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Abstract. In high-speed networks, real-time monitoring of heavy flows
is vital for reliable communication and rapid anomaly detection (e.g.,
DDoS). This task is challenging due to limited fast memory and the
inefficiency of existing sketches, which struggle with skewed traffic and
hardware constraints. We present HARMONIA, a sketch for efficient and
accurate heavy flow detection. Unlike prior methods that use multi-
dimensional features at high memory cost, HARMONIA leverages traffic
skewness: once a flow’s frequency exceeds a threshold, it is deemed heavy
and protected from eviction during hash collisions. Implemented on CPU,
programmable switches, and FPGA, and evaluated on real-world traces,
HARMONIA improves detection accuracy by up to 27.83% while requiring
at most 18% and 10% of available resources on switches and FPGAs.
Keywords: approximate data structures - sketch - high-speed data streams
- heavy hitter detection - anomaly detection - programmable switch -
FPGA.

1 Introduction

The exponential growth of network traffic from applications like video stream-
ing, high-frequency trading, and cloud computing has created high-volume flows
across modern networks. Real-time monitoring is crucial to identify heavy flows
or “heavy hitters,” which may hide anomalies such as (D)DoS attacks or im-
pact quality-of-service (QoS). Detecting heavy flows in real time is challenging
due to rapidly increasing traffic and limited high-speed memory, such as the
typical 64KB L1 cache [11-13,16]. Tracking every flow is impractical in such
environments. To address this, approximate data structures, or sketches, often
implemented as multi-row hash tables, are used to detect heavy flows efficiently
while conserving memory [7,10,17].

Limitations of Existing Methods: Despite advances in heavy flow detec-
tion, current solutions face key limitations. (i) Methods like Stable-Sketch [13]
and Tight-Sketch [12] combine flow frequency with stability or continuity to
protect heavy flows. While accurate when few heavy flows exist, their extra
metadata reduces available buckets, hurting memory efficiency as heavy flows
increase. (ii) Sketches such as MV-Sketch [16] and Count-Min Sketch [7] require
large memory to be accurate, and their replacement strategies often evict heavy
flows under tight memory and frequent collisions. (iii) Programmable switches,
widely used in data centers and IoT networks [2], have limited stages (e.g., 12)
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and only support basic arithmetic, making sketches with complex updates (e.g.,
counter merging [3]) impractical.

Contributions: We propose HARMONIA, a new sketch for accurate heavy
flow detection. When hash collisions occur across all rows, HARMONIA employs
a probabilistic replacement strategy, leveraging the skewed nature of network
traffic where only a small fraction of flows are heavy [8]. Our analysis shows
that once a flow’s frequency exceeds a threshold, it is highly likely to be heavy;
thus, we disable replacements to prevent eviction by non-heavy flows and reduce
estimation errors. This design improves detection accuracy under limited mem-
ory while avoiding complex operations such as matrix multiplication or counter
merging, making it practical for programmable switch deployment.

We implement HARMONIA on CPU (C++), programmable switches (P4 [5]),
and FPGA (Verilog). Evaluations on real-world traces [1] show that HARMONIA
improves detection accuracy by up to 15.4% and reduces estimation error by
32.27% compared to Stable-Sketch [13]. In hardware, HARMONIA requires modest
resources, using at most 18% of switch and 10% of FPGA capacity.

2 Background and Related Work
2.1 Sketches

In memory-constrained scenarios, recording information for every flow is imprac-
tical. To address this challenge, hashing-based sketches are commonly used for
high-speed network measurements [16]. A well-known instance is the Count-Min
Sketch [7], which organizes data in a table with r rows, each containing multiple
buckets paired with a unique hash function. Each bucket has a counter to track
flow occurrences. When a packet arrives, its flow key (e.g., source IP address) is
hashed into r buckets across the rows, incrementing the corresponding counters
by 1. For querying, a flow hashes into buckets in each row, and the smallest
counter value among them serves as its estimated frequency.

2.2 Heavy Hitter Detection

A heavy hitter is a flow e in a network traffic set D whose frequency f(e) meets
or exceeds a specified threshold ¢ - |D|, where ¢ is a predefined fraction (e.g.,
¢ = 0.001) and |D] is the total number of packets in D. Formally, e is a heavy
hitter if f(e) > ¢ - |D].

