
Spider: Deep Learning-driven Sparse Mobile Traffic
Measurement Collection and Reconstruction
Yini Fang

School of Informatics
University of Edinburgh, UK

yini.fang@ed.ac.uk

Alec F. Diallo
School of Informatics

University of Edinburgh, UK
alec.frenn@ed.ac.uk

Chaoyun Zhang
Lightspeed & Quantum Studios

Tencent, China
vyokkyzhang@tencent.com

Paul Patras
School of Informatics

University of Edinburgh, UK
paul.patras@ed.ac.uk

Abstract—Data-driven mobile network management hinges on
accurate traffic measurements, which routinely require expensive
specialized equipment and substantial local storage capabilities,
and bear high data transfer overheads. To overcome these
challenges, in this paper we propose Spider, a deep-learning-
driven mobile traffic measurement collection and reconstruction
framework, which reduces the cost of data collection while
retaining state-of-the-art accuracy in inferring mobile traffic
consumption with fine geographic granularity. Spider harnesses
Reinforcement Learning and tackles large action spaces to train
a policy network that selectively samples a minimal number
of cells where data should be collected. We further introduce
a fast and accurate neural model that extracts spatiotemporal
correlations from historical data to reconstruct network-wide
traffic consumption based on sparse measurements. Experiments
we conduct with a real-world mobile traffic dataset demonstrate
that Spider samples 48% fewer cells as compared to several
benchmarks considered, and yields up to 67% lower reconstruc-
tion errors than state-of-the-art interpolation methods. Moreover,
our framework can adapt to previously unseen traffic patterns.

I. INTRODUCTION

Mobile traffic consumption continues to grow sharply and,
as 5G is rolled out, the volume of data traffic per month
globally is expected to hit a staggering 226 exabytes milestone
by 2026 [1]. In this context, network visibility is becoming
critical to the management of resources and to assuring net-
work performance. Data-driven network management hinges
on accurate traffic measurements [2] collected by dedicated
probes that are deployed, e.g., at Packet Gateways (PGWs) [3].
Yet processing vast amounts of data in a scalable and timely
fashion is ever more challenging, as it involves substantial
local storage, heavy overhead in transferring detailed logs to
central locations for analysis, data filtering by scope (e.g.,
cell ID, session start/end time, traffic volume/type, etc.) to
serve specific use cases [4], and it relies on high-performance
computing platforms to extract essential insights. Therefore
mobile operators urgently need more cost-effective alternative
solutions for traffic monitoring and analysis.

Adaptive sampling and compressed sensing have been em-
ployed to simplify the network traffic characterization task,
whereby only a subset of data collection points are activated
and/or monitoring is performed during sparse intervals. Com-
plete network traffic snapshots are subsequently reconstructed
via interpolation [5]–[7]. Although such methods adjust the
sampling frequency based on previously measured network

activity, sampling locations are routinely selected at random,
which (i) overlooks important spatiotemporal correlations spe-
cific to mobile traffic, leading to inaccurate reconstruction;
and (ii) such myopic view leaves room for sampling overhead
reduction, without sacrificing interpolation fidelity.

More recently, neural network models have been proposed
to predict data traffic demand in large coverage areas when
only incomplete measurements are available [8], or to perform
mobile traffic super-resolution, i.e., infer traffic consumption
with fine geographic granularity, based only on coarse ag-
gregate measurements [9]. Although these approaches obtain
good-quality interpolations by harnessing the exceptional ab-
stract feature extraction abilities of deep learning, they are
built on the premise that the measurement collection points are
fixed. In practice, mobile operators need intelligent strategies
to instrument dynamic measurement collection campaigns
using virtual probe modules that can be instantiated as needed.

