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Abstract. In high-speed networks, where numerous applications con-
tinuously generate high-volume data flows, real-time traffic monitoring
of high-frequency flows (heavy hitters) is critical for maintaining reliable
communication and enabling rapid anomaly detection (like DDoS at-
tacks). In such settings, identifying heavy hitters is particularly onerous
due to the limited fast memory available in practice. To address this,
approximate data structures, or sketches, are widely employed. How-
ever, existing sketches often present low detection accuracy owing to
highly-skewed traffic distributions and deployment challenges on exist-
ing hardware, e.g. programmable switches, due to stringent resource and
arithmetic limitations. This paper introduces Harmonia, a new sketch
designed for efficient and accurate heavy flow detection. Unlike state-
of-the-art methods that rely on multi-dimensional features to protect
heavy flows (resulting in memory inefficiency), Harmonia embraces traf-
fic skewness and builds on the insight that when a flow’s frequency ex-
ceeds a certain threshold, it is highly likely to be heavy. Harmonia thus
refrains from replacing such tracked flows upon hash collisions with ar-
riving non-heavy flows. Experimental results across multiple implemen-
tations (CPU, programmable switch, and FPGA) and evaluations on
real-world network traces show that Harmonia achieves up to 27.83%
higher detection accuracy compared to existing sketches. Additionally, its
hardware resource footprints are no more than 18% on a programmable
switch and 10% on a FPGA platform.
Keywords: approximate data structures · sketch · high-speed data streams
· heavy hitter detection · anomaly detection · programmable switch ·
FPGA.

1 Introduction
The exponential growth in network traffic from various high-speed applications,
such as video streaming, high-frequency trading, and cloud computing, has led to
high-volume data flows across modern networks [25]. Real-time traffic monitoring
is essential for identifying high-frequency flows, or “heavy hitters”, which may
conceal anomalies such as (distributed) denial-of-service (D)DoS attacks that
need to be detected promptly to maintain service reliability, or simply handled
appropriately to ensure quality-of-service (QoS) guarantees are satisfied.
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Real-time heavy flow detection is challenging because it must keep up with
rapidly increasing traffic speeds while maintaining high accuracy [22]. Further-
more, fast processing requires the use of high-speed and low-latency memory,
such as the L1 cache of CPUs or programmable switches [16]. However, due to
memory size limitations, such as the commonly available 64KB L1 cache [17,18],
it is impractical to track every flow and then detect those heavy ones in high-
volume traffic environments. To address these limitations, approximate data
structures, or sketches that utilize hash techniques, typically organized as a two-
dimensional table with multiple rows, have been introduced to perform various
detection tasks while conserving memory [9, 15,23].

Limitations of Existing Methods: Despite a series of advances in heavy
flow detection, current solutions face notable limitations. (i) State-of-the-art
methods, like Stable-Sketch [18] and Tight-Sketch [17], leverage multidimen-
sional features, such as combining flow frequency with bucket stability or arrival
continuity, to enhance protection for heavy flows. Although this approach en-
hances accuracy when the number of heavy flows is small, the additional memory
required for tracking these features reduces the total number of available buckets,
ultimately degrading memory efficiency and accuracy as the number of heavy
flows increases. (ii) Methods like MV-Sketch [22] and Count-Min Sketch [9] de-
mand large memory budgets to achieve high detection accuracy. Their replace-
ment strategies often result in heavy flows being inadvertently evicted by a
significantly larger number of non-heavy ones, especially under limited memory
conditions where hash collisions are more severe. (iii) In high-speed networks,
e.g. in data centers and IoT networks, programmable switches [3] are increasingly
deployed due to their customizability and flexibility. However, these powerful de-
vices have inherent limitations. For instance, programmable switches typically
offer a limited number of processing stages (e.g., 12) and support only a nar-
row range of operations, generally restricted to basic arithmetic like addition
and subtraction [8]. These constraints render many existing sketches impractical
for such platforms, particularly those requiring complex update operations like
counter merging [4].

