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Abstract—Despite driving record performance, the increasing
reliance of deep learning on ever-larger datasets has led to
prohibitively high storage and management costs that threaten
continued progress. While coreset selection offers a promising
solution to this challenge, existing methods often rely on expensive
iterative optimization procedures or fail to select samples that
allow strong generalization across tasks. In this work, we introduce
ECHO, a coreset construction and augmentation strategy that
leverages the relational properties inherent to a dataset to find its
most representative samples. Unlike prior methods, our approach
constructs a structured graph that encodes intrinsic dataset
patterns, based on which influential samples are identified and
augmented to maximize generalization performance. Extensive
experiments across five benchmark datasets and against eighteen
different coreset selection baselines show that ECHO achieves
up to 60% accuracy gains under extreme compression, while
being orders of magnitude faster than state-of-the-art alternatives.
These results establish a new benchmark for data-efficient learning,
particularly under tight coreset budgets, and showcase the benefits
of structured coreset selection for effective generalization.

Index Terms—Geometric Coreset Selection, Data Efficiency,
Training Optimization, Machine Learning.

I. INTRODUCTION

In recent years, Deep Learning (DL) has revolutionized the
field of artificial intelligence, enabling substantial breakthroughs
in various domains such as image recognition, natural language
processing, and autonomous driving [[1]-[3]]. This success
predominantly arises from the ability of neural networks to
learn complex patterns from vast quantities of data [4]], driving
advancements in hardware and algorithm designs to cope with
the associated increase in computational demands [5]. Further,
this continued and growing reliance of DL on large volumes of
data presents major challenges in terms of storage requirements,
scalability, and training time, posing barriers to adoption in
environments with constrained processing capabilities, such
as in startups and non-profit organizations [[6]. Consequently,
beyond the well-documented challenges of costly data labeling
and annotation [7]], there is a pressing need for innovative
strategies that minimize the required amount of training data
without compromising model performance.

Coreset selection has emerged as a promising and increas-
ingly necessary technique for addressing these challenges [8]],
[O. A coreset, defined as a representative subset of a dataset,
aims to approximate the full dataset with much fewer samples,
effectively reducing the computational burden while retaining
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the accuracy and generalizability of models trained on the
full dataset [10]. Despite this potential, existing coreset
selection methods face several limitations: they often fail to
capture diverse, rare, or boundary samples that are critical for
generalization; depend on labels, training dynamics, gradients,
or external (pre-trained) models that may be unavailable or sub-
optimal; require prior knowledge of specific downstream tasks;
or assume static data distributions, leaving them ill-suited to
streaming or evolving data [11]]. These limitations significantly
restrict the practical utility of these methods, especially when
downstream tasks are unknown or when sample importance
estimates misalign with the downstream objectives.

In this paper, we introduce ECHO (Effective Coreset-
driven Hierarchical Optimization), a novel coreset selection
method that harnesses the geometric and relational properties
inherent to datasets. Unlike traditional methods that rely
on statistical or random sampling strategies, our approach
examines the structural composition of the dataset, identifying
and preserving its most significant patterns and variabilities.
Specifically, through the use of Proximally-Connected (PC)
Graphs [12] (which abstractly represent datasets only in terms
of relationships between their closest or most similar data
points), we first partition the data into locality-aware regions
and, within each region, select the most influential samples
based on their spatial relationships.

To maximize sample diversity while keeping computational
costs in check, our approach augments each coreset with a
support graph, whereby every node is attributed its top-k
support vectors, i.e., the samples farthest from that node’s center.
These support vectors act as anchors that span the extremal
geometry of each node’s neighborhood, which are often
underrepresented or ignored in traditional coreset selection
methods. By prioritizing boundary refinement, our approach
ensures maximal coreset diversity and informativeness, thereby
preserving the robust generalization of the models.

As illustrated in Figure [T} our proposed approach requires
no task-specific knowledge, rendering it universally applicable
and highly adaptable to diverse learning problems. By focusing
on intrinsic data structure and explicitly modeling extreme
variations, ECHO produces coresets that faithfully capture the
essence of the original dataset, enabling effective downstream
training even in small-data regimes. To the best of our
knowledge, ECHO is the first approach to explicitly leverage
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Fig. 1: Structural Coreset Selection and Augmentation with ECHO. From the initial dataset, low-dimensional embeddings
are generated via Geometric Projection using an encoder network, enabling the construction of Proximally-Connected Graphs
that encode structural relationships. Within each graph node (a grid cell containing nearby embeddings), a probability assignment
heat-map is computed to prioritize central representatives, while simultaneously the top-k support vectors (samples farthest from
the node center) are identified as extremal anchors. Iterating through each node of the graph, starting from those with highest
degree centrality to capture densely connected regions first, we preserve both core and boundary-defining information, maximizing
diversity and faithfully capturing the dataset’s decision boundaries under strict computational and memory constraints.