In this paper, we propose Spider, a deep learning-driven mo-
bile traffic measurement collection and reconstruction frame-
work for infrastructure-level data. Spider relies on a dedicated
neural network that we train to selectively sample small
subsets of target mobile coverage areas. It then employs
a purpose-built mobile traffic reconstruction neural model,
which exploits spatiotemporal correlations in historical data, to
infer mobile traffic consumption across the entire deployment.
Our framework reduces dramatically the cost of data collection
while retaining high traffic consumption inference accuracy. In
summary, we make the following key contributions:
(1) We introduce a policy network that takes as input sparse

historical traffic snapshots and outputs cell selection matri-
ces indicating at which locations to activate measurement
collection, so as to minimize overhead while acquiring
enough data to ensure high-quality traffic consumption
interpolations at all non-sampled cells. We take a Deep
Reinforcement Learning (DRL) approach to produce ex-
amples for training this policy network. Given the large
action space, our DRL agent learns in a tractable manner
by sampling small subsets of the action space based on
the most likely action and its nearest neighbors. The
highest valued action from such subsets is then selected,
circumventing the need to evaluate the entire action space.

(2) We propose MTRNet, a deep neural network specifically
tailored to mobile traffic reconstruction from sparse traffic

measurements. MTRNet outperforms existing methods in
terms of accuracy (up to 67% lower MAE) and recon-
struction speed (up to 835� runtime reduction).

(3) We evaluate our Spider framework using a real-world mo-
bile traffic dataset collected by a major European operator,
showing that our solution learns to effectively reconstruct
complete traffic matrices from sparse samples, even when
applied to previously unseen traffic patterns such as those
observed during holidays. On average, Spider accurately
reconstructs city-scale traffic snapshots with up to 48%
fewer samples than a range of benchmarks considered.

II. PROBLEM FORMULATION

Consider a mobile network coverage area that is geographi-
cally partitioned into a grid with X�Y squares (cells), where
a square denotes an atomic region for mobile traffic collection.
We denote by Ft the traffic consumption snapshot across all
cells, observed over an interval [t��; t], i.e.,

Ft =

26664
dt1;1 dt1;2 : : : dt1;Y
dt2;1 dt2;2 : : : dt2;Y

...
...

. . .
...

dtY;1 dtY;2 : : : dtX;Y

37775 ;
where dti;j is the volume of traffic at cell (i; j), and � is
the time granularity configurable by a network administrator,
with which traffic measurement equipment (probes) compute
summaries of the volume of traffic observed at different
locations. A mobile network operator will need a sampling
strategy that gives a binary selection matrix Bt indicating
which cells are to be selected for measurement collection
at time t, i.e., bti;j = 1, if cell (i; j) is selected; bti;j = 0,
otherwise; and subsequently use the measurements collected
to infer the traffic consumption across the entire deployment.
A selection matrix produces a sparse measurement matrix Mt

of a network traffic snapshot Ft, i.e.
Mt = Ft �Bt;

where � is the Hadamard product. Let Mt = [Mt�T ; :::;Mt]
denote the sparse measurement matrices collected over T
recent timestamps, and F̂t the reconstruction of Ft given Mt.

The problem we seek to solve is thus twofold: (i) finding
a policy g(�) that outputs cell selection matrices eBt = g(Mt),
which contain minimum numbers of elements bti;j set to 1, so
that the error of reconstructing Ft using those measurements
collected is below a predefined threshold �, by using (ii) a data
interpolation algorithm f(�). Formally,eBt := arg min

Bt

X
i;j

bti;j ; (1)

s.t. MAE(F̂t; Ft) < �; (2)

F̂t = f(Mt): (3)
In the above MAE is the Mean Absolute Error, i.e.,

MAE(F̂t; Ft) =
1

X � Y
X
i;j

jd̂ti;j � dti;j j: (4)

We solve this problem using a set of purpose-built deep
neural network models as we explain next.

Fig. 1: Proposed Spider framework: sparse mobile traffic
snapshots used by a policy network to select optimal cells
where to collect measurements; a dedicated reconstruction
neural model outputs completed network traffic snapshot.