Contributions: To address these challenges, we propose a new sketch, called
Harmonia, designed for highly accurate heavy flow detection. To this end, when
an incoming packet triggers hash collisions across all rows, we employ a proba-
bilistic replacement strategy to decide whether the new flow should be inserted
into the sketch. This approach builds on the key observation that network traffic
distributions are typically skewed, whereby only a small fraction of flows are
heavy in practice [13]. Additionally, a data analysis we conduct reveals that
when a flow’s frequency exceeds a certain threshold, it is highly likely to be a
heavy flow. In such cases, erroneously evicting a tracked flow due to collisions
with non-heavy flows can increase estimation errors. To prevent this, we disable
replacement operations when a tracked flow’s frequency crosses the threshold, en-
hancing detection accuracy even under constrained memory conditions. Besides,
our design avoids intricate computations, like matrix multiplication and bit-level
counter merging, making it well-suited for programmable switch deployment.
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We implement Harmonia on multiple platforms to demonstrate its versa-
tility and adaptability, including a CPU-based deployment in C++, an imple-
mentation on a programmable switch platform using the P4 language [6], and
an FPGA-based implementation with Verilog. Extensive evaluations on real-
world network traces [1] demonstrate that Harmonia outperforms the advanced
Stable-Sketch [18] by achieving up to 15.4% higher detection accuracy and re-
ducing estimation errors by an average of 32.27%. Moreover, in hardware de-
ployments, Harmonia exhibits modest resource demands, using no more than
18% of those available on a programmable switch and 10% on a FPGA platform.
2 Background and Related Work
2.1 Sketches
In memory-constrained scenarios, recording information for every flow is imprac-
tical. To address this challenge, hashing-based sketches are commonly used for
high-speed network measurements [22]. A well-known instance is the Count-Min
Sketch [9], which organizes data in a table with r rows, each containing multiple
buckets paired with a unique hash function. Each bucket has a counter to track
flow occurrences. When a packet arrives, its flow key (e.g., source IP address) is
hashed into r buckets across the rows, incrementing the corresponding counters
by 1. For querying, a flow hashes into buckets in each row, and the smallest
counter value among them serves as its estimated frequency.
2.2 Heavy Hitter Detection
A heavy hitter is a flow e in a network traffic set D whose frequency f(e) meets
or exceeds a specified threshold ϕ · |D|, where ϕ is a predefined fraction (e.g.,
ϕ = 0.001) and |D| is the total number of packets in D. Formally, e is a heavy
hitter if f(e) ≥ ϕ · |D|.

For detecting heavy hitters, various sketch-based methods have been intro-
duced [12, 19]. Count-Min Heap [9] incorporates an additional heap to track
flows exceeding the threshold, but the extra data structure reduces memory ef-
ficiency, making it less suitable for memory-constrained environments such as
programmable switches. MV-Sketch [22] uses a majority vote algorithm to re-
tain heavy flows but involves a larger memory footprint to achieve high detection
accuracy. UA-Sketch [29] utilizes a probabilistic eviction strategy that consid-
ers flow arrival patterns to evict non-heavy flows. However, its design is based
on the assumption that all heavy flows arrive continuously without interrup-
tions, resulting in reduced detection accuracy when this assumption does not
hold. Tight-Sketch [17] and Stable-Sketch [18] introduce additional features to
enhance the protection of potential heavy flows. However, the additional features
result in memory inefficiency and deployment complexity. Other methods, such
as SALSA [4], utilize flexible counters that adjust based on traffic distribution.
However, these methods rely on complex hierarchical data structures and com-
putationally intensive operations, which result in lower processing speeds and
complicate deployment on practical hardware.

2.3 Hardware Platforms
Programmable Switches offer high-speed packet processing along with signif-
icant flexibility and customization. Deployed at the network edge or within data
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centers, they enable tailored traffic monitoring functions capable of efficient, line-
rate processing of high-volume flows. As a result, programmable switches have
become a preferred solution for improving the reliability of IoT and data center
networks [10,14,26].

