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Abstract
This paper introduces CloudLSTM, a new branch of recurrent
neural models tailored to forecasting over data streams gener-
ated by geospatial point-cloud sources. We design a Dynamic
Point-cloud Convolution (DConv) operator as the core com-
ponent of CloudLSTMs, which performs convolution directly
over point-clouds and extracts local spatial features from sets
of neighboring points that surround different elements of the
input. This operator maintains the permutation invariance of
sequence-to-sequence learning frameworks, while represent-
ing neighboring correlations at each time step – an impor-
tant aspect in spatiotemporal predictive learning. The DConv
operator resolves the grid-structural data requirements of ex-
isting spatiotemporal forecasting models and can be easily
plugged into traditional LSTM architectures with sequence-
to-sequence learning and attention mechanisms. We apply our
proposed architecture to two representative, practical use cases
that involve point-cloud streams, i.e., mobile service traffic
forecasting and air quality indicator forecasting. Our results,
obtained with real-world datasets collected in diverse scenar-
ios for each use case, show that CloudLSTM delivers accurate
long-term predictions, outperforming a variety of competitor
neural network models.

Introduction
Point-cloud stream forecasting aims at predicting the future
values and/or locations of data streams generated by a geospa-
tial point-cloud S , given sequences of historical observations
(Shi and Yeung 2018). Example data sources include mo-
bile network base stations that serve the traffic generated by
ubiquitous mobile services at city scale (Zhang et al. 2019),
sensors that monitor the air quality of a target region (Cheng
et al. 2018), or moving crowds that produce individual tra-
jectories. Unlike traditional spatiotemporal forecasting on
grid-structural data, like precipitation nowcasting (Shi et al.
2015) or video frame prediction (Wang et al. 2018), point-
cloud stream forecasting needs to operate on geometrically
scattered sets of points, which are irregular and unordered,
and encapsulate complex spatial correlations. While vanilla
Long Short-term Memories (LSTMs) have modest abilities
to exploit spatial features (Shi et al. 2015), convolution-based
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Figure 1: Different approaches to geospatial data stream forecasting:
predicting over inputs that are inherently grid-structured, e.g., video
frames using ConvLSTM (top); mapping of point-clouds to grids,
e.g., mobile network traffic collected at different base stations, to en-
able forecasting using existing neural models (middle); forecasting
directly over point-cloud streams using historical information (as
above, but w/o pre-processing), as proposed in this paper (bottom).

recurrent neural network (RNN) models, such as ConvL-
STM (Shi et al. 2015) and PredRNN++ (Wang et al. 2018),
are limited to grid-structural data inputs, and thus inappropri-
ate to handle scattered point-clouds.

Learning the spatiotemporal features that are relevant to the
forecasting task, from the location information embedded in
such irregular data sources, is in fact challenging. Existing ap-
proaches that tackle the point-cloud stream forecasting prob-
lem can be categorized into two classes, both bearing signifi-
cant shortcomings: (i) methods that transform point-clouds
into data structures amenable to processing with mature solu-
tions, such as the grids exemplified in Figure1 (Zhang et al.
2019); and (ii) models that ignore the exact locations of each
data source and inherent spatial correlations (Liang et al.
2018). The transformations required by the former not only
add data preprocessing overhead, but also introduce spatial
displacements that distort relevant correlations among points
(Zhang et al. 2019). The latter are largely location-invariant,
while recent literature suggests spatial correlations should be
revisited over time, to suit series prediction tasks (Shi et al.



2017). In essence, overlooking dynamic spatial correlations
risks leading to modest forecasting performance.

Contributions. In this paper, we introduce Convolutional
Point-cloud LSTMs (CloudLSTMs), a new branch of recur-
rent neural network models tailored to geospatial point-cloud
stream forecasting. The CloudLSTM builds upon a Dynamic
Point-cloud Convolution (DConv) operator, which takes raw
point-cloud streams (both data time series and spatial coordi-
nates) as input, and performs dynamic convolution over these,
to learn spatiotemporal features over time, irrespective of the
topology and permutations of the point-cloud. This eliminates
the need for input data structure preprocessing, and avoids
the distortions thereby introduced. The proposed CloudL-
STM takes into account the locations of each data source and
performs dynamic positioning at each time step, to conduct
a deformable convolution operation over point-clouds (Dai
et al. 2017). This allows revising the spatiotemporal correla-
tions and the configuration of the data points over time, and
guarantees the location-invariant property is met at different
steps. Importantly, the DConv operator is flexible, as it can be
easily plugged into different existing neural network models,
such as RNNs, LSTMs, Seq2seq learning (Sutskever et al.
2014), and attention mechanisms (Luong et al. 2015).

We evaluate our proposed architectures on four benchmark
datasets, covering two spatiotemporal point-cloud stream
forecasting applications: (i) base station-level forecasting of
data traffic generated by mobile services (Zhang and Patras
2018; Bega et al. 2019), leveraging metropolitan-scale mo-
bile traffic measurements collected in two European cities for
38 popular mobile apps; and (ii) forecasting six air quality
indicators on two city clusters in China (Zheng et al. 2015).
These tasks represent important use cases of geospatial point-
cloud stream forecasting. We combine our CloudLSTM with
Seq2seq learning and an attention mechanism, then under-
take a comprehensive evaluation on all datasets. The results
demonstrate that our architecture can deliver precise long-
term point-cloud stream forecasting in different settings, out-
performing 13 different benchmark neural models in terms
of four performance metrics, without any data preprocessing
requirements. To our knowledge, the proposed CloudLSTM
is the first dedicated neural architecture for spatiotemporal
forecasting that operates directly on point-cloud streams.

Related Work
Spatiotemporal Forecasting. Convolution-based RNN ar-
chitectures have been widely employed for spatiotemporal
forecasting, as they simultaneously capture spatial and tem-
poral dynamics of the input. Shi et al., incorporate convo-
lution into LSTMs, building a ConvLSTM for precipitation
nowcasting (Shi et al. 2015). This approach exploits spatial
information, which in turn leads to higher prediction accuracy.
The ConvLSTM is improved by constructing a subnetwork
to predict state-to-state connections, thereby guaranteeing
location-variance and flexibility of the model (Shi et al. 2017).
PredRNN (Wang et al. 2017) and PredRNN++ (Wang et al.
2018) evolve the ConvLSTM by constructing spatiotempo-
ral cells and adding gradient highway units. These improve
long-term forecasting performance and mitigate the gradient
vanishing problem in recurrent architectures. Although these

solution work well for spatiotemporal forecasting, they can
not be applied directly to point-cloud streams, as they require
point-cloud-to-grid data structure preprocessing (Zhang et al.
2019). STGCN takes a different approach to forecasting, by
relying on graph convolutional and convolutional sequence
learning layers, to capture spatial/temporal dependencies (Yu,
Yin, and Zhu 2018); this approach can prove superior, yet
forecasting performance can still be improved significantly,
as we will demonstrate.
Feature Learning on Point-clouds. Deep neural networks
for feature learning on point-cloud data are advancing rapidly.
PointNet performs feature learning and maintains input per-
mutation invariance (Qi et al. 2017a). PointNet++ upgrades
this structure by hierarchically partitioning point-clouds and
performing feature extraction on local regions (Qi et al.
2017b). VoxelNet employs voxel feature encoding to limit
inter-point interactions within a voxel (Zhou and Tuzel 2018).
This effectively projects cloud-points onto sub-grids, which
enables feature learning. Li et al., generalize the convolution
operation on point-clouds and employ X -transformations
to learn the weights and permutations for the features (Li
et al. 2018). Through this, the proposed PointCNN leverages
spatial-local correlations of point-clouds, irrespective of the
order of the input. Although these architectures can learn the
spatial features of point-clouds, they are designed to work
with static data, and thus have limited ability to discover
temporal dependencies.

Convolutional Point-cloud LSTM
Next, we formalize the problem and properties of forecast-
ing over point-cloud-streams. We then introduce the DConv
operator, which is at the core of our proposed CloudLSTM
architecture. Finally, we present CloudLSTM and its variants,
and explain how to combine CloudLSTM with Seq2seq learn-
ing and attention mechanisms, to achieve precise forecasting
over point-cloud streams.