For detecting heavy hitters, various sketch-based methods have been in-
troduced [14]. Count-Min Heap [7] incorporates an additional heap to track
flows exceeding the threshold, but the extra data structure reduces memory ef-
ficiency, making it less suitable for memory-constrained environments such as
programmable switches. MV-Sketch [16] uses a majority vote algorithm to re-
tain heavy flows but involves a larger memory footprint to achieve high detection
accuracy. UA-Sketch [19] utilizes a probabilistic eviction strategy that consid-
ers flow arrival patterns to evict non-heavy flows. However, its design is based
on the assumption that all heavy flows arrive continuously without interrup-
tions, resulting in reduced detection accuracy when this assumption does not
hold. Tight-Sketch [12] and Stable-Sketch [13] introduce additional features to
enhance the protection of potential heavy flows. However, the additional features
result in memory inefficiency and deployment complexity. Other methods, such
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as SALSA [3], utilize flexible counters that adjust based on traffic distribution.
However, these methods rely on complex hierarchical data structures and com-
putationally intensive operations, which result in lower processing speeds and
complicate deployment on practical hardware.

2.3 Hardware Platforms

Programmable Switches offer high-speed packet processing with flexibility,
enabling tailored traffic monitoring at the network edge or in data centers. How-
ever, they have limitations: (i) limited per-stage memory (e.g., 1.4MB shared
between forwarding and monitoring) [15]; (ii) support only basic arithmetic; (iii)
a fixed number of physical stages (e.g., 12); and (iv) no cross-stage memory
access. Sketch update algorithms must follow a unidirectional workflow [20].

FPGAs are reconfigurable chips made of programmable logic blocks, I/O mod-
ules, and SRAM-based interconnects, programmed via hardware description lan-
guages like Verilog [6]. They provide high throughput for network processing and
are popular for sketch implementations [17], but have constraints such as limited
arithmetic support (e.g., division), requiring careful sketch design.

3 HARMONIA
3.1 Design Philosophy
To maintain high accuracy under limited memory budgets, the sketch design
needs to effectively adapt to the skewed traffic distributions commonly observed
in practice [12]. This adaptation helps prevent heavy flows from being mistakenly
evicted by large volumes of non-heavy flows when hash collisions are frequent.
Overall, the design of HARMONIA is guided by the following two principles.
Principle 1: Unlike update strategies such as the majority vote algorithm
[16], which demand substantial memory for accuracy under skewed traffic, we
adopt a probabilistic replacement strategy where eviction likelihood decreases
with flow frequency. This simple approach also eases hardware implementation
on programmable switches and FPGAs [20]. Our analysis of CAIDA [1] and
ToN_IoT [4] traces (Table 1) shows that over 95% of flows have a frequency of
50 or less, while very few exceed 300 (e.g., 1.22% in CAIDA 2018 and 0.05% in
IoT _Scanning). Thus, under limited memory and frequent collisions, heavy flows
are prone to eviction by numerous small flows—a problem HARMONIA addresses.

Table 1: Flow Frequency Distribution in Practical Traces.
Frequency CAIDA2015 CAIDA2018 IoT DDoS IoT Scanning

[1, 50] 95.63% 96.37% 98.79% 99.57%
(50, 100] 1.50% 1.30% 0.37% 0.25%
(100, 300] 1.44% 1.11% 0.51% 0.12%

>300 1.43% 1.22% 0.33% 0.05%

Principle 2: Unlike state-of-the-art approaches such as Stable-Sketch [13]
and Tight-Sketch [12], which leverage dual-feature mechanisms to protect heavy
flows and consequently require additional memory, resulting in fewer buckets
and increased hash collisions that elevate the risk of erroneously evicting heavy
flows, our method protects heavy flows using only a single parameter, namely the
actual frequency tracked in the value counter, ensuring efficient memory usage.
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3.2 Data Structure

Existing sketch data structures can be broadly categorized into two types: flat
[7,16,19] and hierarchical [14]. While hierarchical structures are generally more
memory efficient due to their carefully designed counters of varying lengths,
their complexity, such as bit-level counter management, renders them impractical
for deployment on programmable switches. Therefore, we adopt a flat-based
structure for its simplicity and ease of hardware implementation.

Fig.1 illustrates the data structure of HARMONIA, which consists of r rows,
each associated with a pairwise-independent hash function h; (1 <4 < r). Each
row contains b columuns (buckets), where each bucket B(i,j) (1 < j < b) has two
fields: the flow key K and its frequency counter V.