However, they faces several limitations: (i) each stage of the processing pipeline
has a restricted amount of available memory (e.g., 1.4MB shared between for-
warding and monitoring functions) [21]; (ii) only a limited set of arithmetic
operations is supported, including basic functions like addition and subtraction;
(iii) the pipeline is restricted to a fixed number of physical stages (e.g., 12); and
(iv) each stage is unable to access memory from preceding stages. As a result, any
sketch update algorithm is desired to follow a unidirectional workflow, meaning
data flows from the first stage to the last [30].

FPGAs are reconfigurable digital chips that can be programmed to imple-
ment a diverse array of digital hardware circuits [7]. They are built from pro-
grammable logic blocks, I/O modules, and configurable interconnects, all man-
aged by SRAM-based cells. Designers typically employ hardware description lan-
guages, such as Verilog, to specify the desired functionality. As noted in [23,24],
because FPGAs can deliver high throughput for high-speed network processing,
they have become a popular platform for implementing sketches. However, FP-
GAs also have constraints, including limited support for arithmetic operations,
such as division, which necessitates careful design of sketch update strategies.

3 Harmonia
3.1 Design Philosophy

To maintain high accuracy under limited memory budgets, the sketch design
needs to effectively adapt to the skewed traffic distributions commonly observed
in practice [17]. This adaptation helps prevent heavy flows from being mistakenly
evicted by large volumes of non-heavy flows when hash collisions are frequent.
Overall, the design of Harmonia is guided by the following two principles.

Principle 1: Compared to methods that rely on update strategies such as
the majority vote algorithm [22], which often require substantially memory to
achieve high detection accuracy under skewed data distributions, we employ a
probabilistic replacement strategy in which the update operation is guided by
flow frequency – flows with higher frequencies should be less likely to be evicted
by incoming items. The simplicity of this strategy further facilitates implementa-
tion on hardware platforms, including programmable switches and FPGAs [30].
Our design stems from an analysis of the distribution of flow frequencies in
real-world scenarios that we conduct, specifically of two traces from each of the
CAIDA [1] and ToN_IoT [5] datsets. As we reveal in Table 1 the majority of flows
are non-heavy, with over 95% in these traces having a frequency of 50 or less. In
contrast, the number of flows with a frequency exceeding 300 is minimal; e.g.,
only around 1.22% in the CAIDA 2018 trace and 0.05% in the IoT_Scanning
trace. This leads us to conclude that under limited memory where hash collisions
are frequent, heavy flows are likely to be incorrectly evicted from buckets by the
overwhelming number of small flows [29], which Harmonia seeks to address.
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Table 1: Flow Frequency Distribution in Practical Traces.
Frequency CAIDA2015 CAIDA2018 IoT_DDoS IoT_Scanning

[1, 50] 95.63% 96.37% 98.79% 99.57%
(50, 100] 1.50% 1.30% 0.37% 0.25%
(100, 300] 1.44% 1.11% 0.51% 0.12%

>300 1.43% 1.22% 0.33% 0.05%

Principle 2: Unlike state-of-the-art approaches such as Stable-Sketch [18]
and Tight-Sketch [17], which leverage dual-feature mechanisms to protect heavy
flows and consequently require additional memory, resulting in fewer buckets
and increased hash collisions that elevate the risk of erroneously evicting heavy
flows, our method protects heavy flows using only a single parameter, namely the
actual frequency tracked in the value counter, ensuring efficient memory usage.

3.2 Data Structure
Existing sketch data structures can be broadly categorized into two types: flat
[9, 22,29] and hierarchical [19]. While hierarchical structures are generally more
memory efficient due to their carefully designed counters of varying lengths,
their complexity, such as bit-level counter management, renders them impractical
for deployment on programmable switches. Therefore, we adopt a flat-based
structure for its simplicity and ease of hardware implementation.

Fig.1 illustrates the data structure of Harmonia, which consists of r rows,
each associated with a pairwise-independent hash function hi (1 ≤ i ≤ r). Each
row contains b columns (buckets), where each bucket B(i, j) (1 ≤ j ≤ b) has two
fields: the flow key K and its frequency counter V .

...

...

... ... ... ...r

b

B(i,j) K V

K: Flow Key
V: Value

Fig. 1: Harmonia’s data structure.

