict
Verifier’s choices: if Refuter chooses a class C in package P , Verifier is bound
to reply not with any table, but specifically with a table T which is in a/the
schema that corresponds to package P .

The sense in which this is a precondition is that the facts about what pack-
ages correspond to what schemas are supposed to have been pre-computed: but
the order of computation of facts is not something we need to concern ourselves
with here, since we are not interested in efficiency but only in meaning.

In trying to settle whether we really mean “a schema” or “the schema”
in the paragraph above, we refer again to Appendix B of [5]. The problem
is that this is not a complete definition. E.g., in order to use it to interpret
ClassToTable, we already need to be able to determine whether, for given values
of a package p and schema s, the when clause when { PackageToSchema (p,s)
} holds. Informally it seems that people who write about QVT have two different
interpretations of this, perhaps not always realising that they are different:

1. the purely relational: the pair (p,s) is any member of the relation ex-
pressed in PackageToSchema, when it is interpreted using the very same
text which we are now trying to interpret

2. the operational: the program which is checking the transformation is as-
sumed to have looked at PackageToSchema already and chosen a schema
to correspond to package p (recording that choice using a trace object).
According to this view, we only have to consider (p,s) if s is the very
schema which was chosen on this run of the checking program.

To see the difference, imagine that there are two schemas, s1 and s2, either
of which could be chosen as a match for p in PackageToSchema. In the first
interpretation, both possibilities have to be checked when ClassToTable is in-
terpreted; in the second, only whichever one was actually used.

In our main game definition, we have taken the purely relational view, since
we can do so while remaining compatible with the definitions in [5], whereas as
we have seen in the SimplestMM example – which, recall, had no when or where
clauses and whose semantics were therefore defined unambiguously by Appendix
B – the idea that there should be a one-to-one correspondence between valid

15



bindings is incompatible with Appendix B; but we will shortly consider a variant
of the game which brings us closer to the latter view.

6 Examples and comparison with QVT-R im-
plementations

In this section we use a family of simple examples to illustrate the game-based
semantics. We go on to compare the semantics it implements with what is
implemented by ModelMorf.

6.1 A family of examples

We use a metamodel which defines just one metaclass, ABoolean, which de-
fines just one boolean value. We denote using T , F , the simplest two models
conforming to this metamodel, each of which defines one ABoolean with value
true, false respectively. These models and the metamodel are shown (in a form
suitable for ModelMorf) in Figure 3. For convenience we will refer to the single
model element in each model as tt, ff respectively.

To illustrate the effects of when and where clauses, we will consider the very
simple transformations shown in Figures 4 to 7, which all use the same two
basic relation definitions but differ in how these are put together using when
and where invocations.

6.2 The examples in our semantics

Running each of our example transformations, on each of the four possible pairs
of models, in each of the two directions, yields 32 examples. In each case, the
semantics must return true or false: true if the two models are considered consis-
tent according to the transformation in the considered direction, false otherwise.
In our game-based semantics, the result is, by definition, true if Verifier has a
winning strategy for the game, otherwise false. That is, a demonstration that
the semantics gives result true on a particular problem is a winning strategy
for Verifier no the game; a demonstration that the semantics gives result false
is a winning strategy for Refuter on the game.

First let us see how this works for PwhereQ run on the pair of models (T, T )
in the direction of m2. Unsurprisingly the result of this checkonly transforma-
tion, according to both our semantics and ModelMorf, is true, which we will
demonstrate by exhibiting a winning strategy for Verifier.

Play begins, as always, at the Initial position from which Refuter is to move.
Reading off from Figure 2, he has to choose a top relation, and there is only
one, viz. SameValue. He also has to choose valid bindings from domains other
than m2; that is, he must choose an ABoolean s1 and its value i. Again, he has
only one option. There are no when variables so he is done; the only possible
play so far is

16



Metamodel BoolMM.xml

<?xml version="1.0" encoding="UTF-8"?>
<emof:Package xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:emof="http://schema.omg.org/spec/mof/2.0/emof.xmi"
xmi:id="BoolMM" name="BoolMM" uri="BoolMM">