III. MOBILE TRAFFIC MEASUREMENT COLLECTION AND
RECONSTRUCTION FRAMEWORK

To solve the problem defined by (1)–(3), we propose Spider,
an original mobile network traffic measurement collection and
reconstruction framework that (i) predicts a small number
of optimal locations where traffic should be sampled, and
(ii) learns to infer the volume of traffic at locations not
selected, so as to reconstruct complete snapshots of the traffic
consumption across an entire network deployment. We give a
diagramatic view of our approach in Fig. 1. We design original
neural models that harness the unique characteristics of mobile
traffic to solve both of these tasks.

A. RL for Cell Selection with Large Action Spaces

To collect measurements with minimum sampling overhead,
we first leverage Reinforcement Learning (RL) and train an
agent that learns the likelihood of selecting a cell where to
sample traffic, based on past experience. We subsequently
use this agent to train a policy network that directly outputs
optimal cell selection matrices, given prior observations, and
thus is suitable for real-time decision making.

We start by regarding cell selection as an episodic task,
which can be modelled as a Markov Decision Process (MDP),
M := (S;A; P; r;), where
� S is the set of states si, in our case a state repre-

senting a collection of sparse measurement matrices of
the past T network traffic snapshots, i.e., si = Mi

t =
[Mt�T ; :::;M

i�1
t], with M i�1

t denoting the sparse mea-
surement matrix at iteration i� 1 of an episode t;

� A is the set of possible actions, where an action ai corre-
sponds to sampling one of all the previously unselected
cells at timestamp t, from which the agent can choose;

� P (s; a; s0) is the probability that action a in state s will
lead to next state s0;

� r(s; a; s0) is the reward the agent receives as a con-
sequence of choosing action a when in state s; we
work with r(s; a; s0) = �MAE(f(s0); Ft) to incentivize
the agent to take actions that reduce the reconstruction
error; while a range of methods f(�) can be employed
for reconstruction, including compressive sensing or K-
Nearest Neighbour-based interpolation, our Spider frame-
work evaluates how good an action is using a pre-

Fig. 2: Structure of the DRL agent. The pseudo action given
by the neural network is used to generate a set of potential
candidates that, when evaluated by MTRNet, allows the agent
to select the action that minimizes the reconstruction error.

trained Mobile Traffic Reconstruction neural Network
(MTRNet), which we detail in Sec. III-B.

� 2 [0; 1] is the discount rate – an agent’s objective is
to maximize a cumulative reward it receives (expected
return), i.e. the sum of discounted rewards rk�1 over
k iterations; we work with = 0, meaning that at each
iteration we seek to maximize the immediate return.

We consider a cell selection episode t to be completed at an
iteration I when the inference error is less than a predefined
reconstruction quality threshold.

With traditional DRL, finding a policy that maps from states
to probabilities of choosing an action in a large action space
such as city-scale mobile network deployments comprising
thousands of cells would require massive amounts of memory.
Further, exploring the action space exhaustively, until sufficient
cells are selected to yield usable reconstructed traffic snap-
shots, would involve impractically large runtimes. To address
these issues, we design a DRL agent based on a neural network
architecture to model the policy function, which we train
using an efficient algorithm that only evaluates a subset of
potentially good actions from the whole action space, among
which the best action is selected following evaluation. As such
the agent will first output a pseudo action â, which is used
to generate a subset of k potential actions by finding the K-
Nearest Neighbors of â in A based on ‘2 distance, i.e.,

A0k = knn(â) =
k

arg min
a2A

jja� âjj2;

because the spatial correlation between two cells is related
to their distance. To explore previously unseen actions, the
generated subset A0k is expanded with � randomly selected
actions rand�(A0k) not already in A0k, where � is given by an
exponentially decaying function, i.e.