Forecasting over Point-cloud Streams
We formally define a point-cloud containing a set of N
points, as S = {p1, p2, · · · , pN}. Each point pn ∈ S
contains two sets of features, i.e., pn = {νn, ςn}, where
νn = {v1n, · · · , vHn } are value features (e.g., mobile traf-
fic measurements, air quality indexes, etc.) of pn, and
ςn = {c1n, · · · , cLn} are its L-dimensional coordinates. At
each time step t, we may obtain U different channels of
S by conducting different measurements denoted by Sυt =
{S1t , · · · ,SUt }, Sυt ∈ RU×N×(H+L). Here, different U re-
semble the RGB channels in images. We can then formulate
the J-step point-cloud stream forecasting problem, given M
observations, as:

Ŝυt+1, · · · , Ŝυt+J =

argmax
Sυt+1,··· ,S

υ
t+J

p(Sυt+1, · · · ,Sυt+J |Sυt , · · · ,Sυt−M+1). (1)

In some cases, each point’s coordinates may be unchanged,
since the data sources have fixed locations. An ideal point-
cloud stream forecasting model should embrace five key
properties, similar to other point-cloud and spatiotemporal
forecasting problems (Qi et al. 2017a; Shi et al. 2017):



(i) Order invariance: A point-cloud is usually arranged with-
out a specific order. Permutations of the input points should
not affect the forecasting output (Qi et al. 2017a).
(ii) Information intactness: The output of the model should
have exactly the same number of points as the input, without
losing any information, i.e., Nout = Nin.
(iii) Interaction among points: Points in S are not isolated,
thus the model should allow interactions among neighboring
points and capture local dependencies (Qi et al. 2017a).
(iv) Robustness to transformations: The model should be
robust to correlation-preserving transformation operations on
point-clouds, e.g., scaling and shifting (Qi et al. 2017a).
(v) Location variance: Spatial correlations among points
may change over time. Such dynamic correlations should be
revised and learnable during training (Shi et al. 2017).

In what follows, we introduce the Dynamic point-cloud
Convolution (DConv) operator as the core module of the
CloudLSTM, and explain how it satisfies these properties.

Dynamic Convolution over Point-clouds
The Dynamic point-cloud Convolution operator (DConv) gen-
eralizes the ordinary convolution on grids. Instead of com-
puting the weighted summation over a small receptive field
for each anchor point, DConv does so on point-clouds, while
inheriting desirable properties of the ordinary convolution
operation. The vanilla convolution takes Uin channels of 2D
tensors as input, and outputs Uout channels of 2D tensors of
smaller size (if without padding). Similarly, the DConv takes
Uin channels of a point-cloud S, and outputs Uout channels
of a point-cloud, but with the same number of elements as
the input, to fulfill the information intactness property (ii)
discussed previously. For simplicity, we denote the ith chan-
nel of the input set as Siin and the jth channel of the output
as Sjout. Both Siin and Sjout are thus 2D tensors, of shape
(N, (H+L)) and (N, (H+L)).

We also define QKn as a subset of points in Siin, which
includes the K nearest points with respect to pn in the Eu-
clidean space, i.e., QKn = {p1n, · · · , pkn, · · · , pKn }, where pkn
is the k-th nearest point to pn in the set Siin. Note that pn itself
is included in QKn as an anchor point, i.e., pn ≡ p1n. Recall
that each pn ∈ S contains H value features and L coordinate
features, i.e., pn = {νn, ςn}, where νn = {v1n, · · · , vHn } and
ςn = {c1n, · · · , cLn}. Similar to vanilla convolution, for each
pn in Siin, DConv sums the element-wise product over all fea-
tures and points in QKn , to obtain the values and coordinates
of a point p′n in Sjout. Note that dynamic spatial correlations
imply that the value features are related to their positions at
the previous layer/state: hence, we aggregate the coordinate
features c(pkn)

l
i when computing the value features vh

′

n,j .
The resulting mathematical expression of the DConv is

expounded in Eq. 2. We define learnable weightsW as 5D
tensors with shape (Uin,K, (H + L), (H + L), Uout). The
weights are shared across different anchor points in the in-
put map. Each element wm,m

′,k
i,j ∈ W is a scalar weight

for the i-th input channel, j-th output channel, k-th nearest
neighbor of each point corresponding to the m-th value and
coordinate features for each input point, and m′-th value and
coordinate features for output points. Similar to the convo-
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1

Figure 2: DConv operation with a single input channel and K = 6
neighbors. For every p ∈ S1

in, DConv weights its K neighboring
setQKn = {p1n, · · · , p6n} to produce values and coordinate features
for p′n ∈ S1

out. Here, each wk is a set of weights w with index k
(i.e., k-th nearest neighbor) in Eq. 2, shared across different p.

lution operator, we define bj as a bias for the j-th output
map. In the above, h and h′ are the h(′)-th value features of
the input/output point set. Likewise, l and l′ are the l(′)-th
coordinate features of the input/output. σ(·) is the sigmoid
function, which limits the range of predicted coordinates to
(0, 1), to avoid outliers. Before feeding them to the model,
the coordinates of raw point-clouds are normalized to (0, 1)
by ς = (ς − ςmin)/(ςmax − ςmin), on each dimension. This
improves the transformation robustness of the operator.

The K nearest points can vary for each channel at each
location, because the channels in the point-cloud dataset
may represent different types of measurements. For example,
channels in the mobile traffic dataset are related to the traffic
consumption of different mobile apps. Instead, channels in
the air quality dataset capture different air quality indicators
(SO2, CO, etc.). The spatial correlations will vary between
different measurements (channels), due to the diverse nature
of the phenomena producing them. For instance, Facebook or
Instagram usage may show strong spatial correlations during
a large social event spanning several neighborhoods of a city,
as people communicate about the event; whereas Spotify
traffic will probably be unaffected in this case. The same
applies to air quality indicators, which are affected by, e.g.,
the unique geographical dynamics of road traffic over the
street layout. As these spatial correlations must be learnable,
we do not fix the locations of K across channels, but allow
each channel to find the best neighbor set.

We provide a graphical illustration of DConv in Figure 2.
For each point pn, the DConv operator weights its K nearest

Algorithm 1 DConv implementation using 2D conv operator
1: Inputs:

S′in, with shape (N,K, (H + L), Uin).
2: Initialise:

The weight tensorW .
3: Reshape the input map Si′in from shape (N,K, (H+L), Uin) to shape

(N,K, (H + L)× Uin)
4: Reshape the weight tensor W from shape (Uin,K, (H + L), (H +
L), Uout) to shape (1,K, Uin × (H + L), Uout × (H + L))

5: Perform 2D convolution Sout = Conv(Si′in,W) with step 1 without
padding. Sout becomes a 3D tensor with shape (N, 1, Uout×(H+L))

6: Reshape the output map Sout to (N, (H + L), Uout)
7: Apply sigmoid function σ(·) to the coordinates feature in Sout



vh
′
n,j =

∑
i∈Uin

∑
pkn∈QK

n

(∑
h∈H

wh,h
′,k

i,j v(pkn)
h
i +

∑
l∈L

w
(H+l),h′,k
i,j c(pkn)

l
i

)
+ bj ,

cl
′
n,j = σ

( ∑
i∈Uin

∑
pkn∈QK

n

(∑
h∈H

wh,l
′,k

i,j v(pkn)
h
i +

∑
l∈L

w
(H+l),l′,k
i,j c(pkn)

l
i

)
+ bj

)
,

Sjout = (p′1, · · · , p′N ) =
((

(v1
′

1 , · · · , vH
′

1 ), (c1
′

1 , · · · , cL
′

1 )
)
, · · · ,

(
(v1

′
N , · · · , vH

′
N ), (c1

′
N , · · · , cL

′
N )
))
. (2)

neighbors across all features, to produce the values and coor-
dinates in the next layer. Since the permutation of the input
neither affects the neighboring information nor the ranking of
their distances for any QKn , DConv is a symmetric function
whose output does not depend on the input order. This means
that the property (i) discussed earlier is satisfied. Further,
DConv is performed on every point in set Siin and produces
exactly the same number of features and points for its output;
property (ii) is therefore naturally fulfilled. In addition, oper-
ating over a neighboring point set, irrespective of its layout,
allows capturing local dependencies. It also improves robust-
ness to global transformations (e.g., shifting and scaling),
jointly with the normalization over the coordinate features.
Overall, the design meets the desired properties (iii) and (iv).
More importantly, DConv learns the layout and topology of
the cloud-point for the next layer, which changes the neigh-
boring set QKn for each point at output Sjout. This attains the
“location-variance” property (v), allowing the model to per-
form a dynamic positioning tailored to each channel and time
step. This is essential in spatiotemporal forecasting neural
models, which must capture spatial correlations that change
over time (Shi et al. 2017).