3.3 Main Operations
Update: When an incoming packet belonging to a flow arrives, the update
process falls into two possible stages, as outlined in Algorithm 1.

Harmonia begins by hashing the key of the incoming flow into a bucket in
the first row using the hash function h1 (Line 3). If the corresponding bucket
B(1, h1(em.key)) is empty (i.e., key = ∅ and count = 0), the flow key is inserted
into the bucket, and the count is initialized to 1, terminating the update pro-
cess (Lines 4–8). If the bucket already contains the same flow key, the count is
incremented by 1, and the process ends (Lines 9–11). Otherwise, if the bucket
contains a different flow key, the algorithm proceeds to the next row. This pro-
cess is repeated row by row using the corresponding hash functions h2, h3, ..., hr.
In each row, if the bucket is empty or contains the same flow key, the algorithm
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Algorithm 1: Harmonia Update Operation
Input: Flow key key, Hash functions h1, h2, ..., hr, Value val, Sketch

parameters r (number of rows), b (buckets per row), Threshold Ω
1 Initialization: All buckets in the sketch are initialized with key set to ∅ and

count set to 0.
2 Stage I: Attempt to Find or Update a Bucket
3 for i = 1 to r do
4 bucket← B(i, hi(key));
5 if bucket.key == ∅ and bucket.count == 0 then
6 bucket.key ← key;
7 bucket.count← 1;
8 return;

9 else if bucket.key == key then
10 bucket.count← bucket.count+ 1;
11 return;

12 else if bucket.count < min then
13 min← bucket.count;
14 loc← (i, hi(key));

15 bucket← B(loc);
16 Stage II: Probability-Based Replacement
17 if bucket.count >= Ω then
18 return;

19 k ← rand(0, 1);
20 threshold← 1/(bucket.count+ 1);
21 if k < threshold then
22 bucket.key ← key;
23 bucket.count← bucket.count+ 1;
24 return;

25 else
26 return;

// Discard the item if the condition is not met

updates the bucket and terminates. If no matching or empty bucket is found af-
ter traversing all rows, Harmonia identifies the bucket with the smallest count
across all rows and proceeds to the next stage (Lines 12–15).

In the second stage, Harmonia decides whether to replace the bucket with
the smallest count. If the smallest count count ≥ Ω, where Ω is a predefined
threshold (analyzed in detail in Section 6.2), the bucket retains its current key,
and the incoming flow is discarded (Lines 16–18). Otherwise, Harmonia calcu-
lates the replacement probability. A random number k is generated within the
range 0 and 1, and the replacement threshold is computed as 1

count+1 (Lines
19–20). If the replacement succeeds, the bucket’s key is updated with the new
flow key, and the count is incremented by 1 (Lines 21–24). If the replacement
fails, the incoming flow is discarded, and the process terminates (Lines 25–26).



Harmonia: A Swift and Accurate Approximate Data Structure 7

Query: To retrieve the heavy flows, Harmonia simply scans all the buckets. If
the frequency value of a tracked flow exceeds the predefined threshold for heavy
hitters, the flow is identified as a heavy hitter.

4 Formal Analysis
In this section, we prove that Harmonia achieves (ϵ, δ)-counting [18], thus
demonstrating its low error rate in estimating heavy flows.

Theorem 1. In Algorithm 1, given a small positive number ϵ, for any heavy
flow em with frequency f(em), the estimated frequency f̂(em) satisfies:

Pr
(
f̂(em) ≤ f(em)− ϵ|D|

)
≤ δ

where δ = 1
ϵb

[
1− Ω

2|D|2

]
. Here, b represents the number of buckets in each row,

|D| is the total number of packets, and Ω is the predefined threshold.