hierarchical structural augmentations to systematically refine
decision boundaries, allowing simultaneous optimization of
sample diversity and computational efficiency. By strategically
capturing boundary-defining samples that significantly influence
model decision-making, our approach sets a new standard for
coreset representativeness and generalization capability, over-
coming the fundamental limitations that have long constrained
(and still constrain) existing methods.

In summary, our main contributions are as follows:

« Structural selection: We propose a universally applicable
coreset selection method that preserves the structural
integrity of datasets by leveraging their geometric and
relational characteristics, eliminating the need for task-
specific information or external (pre-trained) models.

« Structural augmentation: We introduce support graphs,
attributing to each node its top-k extremal anchors, explic-
itly refining decision boundaries. This strategy maximizes
sample diversity while tightly controlling computational
and memory requirements, ensuring minimal performance
degradation relative to training with the full dataset.

« Empirical validation: We comprehensively evaluate
ECHO across five benchmark datasets against eighteen
state-of-the-art coreset selection baselines, demonstrating
up to 60% accuracy gains under extreme coreset budgets,
while requiring orders of magnitude less computation time.

II. RELATED WORK

The challenge of efficient data selection has inspired a broad
spectrum of coreset selection and data pruning strategies, each
balancing representativeness, informativeness, and scalability.

Early representation and diversity-based methods, such
as Herding [13]], k-Center Greedy [[14], and submodular
maximization frameworks including Fass [15]], Similar [16],
and Prism [17]], focus on maximizing coverage or minimizing
redundancy in feature space. Recent advances incorporate Con-
textual Diversity (CD) [|18]] and geometric-proxy objectives [10],
[11] to better capture the manifold’s structure, while gradient-
matching variants such as CRAIG [[11]] and GradMatch [[19]]
explicitly align the optimization path of the coreset with that
of the full dataset. Though effective in dense regions, these
methods typically still neglect extremal or rare samples critical
to decision boundaries, and can be computationally burdensome
when extended to high-resolution or large-scale datasets.

Training-dynamics methods, drawing on active learning
and model-aware selection, evaluate the influence of individual
samples on learning outcomes. Classic uncertainty sampling
(Least Confidence, Entropy, Margin) [20] is augmented by ad-
versarial and contrastive approaches (DeepFool [21]], CAL [22])
to emphasize decision boundaries, while dynamics-based
methods, including Forgetting Events [23]], GraNd / EL2N [24],
and TDDS [25]], identify influential or persistently hard
examples through loss, gradient norms, or temporal scoring.



Bilevel optimization (Glister [26]], Retrieve [27]) further refines
selection by optimizing validation performance, but at the
expense of significant computational overhead. Proxy-based
methods [28] simplify this by using less complex models or
heuristics to guide the selection process, speeding up decisions
at the risk of potentially missing deeper insights from more
sophisticated models. The need for gradient evaluations and
repeated model updates makes these methods impractical in
settings with limited computational resources or unlabeled data.

More recently, label-free and foundation model-driven
techniques have emerged to address settings with scarce anno-
tation or to scale data selection for large models. Embedding-
based strategies such as ZCore and STAFF exploit pre-trained
or foundation models to extract representations for zero-shot
subset selection or coreset scoring [29], [30]. Along the
same line, ELFS applies deep clustering on high-quality, pre-
trained vision embeddings, and then uses those to generate
pseudo-labels that drive its coreset scoring, thereby achieving
strong performance without labels [31]]. These advances, though
promising, can inherit the computational cost and biases of the
foundation models they use or rely on external (pre-trained)
models whose embeddings may not perfectly align with the
downstream objectives.

Our approach, ECHO, departs from all three categories. It
directly leverages geometric and relational structure in data,
requiring no labels, pre-trained models, or gradient-based
scoring. By explicitly augmenting its coreset with support
vectors, our approach captures both the central trends as well
as the boundary-defining samples, enabling state-of-the-art
generalization with minimal assumptions.

III. PRELIMINARIES
A. Notations

Let X = {x1,%X3,...,xy} C RP denote a dataset of N
samples in a D-dimensional space. Given an encoder Ejy :
RP — R? parametrized by 6, with d < D, mapping each x;
to a low-dimensional embedding z; = Ey(x;) € R?, we denote
by Z = {z1,22,...,2x} C R? the set of all embeddings.