A0 := A0k�� + rand�(A0k��);

where � = bk(0:1 + 0:9=ex)e and x is the number of training
episodes completed. This approach reduces both memory
requirements and execution time by constraining the search
space, and favors exploration at the beginning, when 100% of
the actions are chosen randomly.

We illustrate the DRL agent’s structure in Fig. 2 and present
the training process in Algorithm 1. The agent takes as input
the sparse measurements snapshot M i�1

t built up to the current

Algorithm 1: Training the RL agent
1 Input: Pre-trained MTRNet f(), environment E, the number

of epochs ne, the number of snapshots in training data ns,
the number of historical snapshots used T ;

2 Initialize the neural network p();
3 for epoch← 1 to ne do
4 Initialize E;
5 for t← T + 1 to ns do
6 while episode not finished do
7 Get current state si = [Mt−T , ...,M

i−1
t],

previously selected actions A, and the ground
truth snapshot Ft from E for the current
iteration i;

8 Generate subset A′ from A and p(M i−1
t , t, A) ;

9 e = {};
10 for a in A′ do
11 Get sj by applying a to si;
12 ej = MAE(f(sj), Ft);
13 Push ej to e;
14 end
15 a′ = argmin

a∈A′
(e) ;

16 Apply action a′ to E;
17 Loss = ‖p(M i−1

t , t,A)− a′)‖22 ;
18 Use Loss to update p() by gradient descent;
19 end
20 end
21 end

iteration i, the list of cells selected so far, and the time t.
From the sparse measurements matrix, the neural network
first extracts feature maps using 2D convolution layers, with
a sum pooling layer applied between them to summarize
these feature maps without diluting the active features. This
enables faster learning of the traffic patterns observed within
a geographical window. The resulting features are then fed
to a 2D convolution layer to reduce the size of the aggregate
feature map, such that each feature’s magnitude is of the same
scale as the time and previous actions. Two fully connected
layers then process the aggregate feature map, along with
the time and the previous actions, to predict the next action.
Based on this value, the agent generates a set of potential
candidates to be evaluated by MTRNet (Algorithm 1, lines
10–14), and the candidate yielding the smallest reconstruction
error is chosen by the agent as next action (line 15). Finally, the
neural network learns to improve its predictions by updating
its weights based on gradients of the Mean Squared Error
loss between the predicted (pseudo) action and the chosen
candidate (lines 17–18). For any given snapshot, this process is
repeated until the reconstruction error is less than a predefined
reconstruction quality threshold.

In choosing this threshold we seek a trade-off between
achieving low reconstruction errors and selecting a small
number of cells. To find an appropriate quality threshold
we examine the MAE reduction as a function of (random)
cell sampling rates and observe that MAE decreases only
marginally beyond 35% sampling rates. Hence we work with
this value as the quality threshold.

When predicting the pseudo action, the agent only con-
siders the current snapshot instead of the current state. This

is because in choosing actions one by one, only one value
in a matrix changes from zero to the measurement between
two consecutive states, which would make the collected value
less important in the input, wrt. historical data. Although the
previous experience is not seen in the pseudo action prediction,
MTRNet evaluates an action given the full state as the input,
whereby temporal correlations are captured.

B. Traffic Reconstruction from Sparse Measurements

We perform traffic measurement reconstruction using a
supervised learning approach. The proposed Mobile Traffic
Reconstruction neural Network (MTRNet) takes as input the
sparse measurement matrices for the current (t-th) and previ-
ous T timestamps, i.e., [Mt�T ; :::;Mt], and outputs the traffic
consumption of the full map F̂t at the current timestamp.