Proof. Consider a heavy flow em. Whenever em arrives and is mapped to the
same bucket B(i, j) of a different flow e ̸= em, the counter of that bucket either
increases by 1 or remains unchanged. We adopt the following assumption, which
is generally valid in heavy-flow detection [17, 18, 28]: once a heavy flow em is
mapped into a bucket, it remains in that bucket until the detection process is
complete. Let t∗ be the (random) time slot at which the flow em first enters a
bucket. Define αm to be the number of arrivals of em before time t∗ that did not
cause em to be placed in any bucket; this quantity represents the underestimation
error. When em finally enters a bucket at time t∗, the overestimation error βm

is the current count of that bucket. By construction, the estimated frequency
f̂(em) can be written as f̂(em) = f(em) − αm + βm,, where f(em) is the true
frequency of flow em. Using Markov’s inequality, for any ϵ > 0, we have:

Pr
(
f̂(em) ≤ f(em)− ϵ|D|

)
= Pr (αm − βm ≥ ϵ|D|) ≤ E (αm − βm)

ϵ|D|
. (1)

1. Bounding αm. Define ∆m as the probability that flow em hashes into the
same bucket with a distinct flow but does not replace it. For each flow em, the
probability that in each of the r arrays there are hash collisions in the bucket to
which flow em is mapped is:

Pr

 ⋂
n∈M\{m}
v∈{1,...,r}

{hv(em) = hv(en)}

 =

[
1−

(
1− 1

b

)M−1
]r

Where M is the total number of distinct flows. Moreover, the probability that
a given flow is mapped to a particular bucket is 1

b . Consequently, for flow em,
the probability that it maps to the same bucket as a distinct flow but does not
replace it is bounded by:
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∆m ≤ 1

b

[
1−

(
1− 1

b

)M−1
]r

B(i.j).count

B(i.j).count+ 1
≤ 1

b

[
1−

(
1− 1

b

)M−1
]r

(2)

Let Xm(t) be the total number of arrivals of flow em in the time interval [0, t].
At time t∗, the expected number of arrivals of em is E(Xm(t∗)) ≤ |D|. Thus we
have,

E(αm) ≤ E(∆mXm(t∗)) ≤ |D|
b

[
1−

(
1− 1

b

)M−1
]r

2. Bounding βm. Let the original flow in the bucket B(i, j), where the flow em
is hashed into, be denoted as flow en. The count associated with this flow in the
bucket is Vn, which satisfies Vn ∈ [1, Xn(t

∗)]. When the flow em replaces the flow
en, the overestimation in count is given by Vn. A necessary condition for replace-
ment is that em collides with a distinct flow en. As above, the probability of such
a collision across all r arrays is at most 1

b Pr
(⋂

n∈M\{m} {hv(em) = hv(en)}
)
.

In addition, the replacement needs the conditions that (Xn(t
∗) < Ω) with the

replacement rate 1
Vn+1 . Thus,

βm =
1

b
Pr

 ⋂
n∈M\{m}

{hv(em) = hv(en)}

Pr (Xn(t
∗) < Ω)

Vn

Vn + 1
. (3)

We next lower-bound the probability that (Xn(t
∗) < Ω). We have

E (Pr (Xn(t
∗) < Ω)) = 1− E (Pr (Xn(t

∗) ≥ Ω)) ≥ 1− |D| −Ω

|D|
=

Ω

|D|
. (4)

E(βm) ≥ 1

b

[
1−

(
1− 1

b

)M−1
]r

Ω

|D|
min

1≤Vn≤Ω

Vn

Vn + 1
≥ 1

2b

[
1−

(
1− 1

b

)M−1
]r

Ω

|D|
(5)

3. Combining the bounds. Putting the above estimates together:

E(αm − βm) ≤ |D|
b

[
1−

(
1− 1

b

)M−1
]r

− 1

2b

[
1−

(
1− 1

b

)M−1
]r

Ω

|D|

=
1

b

[
1−

(
1− 1

b

)M−1
]r [

|D| − Ω

2|D|

]
(6)

Hence, recalling Equation (1),

Pr
(
f̂(em) ≤ f(em)− ϵ|D|

)
≤ E (αm − βm)

ϵ|D|
≤ 1

ϵb

[
1−

(
1− 1

b

)M−1
]r [

1− Ω

2|D|2

]
≤ 1

ϵb

[
1− Ω

2|D|2
=

]
= δ (7)
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5 Implementation on Hardware Platforms