DConv Implementation
The DConv can be efficiently implemented using a standard
2D convolution operator, by data shape transformation. We
assume a batch size of 1 for simplicity. Recall that the input
and output of DConv, S ′in and Sout, are 3D tensors with shape
(N, (H+L), Uin) and (N, (H+L), Uout), respectively. Note
that for each pn in Siin, we find the set of top K nearest
neighbors QKn . Combining these, we transform the input into
a 4D tensor Si′in, with shape (N,K, (H+L), Uin). To perform
DConv over Si′in, we split the operator into the steps outlined
in Algorithm 1. This enables to translate the DConv into a
standard convolution operation, which is highly optimized
by existing deep learning frameworks.

Relations with PointCNN & Deformable Conv
The DConv operator builds upon the PointCNN (Li et al.
2018) and deformable convolution neural network (DefCNN)
on grids (Dai et al. 2017), but introduces several variations
tailored to point-cloud structural data. PointCNN employs the
X -transformation over point-clouds, to learn the weight and
permutation on a local point set using multilayer perceptrons
(MLPs), which introduces extra complexity. This operator
guarantees the order invariance property, but leads to infor-
mation loss, since it performs aggregation over points. In our
DConv operator, the permutation is maintained by aligning
the weight of the ranking of distances between point pn and

QKn . Since the distance ranking is unrelated to the order of
the inputs, the order invariance is ensured in a parameter-free
manner, without extra complexity and loss of information.

Further, the DConv operator can be viewed as the DefCNN
(Dai et al. 2017) over point-clouds, with the differences that
(i) DefCNN deforms weighted filters, while DConv deforms
the input maps; and (ii) DefCNN employs bilinear interpola-
tion over input maps with a set of continuous offsets, while
DConv instead selectsK neighboring points for its operations.
Both DefCNN and DConv have transformation flexibility, al-
lowing adaptive receptive fields on convolution.

DConv Complexity Analysis
We study the complexity of DConv by separating the oper-
ation into two steps: (i) finding the neighboring set QKn for
each point pn ∈ S, and (ii) performing the weighting com-
putation in Eq. 2. We discuss the complexity of each step
separately. For simplicity and without loss of generality, we
assume the number of input and output channels are both
1. For step (i), the complexity of finding K nearest neigh-
bors for one point is close to O(K · L logN),1 if using KD
trees (Bentley 1975). For step (ii), it is easy to see from Eq. 2
that the complexity of computing one feature of the output p′n
isO((H+L) ·K). Since each point has (H+L) features and
the output point set Sjout hasN points, the overall complexity
of step (ii) becomesO(N ·K·(H+L)2). This is equivalent to
the complexity of a vanilla convolution operator, where both
the input and output have (H + L) channels, and the input
map and kernel have N and K elements, respectively. This
implies that, compared to the convolution operator whose
inputs, outputs, and filters have the same size, DConv intro-
duces extra complexity by searching the K nearest neighbors
for each point O(K · L logN). Such complexity does not
increase much even with higher dimensional point-clouds.

The CloudLSTM Architecture
The DConv operator can be plugged straightforwardly into
LSTMs, to learn both spatial and temporal correlations over
point-clouds. We formulate the Convolutional Point-cloud
LSTM (CloudLSTM) as:

it = σ(Wsi©∗ Sυt +Whi©∗ Ht−1 + bi),

ft = σ(Wsf ©∗ Sυt +Whf ©∗ Ht−1 + bf ),

Ct = ft � Ct−1 + it � tanh(Wsc©? Sυt +Whc©? Ht−1 + bc),

ot = σ(Wso©∗ Sυt +Who©∗ Ht−1 + bo),

Ht = ot � tanh(Ct). (3)

1L� log(n) is required to guarantee efficiency. Practical point-
clouds are of dimension 2 or 3 and we have significantly more than
3 points in the dataset. Hence this condition holds.
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Figure 3: The inner structure of the CloudLSTM cell (left) and the overall Seq2seq CloudLSTM architecture (right). We denote by (·)ν and
(·)ς the value and coordinate features of each input, while these features are unified for gates.

Similar to ConvLSTM (Shi et al. 2015), it, ft, and ot, are
input, forget, and output gates respectively. Ct denotes the
memory cell and Ht is the hidden states. Note that it, ft,
ot, Ct, and Ht are all point-cloud representations. W and
b represent learnable weight and bias tensors. In Eq. 3, ‘�’
denotes the element-wise product, ‘©? ’ is the DConv oper-
ator formalized in Eq. 2, and ‘©∗ ’ a simplified DConv that
removes the sigmoid function in Eq. 2. The latter only op-
erates over the gates computation, as the sigmoid functions
are already involved in outer calculations (first, second, and
fourth expressions in Eq. 3). We show the structure of a basic
CloudLSTM cell Figure 3 (left).

We combine our CloudLSTM with Seq2seq learning
(Sutskever et al. 2014) and the soft attention mechanism (Lu-
ong et al. 2015), to perform forecasting, given that these neu-
ral models have been proven to be effective in spatiotemporal
modelling on grid-structural data (e.g., (Shi et al. 2015; Zhang
et al. 2018)). We show the overall Seq2seq CloudLSTM in
the right part of Figure 3. The architecture incorporates an
encoder and a decoder, which are different stacks of CloudL-
STMs. The encoder encodes the historical information into a
tensor, while the decoder decodes the tensor into predictions.
The states of the encoder and decoder are connected using
the soft attention mechanism via a context vector (Luong
et al. 2015). We denote the j-th and i-th states of the encoder
and decoder as Hj

en and Hi
de. The context tensor for state

i at the encoder is represented as ci =
∑
j∈M ai,jH

j
en =

ei,j/
∑
j∈M ei,j , where ei,j is a score function, which can be

selected among many alternatives. In this paper, we choose
ei,j = vTa tanh(Wa ∗ [Hj

en;H
i
de]). Here [·; ·] is the concate-

nation operator and ‘∗’ is the convolution function. Both Wa

and va are learnable weights. The Hi
de and ci are concate-

nated into a new tensor for the following operations.

Before feeding the point-cloud to the model and generating
the final forecasting, the data is processed by point-cloud
Convolutional (CloudCNN) layers, which perform the DConv
operations. Their function is similar to the word embedding
layer in natural language processing tasks (Mikolov et al.
2013), which helps translate the raw point-cloud into tensors
and vice versa. In this study, we employ a two-stack encoder-
decoder architecture, and configure 36 channels for each
CloudLSTM cell, as further increasing the number of stacks
and channels did not entail significant gain.

We also combine DConv with RNN and Conv. GRU, in-
troducing novel Conv. Point-cloud RNN (CloudRNN) and
Conv. Point-cloud GRU (CloudGRU). Like CloudLSTM, the
CloudRNN and CloudGRU employ a Seq2seq architecture,
but without attention mechanism.

Experiments
To evaluate the performance of our architectures, we employ
measurement datasets of traffic generated by 38 mobile ser-
vices and recorded at individual network antennas, and of 6
air quality indicators collected at monitoring stations. We use
the proposed CloudLSTM to forecast future mobile service
demands and air quality indicators in the target regions. We
provide a comprehensive comparison with 12 baseline deep
learning models, over four performance metrics. All models
are implemented using TensorFlow (Abadi et al. 2016) and
TensorLayer (Dong et al. 2017). We train all architectures
with a computing cluster with two NVIDIA Tesla K40M
GPUs. We optimize all models by minimizing the mean
square error (MSE) between predictions and ground truth
using the Adam optimizer (Kingma and Ba 2015).

Datasets and Preprocessing
We conduct experiments on two spatiotemporal point-cloud
stream forecasting tasks over 2D geospatial environments. As
the data sources have fixed locations in these applications, the
coordinate features are omitted in the final output. However,
such features would be necessarily included in different use
cases, such as crowd mobility forecasting.
Mobile Traffic Forecasting. We experiment with large-scale
multi-service datasets collected by a major operator in two
large European metropolitan areas with diverse topology
and size during 85 consecutive days. The data describes the
volume of traffic generated by devices associated to each of
the 792 and 260 antennas in the two target cities, respectively.
The antennas are non-uniformly distributed over the urban
regions, thus they form 2D point-clouds over space. The
traffic volume at each antenna is expressed in Megabytes and
aggregated over 5-minute intervals, which leads to 24,482
traffic snapshots. These snapshots are gathered independently
for each of 38 popular mobile services.
Air Quality Forecasting. We investigate air quality forecast-
ing performance using a public dataset (Zheng et al. 2015),
which comprises six air quality indicators (i.e., PM2.5, PM10,



Table 1: The mean±std of MAE, RMSE, PSNR, and SSIM across all models considered, evaluated on two datasets collected in different cities
for mobile traffic forecasting.