- e

Fig. 1: HARMONIA’s data structure.

3.3 Main Operations

Update: When an incoming packet belonging to a flow arrives, the update falls
into two possible stages, as listed in Algorithm 1 (see our technical report [9]).

HARMONIA begins by hashing the key of the incoming flow into a bucket in
the first row using the hash function h; . If the corresponding bucket B(1, hy (e, .key))
is empty (i.e., key = 0 and count = 0), the flow key is inserted into the bucket,
and the count is initialized to 1, terminating the update process. If the bucket
already contains the same flow key, the count is incremented by 1, and the pro-
cess ends. Otherwise, if the bucket contains a different flow key, the algorithm
proceeds to the next row. This process is repeated row by row using the cor-
responding hash functions hg, hs, ..., h,-. In each row, if the bucket is empty or
contains the same flow key, the algorithm updates the bucket and terminates.

If no matching or empty bucket is found after traversing all rows, HARMONIA
identifies the bucket with the smallest count across all rows and proceeds to the
next stage.

In the second stage, HARMONIA decides whether to replace the bucket with
the smallest count. If the smallest count count > 2, where {2 is a predefined
threshold (analyzed in detail in Section 6.2), the bucket retains its current key,
and the incoming flow is discarded. Otherwise, HARMONIA calculates the re-
placement probability. A random number k is generated within the range 0 and
1, and the replacement threshold is computed as m If the replacement
succeeds, the bucket’s key is updated with the new flow key, and the count is
incremented by 1. If the replacement fails, the incoming flow is discarded, and
the process terminates).

Query: To retrieve the heavy flows, HARMONIA simply scans all the buckets. If
the frequency value of a tracked flow exceeds the predefined threshold for heavy
hitters, the flow is identified as a heavy hitter.
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4 Formal Analysis

In this section, we prove that HARMONIA achieves (e, d)-counting [13], thus
demonstrating its low error rate in estimating heavy flows.

Theorem 1. In Algorithm 1, given a small positive number €, for any heavy
flow e, with frequency f(en), the estimated frequency f(en,) satisfies:

Pr (f(em) < flem) = €DJ) <6

where § = é [1 — #} Here, b represents the number of buckets in each row,

|D| is the total number of packets, and {2 is the predefined threshold.

Proof. A comprehensive proof is available in our technical report [9].

5 Implementation on Hardware Platforms

The implementation details for the programmable switch and FPGA are pro-
vided in our technical report [9].

6 Evaluation
6.1 Setup

Platform (1) CPU Platform. We implement HARMONIA in C++ and eval-
uate it on a laptop with an Intel® Core™ i5-1135G7 @ 2.40GHz, running
Ubuntu 20.04 LTS. (2) Programmable Switch. We prototype HARMONIA in
P4 [5] and compile it with Intel® P4 Studio for deployment on Intel® Tofino™
ASICs [2]. (3) FPGA. We implement HARMONIA in Verilog, compiled with
Vivado 2024.2, targeting the UltraScale+ XCU250-L2FIGD2104E FPGA.

Datasets We evaluate HARMONIA using real-world CAIDA traces [1]. Two were
introduced in Section 3.1, and one from 2019 contains 29.5M packets across
1.53M flows. The heavy hitter threshold ¢ = 10~* is used, with source IP as the
flow key.

Benchmarks We compare HARMONIA with four state-of-the-art methods: MV-
Sketch [16], UA-Sketch [19], Tight-Sketch [12], and Stable-Sketch [13], all con-
figured with two rows. Other methods (e.g., CocoSketch [20], Elastic [18]) are
omitted since Stable-Sketch already outperforms them.

Memory Allocations We test all methods under memory sizes of 8KB, 16KB,
32KB, 64KB, 128KB, and 256KB [13], with fixed bucket sizes. In HARMONIA,
keys and counters each occupy 4 bytes; e.g., 8KB yields 1024 buckets (224024).
Smaller memory also reserves resources for other applications and speeds up
heavy hitter queries.

. . . . 2 1 isi
Metrics Detection accuracy is evaluated using: (1) F1 Score: =Xiccaxprecsion
recall4precision

where recall is the fraction of ground-truth heavy hitters detected, and precision
the fraction of correct detections; (2) Average Absolute Error (AAE): the mean
absolute difference between true and estimated frequencies; (3) Update Speed:
throughput in millions of packets per second (Mpps).
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Fig. 2: Detection accuracy (F1 score) for varying parameter {2.