5.1 Programmable Switches
The implementation of Harmonia is optimized for programmable switches, en-
abling real-time heavy flow detection. It employs a two-row sketch, where each
bucket contains two 32-bit registers storing a flow key (e.g., source IP) and a
frequency counter. These registers are stateful arrays, facilitating efficient in-
pipeline lookups and updates. Flow keys are mapped to buckets using built-in
crc-16 and crc_16_dds_110 hash functions, reducing collisions and enhancing
accuracy compared to single-row sketches [22, 30]. Harmonia defines custom
headers and metadata to manage stateful operations. The hp_hdr header stores
intermediate states, such as the smallest count and corresponding bucket loca-
tion, crucial during recirculation. Metadata fields track operational data like flow
keys, bucket locations, states, and probabilistic replacement conditions.

When a packet arrives, it is hashed into buckets via CRC-16 functions and
accessed with the modify_field_with_hash_based_offset primitive. Stateful
ALUs then determine bucket states (empty, matching, or occupied by a different
key). An empty bucket is initialized with the new flow key and a count of 1, while
matching keys increment the counter. If neither condition is met, the bucket with
the smallest count is marked for replacement. Then, probabilistic replacement
occurs based on the predefined threshold Ω. If the smallest count exceeds Ω, no
replacement occurs, and the incoming flow is discarded. Otherwise, due to the
difficulty of performing floating-point calculations on programmable switches,
the replacement threshold 216

count+1 is computed using integer arithmetic within
a blackbox ALU [13]. This threshold is then compared against a random 16-bit
number generated by the modify_field_rng_uniform primitive. If replacement
conditions are met, the bucket’s key is updated, and the count incremented. This
probabilistic replacement requires recirculation to manage intermediate bucket
states, tracked by the hp_hdr header.

The Harmonia implementation uses around 650 lines of P4 code, leveraging
hardware primitives and adhering to the programmable pipeline constraints.

5.2 FPGA

Harmonia’s FPGA implementation fully pipelines the update process into four
distinct stages, with two rows processed concurrently (employing a slightly mod-
ified update strategy). In stage 1, two independent CRC32 hash modules, im-
plemented as synchronous logic blocks, compute two distinct 32-bit hash values
in parallel from the incoming 32-bit flow key to generate bucket addresses. In
stage two, these addresses are applied to dual-port Block Random Access Mem-
ory (BRAMs), where each synchronous read takes two clock cycles. In stage
three, the update logic evaluates each accessed bucket: if the bucket is empty or
already contains the same flow key, the counter is simply incremented and the
key updated; otherwise, if the current counter value is below the threshold (Ω),
a 32-bit random number is generated and–only if the product of this random
number and the current counter value is less than 232–is the stored key replaced
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while the counter is incremented. Finally, in stage four, each row independently
writes back the updated counter and key values to their respective memories.
This pipelined key/value memory access effectively increases the clock frequency.
Overall, Harmonia is implemented in around 370 lines of Verilog code.

6 Evaluation

6.1 Setup

Platform (1) CPU Platform. We implement Harmonia in C++ and evalu-
ate it on a laptop with an Intel® Core™ i5-1135G7 @ 2.40GHz processor, 16GB
of DRAM, running Ubuntu 20.04 LTS.
(2) Programmable Switch. We prototype Harmonia in the P4 language [6]
and compile it using Intel® P4 Studio [2], an industrial-grade development
environment that facilitates deployment on Intel® Tofino™ ASICs [3].
(3) FPGA. We implement Harmonia in Verilog and compile it using Vivado
2024.2 [11]. We pick the UltraScale+ XCU250-L2FIGD2104E FPGA as our tar-
get device.
Datasets To thoroughly evaluate Harmonia, we use real-world traces from the
CAIDA dataset [1]. Two of these traces were previously introduced in Section
3.1, while the third is from the CAIDA 2019 dataset, containing 29.5M packets
across 1.53M flows. The heavy hitter parameter ϕ is set to 10−4 to identify heavy
hitters in these traces, using the source IP address as the flow key.
Benchmarks: We compare Harmonia with four state-of-the-art heavy hit-
ter detection methods: MV-Sketch [22], UA-Sketch [29], Tight-Sketch [17], and
Stable-Sketch [18]. For these methods, the number of rows is set to 2. We omit
comparisons with other methods, such as CocoSketch [30] and Elastic [27] be-
cause Stable-Sketch already outperforms them.
Memory Allocations: For Harmonia and the considered baselines, we eval-
uate their detection accuracy under memory sizes of 8KB, 16KB, 32KB, 64KB,
128KB, and 256KB [18]. For each method, the size of each bucket is fixed. Based
on the total memory size, the number of allocated buckets can be easily cal-
culated. For example, in Harmonia, both the key field and the counter field
occupy 4 bytes each. Thus, with a memory size of 8KB, the total number of
buckets allocated is 1024