<ownedType xmi:type="emof:Class" xmi:id="BoolMM.ABoolean" name="ABoolean" isAbstract="false">
<ownedAttribute xmi:id="BoolMM.ABoolean.value" name="value">
<type xmi:type="emof:PrimitiveType" href="http://schema.omg.org/spec/mof/2.0/emof.xmi#Boolean"/>

</ownedAttribute>
</ownedType>

</emof:Package>

Model true.xml

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:BoolMM="BoolMM">
<BoolMM:ABoolean xmi:id="BoolMM.ABoolean.1" value="true"/>

</xmi:XMI>

Model false.xml

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:BoolMM="BoolMM">
<BoolMM:ABoolean xmi:id="BoolMM.ABoolean.1" value="false"/>

</xmi:XMI>

Figure 3: The examples’ metamodel and two models

17



transformation PwhereQ (m1 : BoolMM ; m2 : BoolMM)
{
top relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};
where {FirstIsTrue(s1,s2);}

}

relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 4: Transformation PwhereQ

transformation PwhenQ (m1 : BoolMM ; m2 : BoolMM)
{
top relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};
when {FirstIsTrue(s1,s2);}

}

relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 5: Transformation PwhenQ

18



transformation QwhereP (m1 : BoolMM ; m2 : BoolMM)
{
top relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};
where {SameValue(s1,s2);}

}

relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 6: Transformation QwhereP

transformation QwhenP (m1 : BoolMM ; m2 : BoolMM)
{
top relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};
when {SameValue(s1,s2);}

}

relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 7: Transformation QwhenP

19



Initial, (Verifier,SameValue, {s1 7→ tt, i 7→ true}, 1)

What are the legal moves from this position? There is no when clause so
the legal move must come from line 2 of Figure 2: Verifier has to extend the
set of bindings to include a binding for s2. Notice that she does not choose a
binding for i, even though it does appear in the m2 domain clause in the current
relation, because i has already been bound by Refuter’s choice. She has only
one choice for s2, so there is only one legal move, and this must be the move
that our strategy prescribes. Play continues from the new position

(Refuter,SameValue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)

We see from the final line of Figure 2 that Refuter now needs to pick a
relation invocation from the where clause of the current relation – that is, the
invocation of FirstIsTrue. The set of bindings in the new position includes the
already existing bindings for the root variables of patterns in FirstIsTrue, that
is, the bindings {s1 7→ tt, s2 7→ tt} are retained. Notice, however, that these are
the only bindings that are retained: the binding of i is discarded at this point.
Now Refuter chooses bindings for any variables other than the root in domain
m1, and for any when variables – but there are none, so we simply check that
Refuter’s trivial “choice” constitutes a valid binding – which it does, since the
value in tt is true – and we are done. The new position is

(Verifier,FirstIsTrue, {s1 7→ tt, s2 7→ tt}, 1)

Verifier needs to add a binding for i; in our scenario this binding must be to
true, although in fact it’s unconstrained, giving new position

(Refuter,FirstIsTrue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)

At this point, Refuter has no legal move, since there is no where clause.
Therefore Verifier wins this play. Since at no stage did Refuter have any alterna-
tive choices that might have proved more successful for him, we can immediately
say that Verifier’s winning strategy is

S = {(Verifier,SameValue, {s1 7→ tt, i 7→ true}, 1) 7→
(Refuter,SameValue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2),

(Verifier,FirstIsTrue, {s1 7→ tt, s2 7→ tt}, 1) 7→
(Refuter,FirstIsTrue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)}

In general, of course, a tool might have to search for a winning strategy, and,
whilst a depth-first exploration of play will certainly work for games with no
infinite plays, much more efficient searches might be possible. The advantage of
the game-based semantics, from the point of view of understandability, is that
it does not matter how the strategy is found. Given a strategy, it is easy (both

20



← (T,T) (T,F) (F,T) (F,F)
PwhereQ V R R R
PwhenQ V R V V
QwhereP V R R R
QwhenP V V V R

Figure 8: Results in the direction of m1

→ (T,T) (T,F) (F,T) (F,F)
PwhereQ V R R V
PwhenQ V R R V
QwhereP V R V V
QwhenP V V V V

Figure 9: Results in the direction of m2

cognitively and computationally) to check that it is a winning strategy, which
is what is required.