Model City 1 City 2
MAE RMSE PSNR SSIM MAE RMSE PSNR SSIM

MLP 4.79±0.54 9.94±2.56 49.56±2.13 0.27±0.12 4.59±0.59 9.44±2.45 50.30±2.28 0.33±0.14
CNN 6.00±0.62 11.02±2.09 48.93±1.60 0.25±0.12 5.30±0.51 10.05±2.06 49.97±1.87 0.32±0.14

3D-CNN 4.99±0.57 9.94±2.44 49.74±2.13 0.33±0.14 5.21±0.48 9.97±2.03 50.13±1.85 0.37±0.16
DefCNN 6.76±0.81 11.72±2.57 48.43±1.82 0.16±0.08 5.31±0.51 9.99±2.13 49.84±1.87 0.32±0.14

PointCNN 4.95±0.53 10.10±2.46 49.43±2.06 0.27±0.12 4.75±0.56 9.55±2.32 50.17±2.16 0.35±0.15
CloudCNN 4.81±0.58 9.91±2.81 49.93±2.21 0.29±0.11 4.68±0.52 9.39±2.22 50.31±2.03 0.36±0.14

LSTM 4.20±0.66 9.58±3.17 50.47±3.29 0.36±0.10 4.32±1.64 9.17±3.03 50.79±3.26 0.42±0.12
ConvLSTM 3.98±1.60 9.25±3.10 50.47±3.29 0.36±0.10 4.09±1.59 8.87±2.97 51.10±3.33 0.42±0.12
PredRNN++ 3.97±1.60 9.29±3.12 50.43±3.30 0.36±0.10 4.07±1.56 8.87±2.97 51.09±3.34 0.42±0.12

STGCN 3.88±1.30 9.11±2.99 50.53±3.10 0.37±0.10 3.99±1.36 8.68±2.27 51.19±3.00 0.43±0.11
PointLSTM 4.63±0.45 9.47±2.55 50.02±2.26 0.34±0.14 4.56±0.54 9.26±2.43 50.52±2.35 0.37±0.15

CloudRNN (K = 9) 4.08±1.66 9.19±3.17 50.45±3.23 0.32±0.12 4.08±1.65 8.74±3.03 51.10±3.26 0.39±0.14
CloudGRU (K = 9) 3.79±1.59 8.90±3.11 50.73±3.29 0.39±0.10 3.90±1.57 8.47±2.96 51.40±3.33 0.45±0.12

CloudLSTM (K = 3) 3.71±1.63 8.87±3.11 50.76±3.30 0.39±0.10 3.86±1.51 8.42±2.94 51.45±3.32 0.46±0.11
CloudLSTM (K = 6) 3.72±1.63 8.91±3.13 50.72±3.29 0.38±0.10 3.84±1.59 8.46±2.96 51.43±3.33 0.45±0.12
CloudLSTM (K = 9) 3.72±1.62 8.88±3.11 50.75±3.29 0.39±0.10 3.89±1.55 8.46±2.96 51.41±3.32 0.46±0.11

Attention CloudLSTM (K = 9) 3.66±1.64 8.82±3.10 50.78±3.21 0.40±0.11 3.79±1.57 8.43±2.96 51.46±3.33 0.47±0.11

NO2, CO, O3 and SO2) collected by 437 air quality monitor-
ing stations in China, over a span of one year. The monitoring
stations are partitioned into two city clusters, based on their
geographic locations, and measure data on an hourly basis.
Clusters A and B have 274 and 163 stations, respectively.

Further details about all datasets can be found in the Ap-
pendix. Before feeding to the models, the measurements
associated to each mobile service and air quality indicator are
transformed into different input channels of the point-cloud S .
All coordinate features ς are normalized to the (0, 1) range. In
addition, for the baseline models that require grid-structural
input (i.e., CNN, 3D-CNN, ConvLSTM and PredRNN++),
the data are transformed into grids (Zhang et al. 2019) using
the Hungarian algorithm (Kuhn 1955). The ratio of training
plus validation, and test sets is 8:2.

Benchmarks and Performance Metrics
We compare the performance of our proposed CloudLSTM
with a set of baseline models, as follows. PointCNN (Li et al.
2018) performs convolution over point-clouds and has been
employed for point-cloud classification and segmentation.
CloudCNN is an original benchmark we introduce, which
stacks the proposed DConv operator over multiple layers for
feature extraction from point-clouds. PointLSTM is another
original benchmark, obtained by replacing the cells in Conv-
LSTM with the X -Conv operator employed by PointCNN,
which provides a fair term of comparison for other Seq2seq
architectures. Beyond these models, we also compare the
CloudLSTM with two of its variations, i.e., CloudRNN and
CloudGRU, which were introduced earlier. Other baseline
models we consider, include MLP (Goodfellow et al. 2016),
CNN (Krizhevsky et al. 2012), 3D-CNN (Ji et al. 2013),
LSTM (Hochreiter and Schmidhuber 1997), ConvLSTM (Shi
et al. 2015) PredRNN++ (Wang et al. 2018). Among these,
the first three are frequently used as benchmarks in mobile
traffic forecasting (Zhang and Patras 2018; Bega et al. 2019).
DefCNN learns the shape of the convolutional filters and has
similarities with the DConv operator proposed in this study

(Dai et al. 2017). LSTM is an advanced RNN frequently em-
ployed for time series forecasting (Hochreiter and Schmidhu-
ber 1997). While ConvLSTM (Shi et al. 2015) can be viewed
as a baseline model for spatiotemporal predictive learning,
the PredRNN++ is the state-of-the-art architecture for spa-
tiotemporal forecasting on grid-structural data and achieves
the best performance in many applications (Wang et al. 2018).
We also employ a spatio-temporal Graph CNN (STGCN) ar-
chitecture to map point-clouds onto graphs, based on the
distance between them, thereby addressing forecasting from
a different perspective (Yu, Yin, and Zhu 2018). The detailed
configuration of all models are discussed in the Appendix.

We quantify the accuracy of the proposed CloudLSTM
in terms of Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). Since the mobile traffic snapshots can
be viewed as “urban images” (Liu et al. 2015), we also select
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) (Hore and Ziou 2010) to quantify the fidelity
of the forecasts and their similarity with the ground truth, as
suggested by relevant recent work (Zhang et al. 2017). More
details are discussed in the Appendix.

For the mobile traffic prediction task, we employ all neu-
ral networks to forecast city-scale mobile traffic consump-
tion over a time horizon of J = 6 sampling steps, i.e., 30
minutes, given M = 6 consecutive past measurements. For
RNN-based models, i.e., LSTM, ConvLSTM, PredRNN++,
CloudLSTM, CloudRNN, and CloudGRU, we then extend
the number of prediction steps to J = 36, i.e., 3 hours,
to evaluate their long-term performance. In the air quality
forecasting use case, all models receive a half day of mea-
surements, i.e., M = 12, as input, and forecast indicators in
the following 12 h, i.e., J = 12. As for the previous use case,
the number of prediction steps is then extended to J = 72
(3 days), for all RNN-based models.

Result on Mobile Traffic Forecasting
We perform 6-step forecasting for 4,888 instances across
the test set, and report in Table 1 the mean and standard



Table 2: The mean±std of MAE, RMSE, PSNR, and SSIM across all models considered, evaluated on two datasets collected in different city
clusters for air quality forecasting.

Model Cluster A Cluster B
MAE RMSE PSNR SSIM MAE RMSE PSNR SSIM

MLP 113.13±191.89 142.03±240.24 23.54±7.38 0.13±0.10 40.34±22.16 50.81±27.27 24.75±4.02 0.10±0.10
CNN 37.62±8.18 47.67±11.21 28.35±2.38 0.13±0.05 18.59±2.24 23.66±2.76 30.17±1.14 0.34±0.04

3D-CNN 37.09±7.63 48.01±10.36 28.36±2.17 0.32±0.08 19.84±2.20 25.30±2.55 29.58±0.99 0.35±0.05
DefCNN 37.51±8.34 47.69±11.44 28.40±2.41 0.13±0.05 19.46±2.45 25.58±2.80 29.55±1.07 0.26±0.05

PointCNN 39.60±7.63 51.61±10.35 27.63±2.02 0.19±0.04 19.25±2.38 24.60±2.99 29.89±1.20 0.17±0.03
CloudCNN 31.62±8.73 40.68±11.89 29.91±2.89 0.23±0.04 15.11±3.45 19.97±4.33 31.91±2.01 0.38±0.04

LSTM 30.62±8.97 40.83±11.88 29.87±2.79 0.31±0.10 14.38±3.37 19.10±4.29 32.16±2.03 0.41±0.07
ConvLSTM 22.91±8.09 31.62±11.40 31.98±3.24 0.50±0.10 10.39±2.82 14.20±3.87 34.79±2.45 0.60±0.06
PredRNN++ 25.14±8.48 34.38±11.77 31.34±3.13 0.37±0.08 11.43±2.81 15.68±3.85 33.94±2.21 0.50±0.05