All distances in R¢ are measured using the Euclidean ({2)
norm, and are denoted by |||

To partition the embedding space, we impose a uniform,
axis-aligned grid of side length w = 1/[2 In(1 + N)], where
[2] denotes the smallest integer greater than or equal to x.
This choice ensures that grid resolution grows sub-linearly with
dataset size, balancing spatial detail and computational cost.
Each non-empty grid cell is denoted C; for j = 1,..., M,
where M is the total number of cells that contain at least one
embedding. Without loss of generality, each C}; is a hypercube

Ci={zeR | kyw <29 < (ke+1)w, Vl=1,...,d}

for integer indices k = (ki,...,kq) € Z%.

We write Z; = {z; € Z | z; € C;} to denote the set of
embeddings that fall into C;, and m; = |Z;| > 1 to denote its
cardinality. Within each cell C;, the centroid is defined as

1
C]’ZWZZ,
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capturing the center of mass of embeddings within the cell.
To define the support vectors directly in the original space,

we also denote by X; = {x; € X | Ep(x;) € C;}, the set

of all original samples in cell j, and denote their average by

1
By= Z X.
mj xEXj

For each x;; € X;, we define its displacement vector from
the cell mean:

djk =y gkl = e — g
These displacements can then be used to identify the
boundary samples for each cell. To this end, we sort the
displacements vectors by descending norm via a permutation
mi {1, ...,m;} = {1,...,m;} that satisfies
Idjmll = ldjml = - > |d
Then, for cell C}, the set of support vectors of size s is
defined as:

(s) _
Sj - { djr;1)s djmj2)s -
= {Xpm@ — 1y -
B. Proximally-Connected Graphs

= Xjk

jaﬂ-j(mj)H'

s djrio) )
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An undirected graph G = (V, E) is said to be proximally
connected if its vertices V' = {v1,...,vp} correspond to
non-empty, non-overlapping grid cells C, ..., Cys (each with
centroid c; € R?), and its edge set E satisfies the following
two requirements, as originally defined [12].

First, whenever two grid cells C; and C; are adjacent, i.e.,
share a (d—1)-dimensional face, there is an edge {v;,v,;} € E
whose weight is given by w; ; = |lc; — ¢;]|.

Second, if an edge {v;,v;} € E does not arise from such
a grid adjacency, then its removal must increase the number
of connected components of G by exactly one; equivalently,
denoting by x(G) the number of connected components of a
graph G, we have

S(G(V, B\ {vi,03))) = w(G(V, E)) + 1.

Moreover, if G(V, E \ {v;,v;}) splits into precisely two
components X (containing v;) and Y (containing v;), then the
edge weight w; ; must equal the minimal distance between
any vertex in X and any vertex in Y:

llei —e;ll = min Jlow — vl
V€Y

In other words, no edge in E can be replaced by a strictly
shorter inter-component connection without violating this
proximal-connectivity constraint.

Because every non-adjacent edge is chosen precisely when
it is the shortest link between the two sets it would otherwise
separate, G is connected and contains no redundant bridging
edges. Finally, the degree of each vertex v; is defined as

deg(v;) = |{vk {vj, v} € E}‘

In this setting, cells corresponding to vertices of larger degree
lie in more densely interconnected regions.



C. Coreset Selection Problem

Given a labeled dataset with n samples and their corre-
sponding labels X = {(x1,y1), (X2,¥2),. -, (Xn,¥n)} , our
objective is to find a small subset S C X of size m that
retains the essential characteristics and utility of X for any
downstream task. Specifically, the goal is to ensure that models
trained on S perform on par with models trained on the full
dataset X. Therefore, we aim to construct S such that:

VfeF, U(f(X) = U(f(S)),

where F represents any downstream models or tasks, and
U(f(X)) denotes a utility measure (e.g., accuracy, loss) for f.

The coreset S is defined as the solution to the following
optimization objective:

Minimize [U(f(X)) — U(f(S)], Vf e F,
subject to  |S| =m where m < n,
ScCux.

The challenge lies in identifying a coreset that balances size
reduction and performance preservation across all downstream
tasks, particularly when task-specific information is unavailable.

IV. METHODOLOGY

Coreset construction, at its core, is a question of structure:
what minimal subset of a dataset preserves the form and
function of the whole? ECHO builds on the intuition that,
for effective learning, the information that shapes decision
boundaries consists of both central tendencies and edge cases,
i.e., the prototypical samples as well as the rare, the outlying,
the structurally distinct samples. To capture this duality, we
frame our generalization objective as identifying the precise
geometry of the data: how regions concentrate, how they
transition, and where boundaries emerge.