(
8×1024
4+4

)
. Operating under limited memory offers sev-

eral advantages, such as reserving more memory resources for other applications
and accelerating the query process for retrieving heavy hitters.
Metrics: The detection accuracy of the algorithm is evaluated using three key
metrics. (1) F1 Score: calculated as 2×recall×precision

recall+precision , where recall represents the
proportion of actual heavy hitters (ground truth) correctly identified by the
algorithm, and precision denotes the proportion of correctly identified heavy
hitters among all the detected ones. (2) Average Absolute Error (AAE): the mean
absolute difference between the true frequency and the estimated frequency of
heavy items, reflecting the accuracy of frequency estimation. (3) Update Speed:
the processing speed measured in millions of packets per second (Mpps).
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Fig. 2: Detection accuracy (F1 score) for varying parameter Ω. F1 score improves
as Ω increases but plateaus after 300, beyond which estimation error grows.

6.2 Parameter Setting

Recall that Harmonia uses a threshold parameter Ω to enhance the protection
of heavy hitters. To determine the value, following the approach of prior works
[16,19,27], we conduct empirical evaluations on the CPU platform to determine
suitable parameter configurations for our method. The CAIDA 2018 trace is
used as the test trace, with similar trends observed across other traces.

As shown in Fig. 2(a), the F1 score increases significantly as Ω grows from
10 to 50. This improvement is attributed to smaller Ω values (e.g., 10), which
allow many non-heavy flows to occupy the buckets, thereby reducing detection
accuracy. As Ω continues to increase, the F1 score improves further, though the
gains diminish once Ω reaches 300. In contrast, Fig. 2(b) shows that increasing Ω
beyond 300 results in higher estimation errors. This is because excessively large
Ω values cause heavy flows to be incorrectly evicted by non-heavy flows. Thus,
we select Ω = 300 as the preferred threshold, a configuration that demonstrates
its effectiveness in subsequent extensive evaluations.

Note: Ideally, the parameter Ω could be dynamically adjusted based on real-
time observations of network traffic characteristics, such as skewness. However,
existing approaches are often computationally intensive [20], rendering them
impractical for deployment on hardware platforms like programmable switches.
As a next step, we aim to develop a dynamic adjustment mechanism for Ω that
remains feasible for implementation on practical hardware.

6.3 CPU Platform

Detection Accuracy: Figs. 3(a)-(c) show the F1 scores for different methods.
As illustrated, Harmonia exhibits robustness across various memory configu-
rations and network traces. On average, Harmonia improves the F1 score by
11.72%-27.83%, 15.4%-26.82%, and 14.49%-27.02% over the baseline methods
on the 2015, 2018, and 2019 traces, respectively. Due to space limitations, we
omit the results for other metrics such as recall and precision; however, our
method consistently outperforms existing approaches in these measures as well.
Figure 3(d)-(f) presents the AAE for various methods. As demonstrated, Har-
monia yields the lowest estimation errors. For instance, on the CAIDA 2019
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8 16 32 64 128 256
0.0

0.5

1.0

 Harmonia

 MV-Sketch

 UA-Sketch

 Tight-Sketch

 Stable-Sketch

F
1

 S
c
o

r
e

Memory Size (KB)