STGCN 25.01±8.40 33.98±11.54 31.41±3.08 0.39±0.08 11.22±2.49 15.36±3.59 34.00±2.20 0.52±0.05
PointLSTM 36.64±7.99 47.42±10.64 28.56±2.25 0.31±0.06 18.77±2.18 24.66±2.58 29.79±1.07 0.35±0.07

CloudRNN (K = 9) 33.09±8.23 42.16±11.38 29.53±2.66 0.13±0.07 14.82±3.75 19.70±4.54 31.93±2.18 0.14±0.06
CloudGRU (K = 9) 22.12±8.02 30.65±11.25 32.22±3.38 0.53±0.09 9.58±2.82 13.41±3.78 35.26±2.57 0.68±0.07

CloudLSTM (K = 3) 20.84±7.88 29.16±11.06 32.64±3.40 0.57±0.10 9.12±2.75 12.95±3.72 35.59±2.62 0.69±0.07
CloudLSTM (K = 6) 21.31±7.52 29.71±10.61 32.48±3.29 0.55±0.10 9.38±2.85 13.20±2.79 35.42±2.60 0.68±0.07
CloudLSTM (K = 9) 21.72±7.83 30.14±11.05 32.36±3.34 0.54±0.10 9.73±2.84 13.58±3.77 35.20±2.56 0.66±0.07

Attention CloudLSTM (K = 9) 21.72±7.78 30.04±10.95 32.38±3.29 0.56±0.10 9.38±2.69 13.41±3.78 35.26±2.57 0.69±0.07

deviation (std) of each metric. We also investigate the effect
of a different number of neighboring points (i.e.,K = 3, 6, 9),
as well as the influence of the attention mechanism. The
metrics are computed over 5,000 sample points and the Z-
scores are always well above the significance threshold.

Observe that RNN-based architectures in general ob-
tain superior performance, compared to CNN-based mod-
els and the MLP. In particular, our proposed CloudLSTM,
and its CloudRNN, and CloudGRU variants outperform all
other architectures, achieving lower MAE/RMSE and higher
PSNR/SSIM on both urban scenarios. This suggests that the
DConv operator learns features over geospatial point-clouds
more effectively than vanilla convolution and PointCNN, as
well as than the graph-based STGCN structure. In addition,
CloudLSTM performs better than CloudGRU, which in turn
outperforms CloudRNN.

Interestingly, the forecasting performance of the Cloud-
LSTM seems fairly insensitive to the number of neighbors
(K); it is therefore worth using a smallK in practice, to reduce
model complexity. Further, we observe that the attention
mechanism improves the forecasting performance, as it helps
capturing better dependencies between input sequences and
vectors in decoders, which is an effect also confirmed by
other NLP tasks.

We include further results where the prediction horizon is
extended to up to J = 36 steps, i.e., 3 hours (long-term fore-
casting), for all RNN-based architectures in the Appendix.

Results on Air Quality Forecasting
We employ all models to deliver 12-step air quality forecast-
ing on six indicators, given 12 snapshots as input. Results
over 1,350 samples are in Table 2. Also in this use case, the
proposed CloudLSTMs attain the best performance across all
4 metrics, outperforming state-of-the-art methods (ConvL-
STM) by up to 12.2% and 8.8% in terms of MAE and RMSE,
respectively. Unlike in the mobile traffic forecasting results, a
lower K yields better prediction performance, though the dif-
ference appears subtle. Again, the CloudCNN always proves

superior to the PointCNN, indicating that CloudCNNs are bet-
ter feature extractors over point-clouds. Overall, the results
demonstrate the effectiveness of the CloudLSTM models for
modeling spatiotemporal point-cloud stream data, regardless
of the tasks to which they are applied.

Note that we conduct our experiments using strict variable-
controlling methodology, i.e., only changing one factor while
keep the remaining the same. Therefore, it is easy to study
the effect of each factor. For example, taking a look at the per-
formance of LSTM, ConvLSTM, PredRNN++, PointLSTM
and CloudLSTM, which employ dense layers, and CNN,
PointCNN and D-Conv as core operators but using LSTM as
the RNN structure, it is clear that the D-Conv contributes sig-
nificantly to the performance improvements. Further, by com-
paring CloudRNN, CloudGRU and CloudLSTM, it appears
that CloudRNN� CloudGRU < CloudLSTM. Similarly, by
comparing the CloudLSTM and Attention CloudLSTM, we
see that the effects of the attention mechanism are not very
significant. Therefore, we believe the core operator > RNN
structure > attention, ranked by their contribution.

Conclusions
We introduce CloudLSTM, a dedicated neural model for spa-
tiotemporal forecasting tailored to point-cloud data streams.
The CloudLSTM builds upon the DConv operator, which
performs convolution over point-clouds to learn spatial fea-
tures while maintaining permutation invariance. The DConv
simultaneously predicts the values and coordinates of each
point, thereby adapting to changing spatial correlations of
the data at each time step. DConv is flexible, as it can be
easily combined with various RNN models (i.e., RNN, GRU,
and LSTM), Seq2seq learning, and attention mechanisms.
We consider two application case studies, where we show
that our proposed CloudLSTM achieves state-of-the-art per-
formance on large-scale datasets collected in urban regions.
CloudLSTM gives a new perspective on point-cloud stream
modelling, and it can be easily extended to higher dimension
point-clouds, without requiring changes to the model.
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Appendix
Proof of Transformation Invariance

We show that the normalization of the coordinates features
enables transformation invariance with shifting and scaling.
The shifting and scaling of a point can be represented as:

ς ′ = Aς +B, (4)

where A and B are a positive scaling coefficient and respec-
tively an offset. By normalizing the coordinates, we have:

ς ′ =
ς ′ − ς ′min

ς ′max − ς ′min

=
(Aς +B)− (Aςmin +B)

(Aςmax +B)− (Aςmin +B)

=
A(ς − ςmin)

A(ςmax − ςmin)
=

ς − ςmin

ςmax − ςmin
.

(5)

This implies that, by using normalization, the model is invari-
ant to shifting and scaling transformations.

Soft Attention Mechanism
We combine our proposed CloudLSTM with the attention
mechanism introduced in (Luong et al. 2015). We denote
the j-th and i-th states of the encoder and decoder as Hj

en
and Hi

de. The context tensor for state i at the encoder can be
represented as:

ci =
∑
j∈M

ai,jH
j
en =

ei,j∑
j∈M ei,j

, (6)

where ei,j is a score function, which can be selected
among many alternatives. In this paper, we choose ei,j =
vTa tanh(Wa ∗ [Hj

en;H
i
de]). Here [·; ·] is the concatenation

operator and ∗ is the convolution function. Both Wa and
va are learnable weights. The Hi

de and context tensor are
concatenated into a new tensor for the following operations.

Models Configuration
We compared our proposal against a set of baselines mod-
els. MLP (Goodfellow et al. 2016), CNN (Krizhevsky et al.
2012), and 3D-CNN (Ji et al. 2013) are frequently used as
benchmarks in mobile traffic forecasting (Zhang and Patras
2018; Bega et al. 2019). DefCNN learns the shape of the
convolutional filters and has similarities with the DConv
operator proposed in this study (Dai et al. 2017). LSTM
is an advanced RNN frequently employed for time series
forecasting (Hochreiter and Schmidhuber 1997). While Con-
vLSTM (Shi et al. 2015) can be viewed as a baseline model
for spatiotemporal predictive learning, the PredRNN++ is the
state-of-the-art architecture for spatiotemporal forecasting
on grid-structural data and achieves the best performance in
many applications (Wang et al. 2018).

We show in Table 3 the detailed configuration along with
the number of parameters for each model considered in this
study. Note that we used 2 layers (same as our CloudL-
STMs) for ConvLSTM, PredRNN++ and PointLSTM, since
we found that increasing the number of layers did not im-
prove their performance. 3× 3 filters are commonly used in

image applications, where they have been proven effective.
This yields a receptive field of 9 (3×3), which is equivalent to
K = 9 in our CloudLSTMs. Thus this supports a fair compar-
ison. In addition, the PredRNN++ follows a slightly different
structure than that of other Seq2seq models, as specified in
the original paper.