The model architecture is shown in Fig. 3. We draw in-
spiration from ZipNet [9], a mobile traffic super-resolution
technique that infers fine-grained traffic consumption from
coarse measurements. The original ZipNet was modified in
order to reduce the size of the model and improve its inference
speed. Specifically, since in our setting the size of sparse
measurement matrices is the same as the size of the output,
we discard upscaling blocks. Further ablation study allows us
to reduce the number of layers of the model (depth) while
retaining high accuracy. The resulting MTRNet comprises
three key components:

� Correlations capturing. A 3D convolutional layer is used
to capture spatiotemporal correlations between recent snap-
shots. The activation layer is a Leaky-ReLU (LReLU) that
improves the model’s non-linearity and its robustness to
network initialization. LReLU is defined by:

LReLU(x) =

�
x; x > 0
�x; x < 0

;

where � is a configurable slope value. A SumPooling layer
is applied after LReLU to reduce the size of the feature
maps and speed up the training.

� Feature extraction. Several 2D Convolutional layers fol-
lowed by a LReLU extract high level abstract features
from the geographical configuration of the measured traf-
fic, thereby enhancing the representability of the model.
Staggered skip connections link every two blocks, and a
global skip connection links the input and output of this
component. These skip connections hierarchically preserve
different features extracted from previous layers, enabling
feature reusability and stabilizing training and convergence.

� Feature summarization. To maximize the probability of
capturing all relevant combinations of abstract features
extracted by the previous component, the first two layers
of the feature summarization block gradually increase the
number of convolution filters (or kernels). Subsequently,
the resulting feature maps are merged by a third and last
convolution layer to provide a faithful reconstruction of the
complete traffic snapshot, which represents the final output
of our proposed MTRNet.

Fig. 3: MTRNet structure comprising correlations capturing,
feature extraction & summarization functionality. Traffic snap-
shots reconstructed based on historical sparse measurements.

C. Policy Network

Since RL agents typically evaluate one action at a time,
they are often impractical to deploy in settings where decisions
have to be made within short deadlines. Therefore, we design
a policy network that predicts all optimal cell locations to be
sampled, Bt = g(Mt), at once. This policy network (g) takes
historical sparse measurement snapshots as input and learns
to predict binary selection matrices generated by the agent
introduced in Sec. III-A at the end of each episode.

This neural network effectively solves a multi-label classifi-
cation task where positive labels represent cells to be selected
and negative labels indicate non-selected squares. The model
architecture is similar to that of MTRNet, though here a
final Sigmoid layer transforms the outputs into probability
scores and we assign positive labels to those selection matrix
elements where the probability is above 0.5, and negative to
all others. As the cell selection frequencies are likely to be
skewed, the probabilities are normalized to the range [0; 1]
before the binarization process.

We use a Binary Cross-entropy (BCE) loss function to
train this neural model, which is defined by BCE =
� 1
N

PN
i=0 yi log(ŷi)+(1�yi) log(1�ŷi), where yi is the value

in the binary selection matrix, and ŷi is the output probability
score. N denotes the total number of elements (cells).

IV. EVALUATION

In this section we evaluate the performance of our Spider
framework in terms of the number of cells sampled for mobile
traffic visibility, and measurement reconstruction error.

We use a compute cluster comprising 20+ nodes, each
equipped with 1-2 NVIDIA TITAN X GPUs (2280 cores) to
train the neural models. We implement Spider in Python using
the PyTorch library, and train on 2 GPU nodes in parallel for
2 epochs, spending 9.6 hours on each GPU. The number of
historical snapshot T is 6. For all the models, we employ the
Adam optimizer with learning rate � = 10�4 and use 128 as
the batch size. For MTRNet, the number of previous actions
is 20 and the number of 2D Convolutional layers is 5.

A. Dataset

For evaluation we adopt a real-world mobile traffic dataset
collected by Telecom Italia in the city of Milan [10]. The
city is divided into 100�100 squares of 0.055 km2. Mobile
data traffic measurements were collected on aggregate at
these locations every 10 minutes between 01/10/2013 and

Fig. 4: Number of cells selected for measurement collection by Spider and benchmarks, over one week (data representative
for 16–22 Dec 2013). Average volume of traffic also plotted to highlight Spider’s ability to adapt to changing patterns.