To this end, we first focus on embedding datasets into
a geometry-preserving latent space, exposing its underlying
structure, and then organize these embeddings into a spatially
coherent representation that allows us to identify both the
representative samples and also their surrounding supports
(samples that define the reach and complexity of each local
region). The following subsections detail each component of
our approach, beginning with the geometric projection step
that anchors the process.

A. Geometric Projection

The effectiveness of our structural coreset selection relies on
embedding the data into a space where meaningful relationships
between samples are preserved while ensuring computational
efficiency. Therefore, this latent space must preserve local
structure in a way that is faithful to the original space, while
facilitating efficient spatial reasoning.

To this end, we define a parametric encoder Ejy : RP —
R4, with d < D, which transforms each data point x; € X
into a lower-dimensional embedding z; = Ey(x;) € R?. For
simplicity and computational efficiency, we model this function
as an MLP, with the embedding dimension set to two and the

embedded values rescaled to be in the 0 —1 range, such that the
latent space directly forms the basis for all subsequent steps in
our pipeline, including spatial partitioning, graph construction,
and coreset selection.
Encoding Objective. To ensure that the set of all embeddings,
Z = {z,...,zn} C R? reflects the intrinsic structure of
X, we train our encoder to explicitly preserve the relative
spatial structure of the original dataset. That is, points that
are similarly situated in & should remain similarly situated in
Z, up to scale and translation. To formalize this, we define a
structural loss that penalizes discrepancies in average pairwise
distances between the original and embedded spaces.

For a set of data points X and their corresponding embed-
dings Z = E4(X), let DX and DZ denote their respective
pairwise Euclidean distance matrices:

DY =|x; —x;ll,  DZ = |z —zl, (1)

and let their normalized values be defined as:
1
max, ¢ D%@

~ 1
px—__ 1 px )

~7
. D-- =
7 maxy DX 4

DZ.
This normalization avoids the need for strict point-wise align-
ment across the high-dimensional and low-dimensional spaces,
and allows the embedding to emphasize local consistency.

Following this, the encoder’s parameters () are learned by
solving the following minimization problem:

N 2
1o o 1 n~y,
N2 Dh - 2D 3)
=1 =1

min Z
9
=1

This objective encourages the encoder to preserve the average
local distance profile of each sample, ensuring that the latent
space retains the structural characteristics of the original dataset.

After training, the encoder is fixed and its resulting latent
space, characterized by Z, enables geometry-aware operations
at significantly reduced dimensional and computational cost.
In particular, this supports uniform grid partitioning, efficient
neighborhood computations, and our graph-based modeling of
regional connectivity.

Moreover, because the embeddings are learned without
supervision and solely with respect to structural fidelity, our
encoder remains agnostic to downstream task while ensuring
that the coreset selection process that follows is grounded in
the intrinsic geometry of the data itself, rather than external
modeling assumptions or class labels.

B. Structural Mapping and Coreset Selection

With the dataset embedded into a geometry-preserving latent
space Z = {z1,...,zy} C RY, we construct a compact subset
that preserves its global structure and regional variations. This
is achieved by first encoding Z as a proximally-connected
graph over discrete regions, and then selecting coreset samples
by traversing this graph in order of structural importance.

Structural Mapping. Following the construction steps of PC
graphs as described in Section [lII-B| we partition the latent
space into grid cells {C1,...,Ch}, each containing a set



of embeddings Z; = {z;1,...,2;m,} and associated with
a centroid c¢; € R?. These cells are abstracted into vertices
V = {v1,...,up} of the graph G = (V, E), where edges
reflect spatial adjacency or proximal connectivity.
Coreset Selection. To extract a subset @ C X of fixed budget
B < N that maximally preserves the geometric and topological
properties of the original dataset, we leverage the structure of G
to identify and prioritize regions of high structural importance.
Each node v; € V' is assigned a priority based on its degree
in the graph, deg(v;), which reflects the density and centrality
of its corresponding region in the latent space. We impose a
prioritization scheme in which the nodes are sorted into a fixed
ordering (Vg (1), .., Vs(ar)) such that

“

where o is a permutation on {1,...,M?}. This ordering
determines the sequence in which cells are visited during
coreset construction.