6.2 Parameter Setting

Recall that HARMONIA uses a threshold parameter {2 to enhance the protection
of heavy hitters. To determine the value, following the approach of prior works
[11,14,18], we conduct empirical evaluations on the CPU platform to determine
suitable parameter configurations for our method. The CAIDA 2018 trace is
used as the test trace, with similar trends observed across other traces.

As shown in Fig. 2(a), the F1 score rises sharply as (2 increases from 10 to
50, since small {2 allows non-heavy flows to occupy buckets, reducing accuracy.
Gains continue up to {2 = 300, beyond which Fig. 2(b) shows higher estimation
errors due to heavy flows being evicted by non-heavy ones. We therefore choose
2 = 300 as the proper threshold for subsequent evaluations.
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Fig. 3: Detection accuracy of various methods on the CPU platform.

6.3 CPU Platform

Detection Accuracy: Figs. 3(a)-(c) show F1 scores across different memory
configurations and network traces. HARMONIA consistently outperforms baseline
methods, improving F1 by 11.72%-27.83%, 15.4%-26.82%, and 14.49%-27.02%
on the 2015, 2018, and 2019 traces, respectively. While other metrics like recall
and precision are omitted for brevity, HARMONIA also leads in these measures.
Figs. 3(d)-(f) show that HARMONIA achieves the lowest AAE, reducing estima-
tion error by 37.27% on the CAIDA 2019 trace compared to Stable-Sketch.
Update Speed: Fig. 4 shows the update speeds of various approaches. Observe
that HARMONIA achieves the highest update speed thanks to its simple and



HARMONIA: A Swift and Accurate Approximate Data Structure 7

effective update strategy that avoids extra processing of additional features. On
average, it improves update speed by 8.53%-30.35%, 12.01%-27.74%, and 7.66%-
26.37% compared to the baselines over the CAIDA 2015, 2018, and 2019 traces.
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Fig. 4: Update speed of different methods for heavy hitter detection.
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6.4 Resource Utilization on Hardware Platforms

Programmable Switch Table 2 shows HARMONIA’s resource usage on the pro-
grammable switch. The Logical Table ID consumes the most resources (17.19%),
followed by Gateways (15.62%) for conditional logic. Meter ALUs and the Ex-
act Match Search Bus each use 10.42%, supporting efficient packet processing
and accurate flow recording. SRAM usage is minimal (1.56%), with Map RAM
(1.74%) and Stash (0.52%) also lightly used. Overall, HARMONIA maintains a
small resource footprint, leaving ample capacity for additional applications.

Table 2: Resource Usage and Percentage Details on the Programmable Switch.

Resource  Exact Match Input xbar Hash Bit Hash Dist Unit Gateway SRAM Map RAM
Usage 86 103 6 30 15 10
Percentage (%) 5.60 2.06 8.33 15.62 1.56 1.74
Resource VLIW Instr Meter ALU Stash Exact Match Search Bus Logical Table ID
Usage 19 5 1 20 33
Percentage (%) 4.95 10.42 0.52 10.42 17.19

FPGA Table 3 lists the overhead of HARMONIA on the FPGA platform. It
shows that the design requires a relatively small fraction of the available lookup
tables, LUTRAM and registers, while the usage of BRAM (7.14%) and I/0O
(9.91%) is well within the limits of the device, leaving enough resources for
other applications. Also, the throughput of HARMONIA is 82.2 Mpps, which
demonstrates a high processing speed. These results validate that HARMONIA
can be effectively deployed on the FPGA platform.

Table 3: FPGA Resource Utilization.

Metric Look-Up Tables (LUTs) LUTRAM Registers BRAM Blocks I/O Pins
Usage 1,075 33 685 192 67
Percentage(%) 0.06 0.004 0.02 7.14 9.91

7 Conclusion

Detecting heavy flows is vital in scenarios such as mitigating malicious traffic in
IoT and data center networks. We present HARMONIA, a sketch that achieves
accurate detection under tight memory constraints by combining a probabilistic
replacement strategy with a threshold mechanism to prevent heavy flows from
being evicted by non-heavy ones. Its simple, resource-efficient design makes it
practical for constrained hardware while maintaining high detection accuracy.
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