Next let us consider an example containing a when clause: PwhenQ run on
(F,T) in the direction of m2. This proves even simpler. Play must begin with
Refuter moving from Initial to (Verifier,SameValue, {s1 7→ ff, s2 7→ tt, i 7→
false}, 1). From here, Verifier has no legal move. She cannot use line 2 of
Figure 2, because (even though she has no values to bind) she would be required
to ensure the satisfaction of the domain-local constraint that the value in tt was
false, which of course she cannot do. She cannot use line 3, challenging the
when clause, because she would be required to ensure the satisfaction of the
domain-local constraint that the value in ff was true, which again she cannot
do. Therefore, since it is Verifier’s turn to move and she cannot do so, Refuter
wins the play. Refuter has a winning strategy which consists simply of moving
from Initial to the only possible position.

Now let us go on to summarise the results on the whole family of examples.
Figure 8 shows the results when the transformations are checked in the direction
of m1. Figure 9 shows the results when the transformations are checked in the
direction of m2.

6.3 Comparison with ModelMorf

Running the set of examples discussed on this section in ModelMorf yields agree-
ment in 31 of the 32 cases. The exception is PwhenQ run on (F,T) in the di-
rection of m2, where our semantics gives false in contrast to ModelMorf’s true.
On the author’s reporting this to Sreedhar Reddy, he confirmed that false is the
correct answer[6], so that this was a bug in ModelMorf (which may have been
corrected in the latest, but currently unavailable, version).

We have already demonstrated the application of the game-based semantics
in this case (see above). Expanding the definitions in [5] shows that the result
should be true iff

21



FirstIsTrue(s1,s2)⇒ s1.value = s2.value

To evaluate this we need to know what FirstIsTrue(s1,s2) means. Un-
fortunately, [5] does not discuss how to evaluate such an expression – it only
defines relations without parameters. That definition is of the form “for all valid
bindings... there exists a valid binding such that... conditions”. A sensible in-
terpretation of the parameterised case would therefore seem to be that for all
valid completions of s1 to a valid binding (recalling that a valid binding has
to satisfy domain-local constraints), there should exist a valid completion of s2
to a valid binding, such that the conditions hold on those bindings. In other
words, specifying values for certain variables restricts the scope of the bindings
that need to be considered in the definition; some decisions have already been
made. This seems consistent with the intention of [5].

In this case, there is no way to complete s1 to a valid binding, since the
definition of FirstIsTrue insists that the value in s1 should be true, which it is
not. Therefore, the universally quantified formula is vacuously true, explaining
why the final result of the checking transformation is true, and consistent with
the answer produced by our game-based semantics.

It is encouraging that, on all the cases we have explored with the exception on
the one case which has been confirmed to be a bug in ModelMorf, our semantics
gives the same answers as ModelMorf. This suggests that our semantics has
resolved ambiguities in [5] in a way compatible with the way the authors of QVT
intended (since several of the same people are involved in both the document and
the tool). Thus the game-based semantics may be useful as a way of explaining
the intended meaning of QVT-R transformations, and perhaps of exploring
further possibilities such as debugging tools, without needing to argue for a
different meaning of transformations.

7 Duality

An intriguing aspect of the QVT-R language is that it seems that when and
where clauses are in a certain sense dual. As far as we are aware, however, there
are no results on this subject in the literature. In this section we show how
the game-based semantics can help to access provably correct statements along
these lines, and we give an example.

Inspection of the definition of the moves of the game Gk as shown in Figure 2
shows that it is only in moving from Initial that we need to specify a player
(Verifier or Refuter) by name: in every other kind of move, we simply swap or
preserve the player, without needing to know whether we started with a Verifier
or a Refuter position. (We may also note that the Initial move is also the only
place in the game definition where it matters whether a relation is or is not
designated a top relation.) Moreover, since our game definition and strategies
are memoryless, it makes sense to talk about a winning strategy from a given
position, not only from the Initial position. Immediate from this is the following
observation:

22



Lemma 1. Fix a game Gk. Let P be either Verifier or Refuter, and let P be
the other player. Independently, let A be either Verifier or Refuter, and let A
be the other player, and let i be either 1 or 2. Then P has a winning strategy
starting from position (A,Q,B, i) iff P has a winning strategy starting from
position (A,Q,B, i).