TABLE I: Performance comparison between Spider and cell
selection baselines, in terms of number of cells sampled and
resulting NMAE following MTRNet-based reconstruction.

Interval
Random cell
selection

Historical data-
based selection Spider

Count NMAE Count NMAE Count NMAE
Peak 4,737 0.06 4,185 0.04 2,643 0.08
Off-peak 3,610 0.09 2,472 0.10 1,814 0.12
Weekdays 4,116 0.08 3,142 0.07 2,378 0.09
Weekend 3,838 0.08 3,033 0.07 2,237 0.09
Holiday 4,049 0.07 3,129 0.08 1,906 0.11
Overall 4,039 0.08 3,122 0.08 2,109 0.10

01/01/2014 (3 months). We use 40 days worth of data to train
the models, and 20 days for testing. We normalize the traffic
consumption and work with ~x = log(1+x)=�x, where x is the
traffic consumption and �x is the mean of log(1 + x).

B. Measurement Collection

We first examine Spider’s performance in terms of the
average number of cells selected for measurement collection
versus (1) a random selection strategy that chooses randomly
which cells to sample, with their number being the average
at any time of the day during different days of the week that
yields reconstruction errors below the predefined threshold,
as observed across the dataset used for training our agent;
and (2) a strategy that chooses the most frequently selected
cells based on past selection patterns. This frequency matrix
is generated by averaging binary selection matrices obtained
during training for the same time of the day and day of the
week. To put things into perspective, we also compute the
Normalised Mean Absolute Error (NMAE) obtained with our
MTRNet when each of these strategies are employed.

We summarise the performances of Spider against the base-
lines considered in Table I, comparing NMAE and sampled
cell count (rounded to the nearest integer) at peak and off-peak
hours during a day, respectively during weekdays, weekends,
and public holidays. Overall, Spider samples 48.0% fewer
cell than the random selection strategy and 32.4% fewer
than the selection approach based on historical data, at
a negligible cost in terms of additional reconstruction error
introduced relative to the average volume of traffic (NMAE).

We illustrate Spider’s behavior and that of the benchmarks
considered over an entire week (Monday to Sunday) using
traffic from the testing set (red line) in Fig. 4. Observe
that Spider captures accurately the changes in traffic demand
and samples cells for measurement collection accordingly.

Fig. 5: Number of cells sampled by Spider and the benchmarks
considered, during Christmas holidays.

Fig. 6: Cell selection frequency. From left to right: historical
data-based selection in off-peak, peak; Spider off-peak, peak.

While the historical data-based approach is able to distinguish
between different times of the day and days of the week,
it clearly over-samples, thus incurring higher measurement
collection overhead. This is even more noticeable when cells
are sampled randomly and with the only goal of meeting the
quality threshold.

The superior performance of Spider is further emphasized
in Fig. 5 where our framework is applied for measurement
collection during the Christmas holidays, when traffic demand
decreases below typical daily averages. Spider is able to adapt
to previously unseen traffic patterns and distinguishes between
holidays taking place on weekdays, and normal weekdays. Pre-
cisely, it selects 19.8% fewer cells on this occasion. In contrast,
random and historical data-based selection approaches fail to
adapt to such circumstances.

We delve deeper into which cells are selected by Spider,
showing in Fig. 6 (right) their selection frequency at peak
(7AM–7PM) and off-peak (7PM–7AM) times during week-
days, juxtaposed with the behavior of the historical data-based
approach (left). Observe that Spider focuses more on the city
center where the traffic demand is relatively larger, expanding
sampling coverage at peak time.

Finally, we note that directly predicting a selection matrix
by Spider’s policy network takes 7 milliseconds on average,
whereas predicting the next best action by the RL agent would
have taken 2 seconds. Thus our approach is 284 times faster
and suitable for operational settings.