(b) F1 score (2018).
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(c) F1 score (2019).
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Fig. 3: Detection accuracy of various methods on the CPU platform (with 2015,
2018, and 2019 referring to the CAIDA 2015, 2018, and 2019 traces, respectively).

trace, Harmonia reduces the AAE by 37.27% compared to the state-of-the-art
method, Stable-Sketch.
Update Speed: Fig. 4 shows the update speeds of various approaches. Observe
that Harmonia achieves the highest update speed thanks to its simple and
effective update strategy that avoids extra processing of additional features. On
average, it improves update speed by 8.53%-30.35%, 12.01%-27.74%, and 7.66%-
26.37% compared to the baselines over the CAIDA 2015, 2018, and 2019 traces,
respectively.
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(b) Speed (2018).
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Fig. 4: Update speed of different methods for heavy hitter detection.

Ablation Study: Fig. 5 compares the performance with and without utilizing
the threshold Ω on the CAIDA 2019 trace. The results show that using Ω ef-
fectively protects heavy flows from being incorrectly replaced by a large number
of non-heavy flows, particularly under limited memory budgets. For instance,
compared to Harmonia, the version without Ω experiences a 22.15% degra-
dation in F1 score when the memory size is 8KB (1024 buckets). Additionally,
the careful protection provided by Ω improves frequency estimation for heavy
flows, significantly reducing the AAE across different memory allocations. These
findings highlight the effectiveness of incorporating the threshold Ω.
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Fig. 5: Performance comparison with/without the threshold Ω.

6.4 Resource Utilization on Hardware Platforms
Programmable Switch: Table 2 lists the resource usage of Harmonia on the
programmable switch. Observe that most of the resource consumption comes
from the Logical Table ID, utilizing 17.19% of the total resources. Gateways,
which contribute 15.62% of the resources, are used to implement conditional
statements such as if/else logic. Additionally, Meter ALUs and the Exact Match
Search Bus each utilize 10.42% of the resources, supporting efficient packet pro-
cessing and ensuring accurate flow recording. Harmonia uses SRAM to maintain
registers, and consumes only 1.56% of the available SRAM resources. Similarly,
other components such as Map RAM (1.74%) and Stash (0.52%) have limited
usage, showcasing Harmonia’s efficiency. Overall, Harmonia demonstrates a
limited resource footprint, leaving sufficient capacity to deploy additional appli-
cations on the programmable switch.

Table 2: Resource Usage and Percentage Details on the Programmable Switch.
Resource Exact Match Input xbar Hash Bit Hash Dist Unit Gateway SRAM Map RAM

Usage 86 103 6 30 15 10
Percentage (%) 5.60 2.06 8.33 15.62 1.56 1.74

Resource VLIW Instr Meter ALU Stash Exact Match Search Bus Logical Table ID

Usage 19 5 1 20 33
Percentage (%) 4.95 10.42 0.52 10.42 17.19

FPGA Table 3 lists the overhead of Harmonia on the FPGA platform. We can
see that the design requires a relatively small fraction of the available lookup
tables, LUTRAM and registers, while the usage of BRAM (7.14% ) and I/O
(9.91%) is well within the limits of the device, leaving enough resources for
other applications. Also, the throughput of Harmonia is 82.2 Mpps, which
demonstrates a high processing speed. These results validate that Harmonia
can be effectively deployed on the FPGA platform.

Table 3: FPGA Resource Utilization.
Metric Look-Up Tables (LUTs) LUTRAM Registers BRAM Blocks I/O Pins
Usage 1,075 33 685 192 67
Percentage(%) 0.06 0.004 0.02 7.14 9.91

7 Conclusion

Detecting heavy flows is a crucial task in various network scenarios, including
the identification of malicious traffic in IoT and data center networks. In this
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paper, we introduced Harmonia, a novel sketch designed to accurately detect
heavy flows under stringent memory constraints. Harmonia employs a prob-
abilistic replacement strategy along with an effective threshold mechanism to
ensure that heavy flows are not displaced by non-heavy ones within each bucket.
Its straightforward and efficient design is well-suited for hardware with limited
resources and computational capabilities, while maintaining high detection ac-
curacy across various platforms, confirming its effectiveness.
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