Proof. The same strategy will work in both cases. More precisely, suppose we
are given a winning strategy for P from (A,Q,B, i), that is, a partial map
S from positions to positions which satisfies the conditions to be a winning
strategy from (A,Q,B, i). Construct a new partial map S from positions to
position by replacing A by A and vice versa wherever they occur. By duality of
the game rules, S is a winning strategy for P from (A,Q,B, i).

This lemma can be used to compose what we know about different parts of
a game graph. Here is a deliberately simple example:

Proposition 1. Fix a set mi of models. Consider two transformations, T
and T ′, which differ only in their definitions of one relation, their unique top
relation, which is not invoked by any other relation; let T ’s unique top relation
be P while T ′’s is P ′. In P , there is a when clause that simply invokes relation
Q with arguments si, and there is no where clause. In P ′, there is a where
clause that simply invokes Q with the same arguments, and there is no when
clause. Moreover, P , P ′ and Q satisfy the following conditions with respect to
the models mi:

1. in each of relations P , P ′, there is a unique choice of valid bindings for
the variables in domains other than mk (satisfying the domain-local con-
straints of domains other than mk) and for the arguments to Q, and these
bindings assign the same values to the arguments of Q;

2. in P there is no valid binding of the variables in domain mk that, together
with the unique choice of valid binding for the other variables, also satisfies
the domain-local constraints on mk;

3. in P ′ there is a valid binding of the variables in domain mk that, together
with the unique choice of valid binding for the other variables, also satisfies
the domain-local constraints on mk;

4. in Q there is a unique choice of valid bindings for the variables in domains
other than mk (satisfying the domain-local constraints of domains other
than mk).

Then the checkonly transformation T run on the set mi of models in the direction
of mk returns true iff the transformation T ′ run on the same set of models in
the same direction returns false.

Proof. The effect of the properties insisted on is to ensure that, from Initial, play
in the T game in can only proceed to (Refuter, Q,B′, 1), where B′ is the unique
possible set of bindings, and similarly play in the T ′ game can only proceed to

23



(Verifier, Q,B′, 1). From this point, Lemma 1 gives the result, since the reachable
portions of the game graph are indistinguishable from those points.

Notice that although we have imposed very stringent conditions on the re-
lations P , P ′, Q, here, it is permitted that Q invoke other relations that can
be arbitrarily complex. For a concrete example, take T to be PwhenQ from
Figure 5, run in direction m2, the models to be (F, T ), and T ′ to be a variant
that replaces the when clause by a where clause and imposes no constraints in
the top relation.

Very informally, we may say that this result captures the observation that
the transformation “P where Q” is equivalent to the negation of “P when Q”
where P and P are opposites in a suitable sense such as the one imposed by the
conditions above. Of course many variants on this result are possible: we have
presented a particularly simple case for purposes of exposition. For example, it
is not necessary to insist that there should be a unique set of valid bindings in
each place where we did so, provided that care is taken to insist that choices and
the players who choose them match up appropriately. Nevertheless, the need to
take care over these aspects intuitively explains why no really general duality
result seems to hold. More practical experience with QVT-R will be required to
see what what examples might actually be interesting, for purposes of efficient
implementation or otherwise.

8 Variants of the game

One of the advantages of the game-based approach to defining semantics is that
it provides an intuitive means of examining the design decisions which have been
made in choosing one semantics over another. In this section, we examine some
alternatives.

8.1 Non-directional variant

Let G be the variant of Gk in which, instead of a direction being defined as
part of the game definition, Refuter is allowed to choose a direction (“once and
for all”) at the beginning of the play. Clearly, Verifier has a winning strategy
for G if and only if she has a winning strategy for every Gk. This is the way
of constructing a non-directional consistency definition from directional checks
that is specified in [5]. However, note that it is not automatic that there should
be any simple relationship between the various winning strategies; hence, there
may not be any usable multi-directional trace relationship between the bindings
in different models. In order to explain this, we need a digression on trace
objects in QVT-R and how they relate to the game-based semantics.