Loss Function and Performance Metrics
We optimize all architectures using the MSE loss function:

MSE(t) =
1

|N | · |H|
∑
n∈N

∑
h∈H

||v̂hn(t)− vhn(t)||2. (7)

Here v̂hn is the mobile traffic volume forecast for the h-th
service, and respectively the forecast value of the h-th air
quality indicator, at base station/monitoring station n, at time
t, while vhn is the corresponding ground truth. We employ
MAE, RMSE, PSNR and SSIM to evaluate the performance
of our models. These are defined as:

MAE(t) =
1

|N | · |H|
∑
n∈N

∑
h∈H

|v̂hn(t)− vhn(t)|. (8)

RMSE(t) =

√
1

|N | · |H|
∑
n∈N

∑
h∈H

||v̂hn(t)− vhn(t)||2. (9)

PSNR(t) = 20 log vmax(t) −

− 10 log
1

|N | · |H|
∑
n∈N

∑
h∈H

||v̂hn(t)− vhn(t)||2. (10)

SSIM(t) =

(
2 v̂hn(t) µv(t) + c1

) (
2 COV(vhn(t), v̂

h
n(t)) + c2

)(
v̂hn(t)

2 µv(t)2 + c1
)
(VAR(vhn(t))VAR(v̂hn(t) + c2)

,

(11)
where µv(t) and vmax(t) are the average and maximum traf-
fic recorded for all services/quality indicators, at all base
stations/monitoring stations and time instants of the test set.
VAR(·) and COV(·) denote the variance and covariance, re-
spectively. Coefficients c1 and c2 are employed to stabilize
the fraction in the presence of weak denominators. Following
standard practice, we set c1 = (k1L)

2 and c2 = (k2L)
2,

where L = 2 is the dynamic range of float type data, and
k1 = 0.1, k2 = 0.3.

Dataset Statistics
Mobile Traffic Dataset
Data Collection The measurement data is collected via
traditional flow-level deep packet inspection at the packet
gateway (P-GW). Proprietary traffic classifiers are used to
associate flows to specific services. Due to data protection
and confidentiality constraints, we do not disclose the name
of the operator, the target metropolitan regions, or the de-
tailed operation of the classifiers. For similar reasons, we
cannot name the exact mobile services studied. We show the
anonymized locations of the base stations sets in both cities
in Figure 4.

As a final remark on data collection, we stress that all
measurements were carried out under the supervision of the



Table 3: The configuration of all models considered in this study.

Model Configuration
MLP Five hidden layers, 500 hidden units for each layer

CNN Eleven 2D conv. layers, each applies 108 channels and 3× 3 filters, with batch
normalization and ReLU functions.

3D-CNN Eleven 3D conv. layers, each applies 108 channels and 3× 3× 3 filters, with batch
normalization and ReLUs.

DefCNN Eleven 2D conv. layers, each applies 108 channels and 3× 3 filters, with batch
normalization and ReLU functions. Offsets are predicted by separate conv. layers

PointCNN Eight X -Conv layers, with K, D, P, C=[9, 1, -1, 36]
CloudCNN Eight DConv layers, , with 36 channels and K = 9

LSTM 2-stack Seq2seq LSTM, with 500 hidden units
ConvLSTM 2-stack Seq2seq ConvLSTM, with 36 ch. and 3× 3 filters
PredRNN++ 2-stack Seq2seq PredRNN++, with 36 ch. and 3× 3 filters

STGCN 2-stack STGCN, with 36 channels
PointLSTM 2-stack Seq2seq PointLSTM, with K, D, P, C=[9, 1, -1, 36]
CloudRNN 2-stack Seq2seq CloudRNN, with 36 channels and K = 9
CloudGRU 2-stack Seq2seq CloudGRU, with 36 channels and K = 9

CloudLSTM (K = 3) 2-stack Seq2seq CloudLSTM, with 36 channels and K = 3
CloudLSTM (K = 6) 2-stack Seq2seq CloudLSTM, with 36 channels and K = 6
CloudLSTM (K = 9) 2-stack Seq2seq CloudLSTM, with 36 channels and K = 9
Attention CloudLSTM 2-stack Seq2seq CloudLSTM, with 36 channels, K = 9 and soft attention mechanism

City 1 City 2

Figure 4: The anonymized locations of the base station set in both cities.

competent national privacy agency and in compliance with
applicable regulations. In addition, the dataset we employ for
our study only provides mobile service traffic information
accumulated at the base station level, and does not contain
personal information about individual subscribers. This im-
plies that the dataset is fully anonymized and its use for our
purposes does not raise privacy concerns. Due to a confiden-
tiality agreement with the mobile traffic data owner, the raw
data cannot be made public.

Service Usage Overview As already mentioned, the set of
services S considered in our analysis comprises 38 differ-
ent services. An overview of the fraction of the total traffic
consumed by each service and each category in both cities
throughout the duration of the measurement campaign is in
Figure 5. The left plot confirms the power law previously
observed in the demands generated by individual mobile ser-
vices. Also, streaming is the dominant type of traffic, with
five services ranking among the top ten. This is confirmed in
the right plot, where streaming accounts for almost half of
the total traffic consumption. Web, cloud, social media, and

chat services also consume large fractions of the total mobile
traffic, between 8% and 17%, whereas gaming only accounts
for 0.5% of the demand.

Air Quality dataset
The air quality dataset comprises air quality information
from 43 cities in China, collected by the Urban Computing
Team at Microsoft Research. In total, there are 2,891,393
air quality records from 437 air quality monitoring stations,
gathered over a period of one year. The stations are par-
titioned into two clusters, based on their geographic loca-
tions, as shown in Figure 6. Cluster A has 274 stations, while
Cluster B includes 163. Note that missing data exists in the
records and gaps have been filled through linear interpolation.
The dataset is available at https://www.microsoft.com/en-
us/research/project/urban-air/.

Long-term Mobile Traffic Forecasting
We extend the prediction horizon to up to J = 36 time steps
(i.e., 3 hours) for all RNN-based architectures, and show their
MAE evolution with respect to this horizon in Figure 7. Note



City 1

City 2

Figure 5: Fraction of the total traffic consumed by each mobile service (left) and each service category (right) in the considered set.

that the input length remains unchanged, i.e., 6 time steps.
In city 1, observe that the MAE does not grow significantly
with the prediction step for most models, as the curves flatten.
This means that these models are reliable in terms of long-
term forecasting. As for city 2, we note that low K may lead
to poorer long term performance for CloudLSTM, though
not significant before step 20. This provides a guideline on
choosing K for different forecast lengths required.

Service-wise Evaluation
We dive deeper into the performance of the proposed Atten-
tion CloudLSTMs, by evaluating the forecasting accuracy for
each individual mobile service, averaged over 36 steps. To
this end, we present the MAE evaluation on a service basis
(left) and category basis (right) in Figure 8. Observe that
the attention CloudLSTMs obtain similar performance over
both cities at the service and category level. Jointly analyzing
with Figure 5, we see that services with higher traffic vol-
ume on average (e.g., streaming and cloud) also yield higher
prediction errors. This is because their traffic evolution ex-
hibits more frequent fluctuations, which introduces higher
uncertainty, making the traffic series more difficult to predict.

Long-Term Air Quality Forecasting
We show the MAE for long-term forecasting (72 steps) of air
quality on both city clusters in Figure 9. Generally, the error
grows with time for all models, as expected. Turning attention
to the CloudLSTM with different K, though the performance
of different settings appears similar at the beginning, largerK
can significantly improve the robustness of the CloudLSTM,
as the MAE grows much slower with time when K = 9. This
is consistent with the conclusion made in the mobile traffic
forecasting task.

Training and Inference Times
The average training times per epoch for each dataset are
316, 236, 201 and 168 seconds for DConv and 259, 187,
167, 132 seconds for ConvLSTM. Overall, our CloudLSTMs

incur 18.04%, 20.76%, 16.91% and 21.43% longer training
time than ConvLSTM, while achieving 8.04%, 7.33%, 9.04%
and 9.12% lower MAE for each dataset. A performance-
complexity trade-off clearly exists and the accuracy gains
worth pursuing depend on the specific application; overall,
CloudLSTMs bring noteworthy performance gains at an ac-
ceptable complexity cost. We should also stress that ConvL-
STM requires prior point-cloud to grid mapping, withO(N3)
time complexity: in our use cases, point positions are static,
and this operation needs to be run once; however, the map-
ping has to be performed continuously when the locations of
points change over time (e.g., in crowdsensing applications,
or vehicle fleet systems), making the ConvLSTM cost surge.

In our experiments, the inference time per sample for each
dataset is always below 0.3 seconds, which is negligible com-
pared to the data sampling intervals of the considered datasets,
at 10 and 30 minutes, respectively, and is compatible with
operations on streaming data with order-of-second sampling
intervals.

Results Visualization
Hidden Feature Visualization
We complete the evaluation of the mobile traffic forecasting
task by visualizing the hidden features of the CloudLSTM,
which provide insights into the knowledge learned by the
model. In Figure 10, we show an example of the scatter
distributions of the hidden state in Ht of CloudLSTM and
Attention CloudLSTM at both stacks, along with the first in-
put snapshots. The first 6 columns show the Ht for encoders,
while the rest are for decoders. The input data snapshots
are samples selected from City 2 (260 base stations/points).
Recall that each Ht has 1 value features and 2 coordinate
features for each point, therefore each scatter subplot in Fig-
ure 10 shows the value features (volume represented by dif-
ferent colors) and coordinate features (different locations),
averaged over all channels. Observe that in most subplots,
points with higher values (warm colors) tend to aggregate
into clusters and have higher densities. These clusters ex-



Figure 6: Geographic distribution of 437 air quality monitoring stations in both city clusters. Figures adapted from the readme.pdf file
included with the dataset.
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Figure 7: MAE evolution wrt. prediction horizon achieved by RNN-based models on both cities for mobile traffic forecasting.

hibit gradual changes from higher to lower values, leading
to comet-shape assemblages. This implies that points with
high values also come with tighter spatial correlations, thus
CloudLSTMs learn to aggregate them. This pattern becomes
more obvious in stack 2, as features are extracted at a higher
level, exhibiting more direct spatial correlations with respect
to the output.

Prediction Results Visualization
Lastly, in Figure 11 and 12 and we show a set of NO2 fore-
casting examples in both city cluster A and B considered for
air quality prediction, generated by all RNN-based models,
offering a performance comparison from a purely visual per-
spective. Point-clouds are converted into heat maps using 2D
linear interpolation. The better prediction offered by (Atten-
tion) CloudLSTMs is apparent, as our proposed architectures
capture trends in the point-cloud streams and deliver high
long-term visual fidelity, whereas the performance of other
architectures degrade rapidly in time.

Robustness to Outliers
The DConv uses Sigmoid functions to regularize the coordi-
nate features of each point, such that those points which are

far from others will move closer to each other and be more
involved in the computation. Further, by stacking multiple
DConv via dedicated structure (LSTM), the CloudLSTM has
much stronger representability and therefore allows to refine
the positions of each input point at each time step and each
stack. Eventually, each point can learn to move to the position
where it is best to be and therefore, our model continues to
work well while forecasting with outlier points.

For demonstration, we use the density-based spatial clus-
tering of applications with noise (DBSCAN) to find those
outliers (red points) in both clusters in the air quality dataset,
as shown in Figure 13. For each city cluster, the DBSCAN
algorithm finds 16 outlier points, which are relatively isolated
and far from the point-cloud center. We recompute the MAE
and RMSE performance especially for these outlier points, as
shown in Table 4. Observe that our CloudLSTM still obtains
the lowest prediction error as compared to the other models
considered. Taking a closer look at the CNN-based models,
the CloudCNN, which employs the DConv operator, obtains
the best forecasting performance relative to CNN, 3D-CNN,
DefCNN and PointCNN.

We dive deeper into the robustness of our CloudLSTM to
outliers by conducting experiments under more controlled



0

5

10

15

20

M
AE

11
.8

7
5.

94
1.

54
3.

03
5.

95
0.

34
0.

16
0.

04
0.

06
0.

33
0.

17
5.

54
1.

06
3.

11
0.

23
0.

81
4.

83
3.

07
2.

93
2.

08
23

.2
5

17
.8

8
6.

39
8.

15
2.

44
2.

16
10

.3
7.

57
1.

36
1.

35
1.

36
0.

48
7.

53
6.

93
1.

0
0.

8
0.

08
0.

39

City 1
Cloud
Gaming
Messaging
Social Nets

Streaming
Web
Miscellaneous
Others

0

2

4

6

8

10

5.
67

0.
18

2.
15

3.
23

9.
77

3.
17

0.
63

0.
39

Service
0

5

10

15

20

M
AE

9.
87

5.
82

1.
28

3.
67

7.
15

0.
41

0.
25

0.
06

0.
07

0.
6

0.
2

5.
75

0.
52

2.
94

0.
26

0.
73

5.
39

2.
69

2.
65

1.
92

23
.4

6
16

.8
8

7.
22

7.
77

2.
18

1.
94

10
.9

9
7.

24
1.

44
1.

58
1.

0
0.

56
7.

33
6.

36
1.

2
1.

39
0.

1
0.

5

City 2
Cloud
Gaming
Messaging
Social Nets

Streaming
Web
Miscellaneous
Others

Category
0

2

4

6

8

10

5.
56

0.
26

2.
04

3.
16

9.
71

3.
05

0.
9

0.
5

Figure 8: Mobile service-level MAE evaluation on both cities for the Attention CloudLSTMs, averaged over 36 prediction steps.
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Figure 9: MAE evolution wrt. prediction horizon achieved by RNN-based models on both city clusters for the air quality forecasting.

scenarios. To this end, we randomly selected 50 weather
stations in each city cluster and construct a toy dataset.
Among these weather stations, we randomly pick 10 as
outliers, and move their positions away from the center by
d = {0, 0.5, 1, 5} on both x and y axes. The direction of
movement depends on the quadrant of each outlier. Note that
the original position of each weather station is normalized to
[0, 1], so d = 5 means the point is moved at a distance 5 times
the maximum range of its original position. The positions of
the remaining 40 stations remain unchanged. We show the
positions of each weather stations after moving by different
d for both city clusters in Figures 14 and 15.

We retrain the CloudLSTM and PointLSTM under the
same settings, and show the MAE and RMSE performance of
each in Table 5. Observe that the proposed CloudLSTM per-
forms almost equally well when forecasting over inliers and
outliers, irrespective of the distance to outliers. Importantly,
CloudLSTM achieves significantly better performance over
its counterpart PointLSTM. This further demonstrates our
model is robust to outliers, whose locations appear “lone”.

Further Comparison with Simple Baselines
We further compare our proposal with additional simple base-
lines, which also perform forecasting based on k-nearest
neighbors of each target point. To this end, we construct

MLPs and LSTMs with the structures specified in Table 3,
but with different input form. Specifically, for each point, the
models perform prediction using only the K nearest neigh-
bors’ data, with K from {1, 3, 6, 9, 25, 50, 100}. We show
their performance along with that of our CloudLSTM on the
air quality dataset in Table 6. Observe that our CloudLSTM
significantly outperforms MLPs and LSTMs, which conduct
forecasting only relying on k-nearest neighbors. The number
of neighbors K affects the receptive field of each model. A
small K means the model only relies on limited local spa-
tial dependencies, while global spatial correlations between
points are neglected. In contrast, a large K enables looking
around larger location spaces, while this might lead to overfit-
ting. The results in the table suggest that theK does not affect
the performance of each baseline significantly. Meanwhile
our proposed CloudLSTM, which extracts local spatial de-
pendencies through DConv kernels and merges global spatial
dependency via stacks of time steps and layers, is superior to
these simple baselines.

Augmenting Forecasting with Seasonal
Information

Finally, we notice that seasonal information exists in the mo-
bile traffic series, which can be further exploited to improve
the forecasting performance. However, directly feeding the
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Figure 10: The scatter distributions of the value and coordinate features of the hidden state in Ht for CloudLSTM and Attention CloudLSTM.
Values and coordinates are averaged over all channels.

Table 4: Mean±std of MAE and RMSE across different models, evaluated on outlier points in different city clusters for air quality forecasting.

Model Cluster A Cluster B
MAE RMSE MAE RMSE

MLP 109.85±195.49 136.36±240.77 45.59±20.82 56.72±25.31
CNN 33.04±10.51 42.63±14.49 21.67±2.88 26.53±3.65

3D-CNN 32.36±10.48 41.49±14.73 24.91±3.97 30.82±4.91
DefCNN 33.38±10.13 43.0±14.18 25.72±3.34 33.06±4.26

PointCNN 34.71±10.79 44.56±14.65 24.56±2.88 30.79±3.49
CloudCNN 31.79±10.72 40.52±13.63 15.54±3.54 19.26±4.91

LSTM 27.15±10.08 35.85±14.31 15.62±4.13 19.72±5.5
ConvLSTM 21.57±9.79 28.94±14.16 11.18±3.06 14.5±4.38
PredRNN++ 24.34±9.82 32.78±13.95 12.53±3.55 16.43±4.98
PointLSTM 32.2±11.01 41.39±15.25 21.28±4.16 26.63±5.38

CloudRNN (K = 9) 32.34±8.57 40.17±12.6 15.01±3.98 18.60±5.23
CloudGRU (K = 9) 20.52±9.67 27.49±13.86 9.59±3.01 12.64±4.32

CloudLSTM (K = 3) 18.79±9.44 25.59±13.76 9.04±3.14 11.99±4.45
CloudLSTM (K = 6) 20.3±8.99 27.23±13.12 9.54±3.25 12.55±4.54
CloudLSTM (K = 9) 20.09±9.53 27.24±13.76 9.77±3.35 12.79±4.68

Attention
CloudLSTM (K = 9) 19.79±9.48 26.63±13.66 9.5±3.14 12.49±4.48

model with data spanning multiple days is infeasible, since,
e.g., a 7-day window corresponds to a 2016-long sequence
as input (given that data is sampled every 5 minutes) and it
is very difficult for RNN-based models to handle such long
sequences. In addition, by considering the number of mobile
services (38) and base stations (792), the input for 7 days
would have 60,673,536 data points. This would make any
forecasting model extremely large and therefore impractical
for real deployment.