8.2 Trace objects and the game-based semantics

Because QVT-R, as already stated, does not depend on the definition of any
trace objects, the precise nature of the trace objects which are assumed to exist

24



is not specified. Informally, it is clear that a trace object is supposed to link
model elements which correspond in some sense expressed in the transformation.
Since QVT-R can express non-bijective transformations, this linkage need not be
one-to-one. Which objects correspond depends on which relation one looks at;
there is nothing to stop a transformation involving many relations whose clauses
impose different correspondences. Often, however, each model element will be
relevant to – specifically, a possible value for a root variable in – exactly one top
relation, so that the top relations partition the model elements. For example,
packages and schemas are relevant to PackageToSchema, while classes and tables
are relevant to ClassToTable, in the classic example from [5]. Consider the game
Gk defined using such a transformation. If Verifier has a winning strategy, she
must be able to answer any initial challenge by Refuter, and after she has done
so, the position contains a tuple of values for the root variables of all domains
(and possibly other bindings as well). We may choose to define a link from the
tuple of values for root variables of domains other than mk to the value for the
root variable of mk, and call it a trace object. Note, however, that it might not
be Verifier who chooses the value for the mk root variable (if, for example, this
variable happens to be a when variable in the relation) and therefore, even if
our Verifier winning strategy is deterministic, it may not give rise to a set of
trace objects that can be read as a function.

Supposing that we are happy with this definition of what it is to be a trace
object, a winning strategy for Verifier then gives rise to a set of trace objects
for the transformation. Of course, since the game is directional, there is an
inherent direction to this set of trace objects: from tuples of model elements in
models other than mk, towards model elements in mk. Note in passing that it
is in principle possible for a transformation engine to determine that a winning
strategy for Verifier exists without actually calculating one. Therefore it is not
inevitable that evaluating a checkonly transformation on a set of models (and
returning true or false) involves generating a set of trace objects.

Now let us explain the non-existence of bidirectional trace objects in the
non-directional game G using an example derived from one in [2].

Figure 10 illustrates two models which conform to the obvious metamodel
MM: a model may include multiple Containers, each of which references one
Inter, each of which may reference multiple Things, each of which has a value.
The following QVT-R transformation evaluates to true on the models shown, in
both directions (both according to [5], and according to ModelMorf). Indeed,
Verifier has a winning strategy for G: the only interesting choice she has to
make is in G2, where she has to be sure to reply with a2 (and i2), not a1 (and
i1), if Refuter challenges in ContainersMatch by binding xa to c1 (and xi to
inter1).

transformation Sim (m1 : MM ; m2 : MM)

{

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

25



xc:Thing

value="c"

xd:Thing

value="d"

Model m1

value="c"value="c" value="d"

Model m2

xa:Container a2:Container a1:Container

i2:Inter i1:Inter

tc1:Thingtc2:Thing td:Thing

xi:Inter

Figure 10: m1 and m2 are (two-way) consistent according to QVT-R transfor-
mation Sim, but no set of bi-directional trace objects can link them

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

}

Now, in the m1 direction the constructed trace will take a1 to xa, etc.; there
is nothing else it can do. Yet in the m2 direction, a trace object which took xa
to a1 would be erroneous. Thus there can be no single set of trace objects whose
links can be read in either direction, which could capture the correctness of this
QVT-R transformation.

8.3 Model-switching variant

Let G′ be the variant of G in which, instead of the first player to move in a
new relation being constrained to pick a valid binding everywhere except in
the once-and-for-all designated target model mk, the player is permitted to pick

26



valid bindings for all but any one domain, making a new choice of which domain
to leave out every time. This is a different way to define a non-directional variant
of the game. The modification to the game rules is analogous to the difference, in
concurrency theory, between a game which defines bisimulation equivalence and
that which defines simulation equivalence. Formally, looking at the positions
and moves in Figure 2, we would simply need to modify the positions of the form
(...., 1), by adding an additional integer element specifying in which domain the
challenge is to be answered, that is, which domain may not have all its bindings
chosen yet. The legal moves that result in such positions would have to specify
that the player making the move has to choose which domain that shall be.