To capture seasonal information more efficiently, we con-
catenate the 30 minute-long sequences (sampled every 5
minutes) with a sub-sampled 7-day window (sampled every
2h). This forms an input with length 90 (6 + 84). We conduct
experiments on a randomly selected subset (100 base stations)
of the mobile traffic dataset (City 1), and show the forecasting
performance without and with seasonal information (7-day
window) in Table 7. By incorporating the seasonal informa-
tion, the performance of most forecasting models is boosted.
This indicates that the periodic information is learnt by the
model, which helps reduce the prediction errors. However,
the concatenation increases the length of the input, which

also increases the model complexity. Future work will focus
on a more efficient way to fuse the seasonal information, with
marginal increase in complexity.
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Figure 11: NO2 forecasting examples in City Cluster A generated by all RNN-based models.

Table 5: The mean±std of MAE and RMSE across CloudLSTM (K = 9) and PointLSTM, evaluated on inliers and outliers of two sub-datasets
collected in different city clusters for air quality forecasting.

Model d
Cluster A Cluster B

MAE RMSE MAE RMSE
Inliers Outliers Inliers Outliers Inliers Outliers Inliers Outliers

CloudLSTM

0 22.16±7.28 20.39±9.61 29.53±9.39 28.55±8.76 9.78±5.63 9.06±4.11 13.10±3.76 13.28±4.56
0.5 22.75±7.29 20.5±8.66 29.16±9.44 28.80±7.25 10.07±5.50 9.35±4.75 13.49±3.63 13.59±4.13
1 22.4±7.30 19.98±9.53 29.04±9.58 28.41±8.36 10.03±5.40 9.21±4.53 13.33±3.26 13.56±4.92
5 21.98±7.31 19.5±9.78 28.63±9.52 28.2±8.73 9.34±5.52 9.64±4.66 12.51±3.63 12.69±4.06

PointLSTM

0 40.72±20.01 40.06±18.35 58.68±34.19 58.30±31.69 20.08±10.39 18.72±8.33 28.38±14.67 27.12±13.22
0.5 38.45±17.17 39.18±16.64 55.32±31.25 57.48±30.06 19.97±9.53 19.49±6.98 28.16±13.69 27.88±10.84
1 38.08±17.5 36.51±17.05 54.85±31.74 54.1±31.48 19.29±9.65 18.40±7.35 27.38±13.86 26.84±12.1
5 36.4±16.70 39.13±16.93 52.55±30.82 56.81±29.82 17.49±7.56 20.34±9.34 25.05±11.03 29.35±13.67

Table 6: The mean±std of MAE, RMSE, PSNR, and SSIM across k-nearest neighbors baseline models and our CloudLSTM, evaluated on two
datasets collected in different city clusters for air quality forecasting.

Model Cluster A Cluster B
MAE RMSE PSNR SSIM MAE RMSE PSNR SSIM

MLP (K = 1) 31.28±7.29 38.72±9.68 29.95±2.28 0.48±0.11 14.33±2.06 17.77±2.78 32.20±1.33 0.61±0.06
MLP (K = 3) 29.12±7.33 38.36±9.42 30.17±2.26 0.46±0.10 15.35±2.12 19.20±2.28 31.16±1.11 0.59±0.06
MLP (K = 6) 29.53±7.24 38.35±10.01 30.06±2.52 0.45±0.12 16.73±2.22 20.99±2.31 30.66±1.01 0.58±0.05
MLP (K = 9) 29.73±7.94 38.62±11.12 30.15±2.72 0.40±0.10 18.73±2.40 21.98±2.64 30.23±1.09 0.58±0.06

MLP (K = 25) 31.59±7.63 40.34±11.39 29.82±2.54 0.30±0.09 18.93±2.47 22.98±3.25 30.37±1.31 0.22±0.04
MLP (K = 50) 30.5±8.02 39.02±10.72 30.07±2.60 0.29±0.12 14.62±2.44 18.3±3.37 32.39±1.55 0.54±0.07

MLP (K = 100) 30.39±8.55 38.99±11.53 30.1±2.78 0.26±0.13 14.27±3.32 18.65±4.13 32.32±1.95 0.39±0.05
LSTM (K = 1) 24.31±7.52 32.52±10.65 31.67±3.02 0.53±0.10 11.47±2.91 15.50±3.89 34.51±2.45 0.67±0.07
LSTM (K = 3) 24.33±7.51 32.46±10.57 31.54±3.13 0.53±0.10 11.46±2.94 15.45±3.96 34.55±3.44 0.65±0.08
LSTM (K = 6) 24.66±7.77 32.97±10.61 31.49±2.79 0.53±0.10 11.52±2.89 15.46±4.13 34.50±2.47 0.64±0.07
LSTM (K = 9) 24.89±7.68 33.07±10.64 31.55±2.98 0.52±0.10 11.59±3.00 15.77±4.09 34.40±2.52 0.62±0.07

LSTM (K = 25) 25.46±7.91 33.8±10.99 31.33±3.04 0.50±0.10 11.58±3.06 15.74±4.12 34.47±2.56 0.60±0.06
LSTM (K = 50) 25.68±7.87 33.98±10.91 31.27±2.97 0.48±0.10 11.72±3.26 15.81±4.28 34.48±2.67 0.59±0.06

LSTM (K = 100) 25.57±8.73 34.53±11.87 31.17±3.17 0.44±0.09 11.37±2.82 15.47±3.76 33.97±2.22 0.55±0.05
CloudLSTM (K = 3) 20.84±7.88 29.16±11.06 32.64±3.40 0.57±0.10 9.12±2.75 12.95±3.72 35.59±2.62 0.69±0.07
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Figure 12: NO2 forecasting examples in Cluster B generated by the RNN-based models.
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Figure 13: Clustering results in the two city clusters using DBSCAN.
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Figure 14: Positions of weather stations after moving outliers towards the edge with different distances d in city cluster A.
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Figure 15: Positions of weather stations after moving outliers towards the edge with different distances d in city cluster B.

Table 7: The mean±std of MAE and RMSE across all models considered without/with seasonal information, evaluated on a subset of base
stations in City 1 for mobile traffic forecasting.

Model 30 Minutes Window 30 Minutes + 7 Days Window
MAE RMSE MAE RMSE

MLP 4.86±0.51 10.30±2.52 4.93±0.53 11.30±2.2
CNN 6.10±0.59 11.12±2.04 5.98±0.60 10.52±2.11

3D-CNN 5.01±0.51 9.89±2.54 4.82±0.54 9.49±2.36
DefCNN 6.79±0.89 11.92±2.47 6.40±0.83 11.55±2.33

PointCNN 5.01±0.55 10.22±2.40 4.88±0.51 9.86±2.31
CloudCNN 4.79±0.53 9.94±2.75 4.63±0.50 9.57±2.66

LSTM 4.24±0.64 9.67±3.23 4.04±0.67 9.28±3.03
ConvLSTM 4.10±1.61 9.28±3.11 3.82±1.54 8.87±3.00
PredRNN++ 3.94±1.62 9.31±3.10 3.61±1.55 8.95±2.92
PointLSTM 4.63±0.41 9.44±2.46 4.44±0.41 9.00±2.32

CloudRNN (K = 9) 4.14±1.67 9.18±3.13 3.99±1.62 8.88±2.93
CloudGRU (K = 9) 3.77±1.58 8.95±3.08 3.42±1.53 8.53±2.88

CloudLSTM (K = 3) 3.69±1.61 8.83±3.09 3.38±1.57 8.40±2.86
CloudLSTM (K = 6) 3.68±1.60 8.87±3.10 3.39±1.54 8.43±2.76
CloudLSTM (K = 9) 3.69±1.61 8.86±3.12 3.40±1.56 8.46±2.77

Attention
CloudLSTM (K = 9) 3.60±1.59 8.77±3.06 3.22±1.55 8.36±2.66