Having made this modification to the game, what is the effect semantically?
A winning strategy for Verifier in the game G′ can still be regarded as deter-
mining a set of trace objects, by reading off the tuples of model elements that
occur as values for root variables of domains in positions that form part of her
winning strategy. In this sense bidirectional trace objects will exist in G′. How-
ever, the price may be that Verifier too seldom has a winning strategy: this
corresponds to the observation that for many practical purposes in concurrency,
bisimulation equivalence proves to be too strong an equivalence. Certainly in
the example above, it will be Refuter who has a winning strategy for G′: he will
first challenge in m2 with a1, and later switch to m1 where he leads play to the
“d” which cannot be matched starting from a1 in m2.

8.4 Trace-based variant

Let GT be the variant of G in which, as play proceeds, we build a global auxiliary
structure which records, for each relation, what choices of valid binding have
been made by the players (for example, “Package P was matched with schema
S”). It is an error if subsequent moves in a play try to choose differently (and we
might consider a multi-directional subvariant in which either matching P with
S′ or matching S with P ′ was an error, along with uni-directional subvariants
in which only one of those would be an error). The player to complete such an
erroneous binding would immediately lose. Otherwise, play would be exactly
as in Gk, except that it loops: if Refuter cannot go, he can “restart”, choose
a new top relation and play again, but the old auxiliary structure is retained.
If play passes through infinitely many restarts, Verifier wins. This game would
impose one-to-one constraints on valid bindings, and construct well-defined trace
objects, at the expense of having a semantics incompatible with [5] and having
curtailed expressivity.

9 Conclusions

We have presented a game-theoretic semantics of QVT-R checkonly transfor-
mations, based on the direct semantics in [5]; we justified our choice to ignore
the translation to QVT Core by pointing out a fundamental incompatibility
between the two languages. We have briefly discussed variants of the game,

27



demonstrating in the process that bi-directional trace objects may not exist.

References

[1] Miguel Garcia. Formalization of QVT-Relations: OCL-based Static Seman-
tics and Alloy-based Validation. In Proceedings of the Second Workshop on
MDSD Today, pages 21–30, October 2008.

[2] R.J. van Glabbeek. The linear time – branching time spectrum I; the
semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, chapter 1, pages
3–99. Elsevier, 2001.

[3] Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In Pro-
ceedings of 10th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2007, volume 4735 of Lecture Notes in
Computer Science, pages 16–30. Springer, 2007.

[4] Donald A. Martin. Borel determinacy. Annals of Mathematics. Second
series, 102(2):363–371, 1975.

[5] OMG. MOF2.0 query/view/transformation (QVT) version 1.0. OMG doc-
ument formal/2008-04-03, 2008. available from www.omg.org.

[6] Sreedhar Reddy. personal communication, 26th November 2009.

[7] Raphael Romeikat, Stephan Roser, Pascal Müllender, and Bernhard Bauer.
Translation of QVT relations into QVT operational mappings. In ICMT
’08: Proceedings of the 1st international conference on Theory and Prac-
tice of Model Transformations, pages 137–151, Berlin, Heidelberg, 2008.
Springer-Verlag.

[8] Perdita Stevens. A landscape of bidirectional model transformations.
In Generative and Transformational Techniques in Software Engineering
II, volume 5235 of Lecture Notes in Computer Science, pages 408–424.
Springer, 2008.

[9] Perdita Stevens. Towards an algebraic theory of bidirectional transforma-
tions. In Proceedings of the International Conference on Graph Transfor-
mations, ICGT’08, volume 5214 of Lecture Notes in Computer Science,
pages 1–17. Springer, September 2008. invited paper.

[10] Perdita Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions. Journal of Software and Systems Modeling
(SoSyM), 2009. to appear.

[11] Perdita Stevens. A simple game-theoretic approach to checkonly QVT
Relations. In Proceedings of the International Conference on Model Trans-
formations, ICMT’09, Lecture Notes in Computer Science. Springer, June
2009.

28



[12] Colin Stirling. Bisimulation, model checking and other games. In Notes for
Mathfit Instructural Meeting on Games and Computation, 1997. Available
from http://homepages.inf.ed.ac.uk/cps/mathfit.ps.

[13] Jennifer Tenzer and Perdita Stevens. GUIDE: Games with UML for in-
teractive design exploration. Journal of Knowledge Based Systems, 20(7),
October 2007.

29