Within each cell C;, we assign a sampling probability
distribution over its points, centered at the centroid c;. For
z; 1 € Z;, the selection probability is defined as

deg(vo(1)) > deg(vy(2)) > -+ > deg(vy(ar)),

 etexp(—llzjr —cill?/7)

>y e+exp (—llzge —¢jl?/7)
with temperature parameter 7 > 0 controlling the spread of the
distribution, and € > 0 preventing a O-probability assignment
to any sample. While the structure of the PC graph itself
introduces diversity in the coreset, this density emphasizes
points closest to the local centroid, which best represent the
internal structure of each region.

The coreset Q can then be constructed through an iterative,
round-based traversal of the ordered node list. At each round
r € NT, we visit nodes Vo(1), - - - » Vo (M) i s€quence, and from
each cell C,(;), select the sample with the r-th highest selection
probability that has not already been added to the coreset. This
process is repeated until exactly B samples have been selected.
More formally, let 7; : {1,...,m;} — {1,...,m;} be the
permutation that orders Z; by descending p; 1, so that

&)

Dj.k

Pjm;(1) = Pjry(2) 2 2 Pjmy(my),  and (6)
Q=% | 1STSRISESM), (D
where z;, = Ep(x;1), and R is the minimal number of

rounds required such that |Q| = B. Any cell containing zero
non-selected points is skipped in later rounds.

This strategy spreads the selection budget across structurally
salient areas first, and then proceeds uniformly through pro-
gressively less central samples, resulting in a coreset that is
compact, diverse, and topologically faithful.

C. Structural Augmentation

Although the PC graph’s structure already introduces diver-
sity and ensures coverage across distinct regions, the resulting
coreset Q can still under-represent local boundary geometry that
are essential for defining decision margins. To bridge this gap,

we propose a localized geometry-aware augmentation strategy
that leverages boundary-adjacent samples, thereby reflecting
each region’s true empirical extent and improving boundary
resolution for effective downstream learning.

Concretely, within each occupied cell C}, recall the support
set notation from Section

S](‘S) = {dj,ﬂj(l)a R dj""j(S)}’ ®)

where {d; () }7—; are the s displacement vectors of maximal
norm from the cell center p;. These vectors capture the
principal directions of local spread, and hence the empirical
boundary, of the samples in X;. To construct our support set,
we define

M
o = J{m +d | de s} ©
j=1
]M
= U{uj +vdinm | kzl,...,s}, (10)
j=1

where v > 0 is a scaling factor that modulates how far each
support point extends beyond the local mean.

Combining Q and Q*"# produces a compact yet expressive
summary of the dataset’s geometry, ensuring that subsequent
models have access to both prototypical and extremal in-
formation, which are critical for robust decision-making. In
practice, while it is possible to use all available support
vectors to maximize generalization, we limit the number of
support vectors to a random subset of predetermined size,
thereby minimizing computational overhead while still enabling
structurally grounded generalization.

D. Structure-Driven Learning

Equally important as the question of which data points to
select is the question of how to learn from them effectively.
While the coreset Q and its support Q*"& extend coverage to
all important regions, training on the entire union Q U Q*!8
risks being computationally expensive. Therefore, we employ a
stochastic augmentation regime where at each iteration, training
is performed on the core samples and a fixed-size random
augmentation subset A C Q"8 yielding Q = ¥(Q U A),
where U denotes the corresponding interpolation operator. This
allows us to maintain structural diversity while preserving
computational efficiency.

To achieve this, we train the downstream model f, by
minimizing a joint objective that combines the task-specific
loss with a contrastive loss designed to reflect the structural
affinities induced by the latent geometry. For any labeled sample
(x,y) € X, let Lok (f(x),y) denote the per-sample loss for
the downstream task, such as cross-entropy for classification
or mean squared error for regression. Then, the task loss over
the batch Q is given by

Con@)= = 3 Lawl(fulxi), 30,

‘ | (x:,y:) € ©
ensuring the model learns to predict targets across both central
and boundary-aware samples.

Y



To encourage structurally aligned latent representations, we
define a contrastive loss over all labeled pairs in Q. Let P =
{(6.3): yi =y, i # J} and N = {(i, ) s # y;} e the sets
of positive and negative pairs, respectively, then

1
Cstructurc(w) - W Z wa(xl) - fw(xj)||2
(i,4)eP
fo 3 max(0, m o fubx) — b)) (1)
|N| (i,J)eN

where m > 0 is a margin hyper-parameter (set to 1 in our
experiments). This loss encourages compactness within classes
and separation between classes, in alignment with the structure
revealed by our PC graph.
Finally, the learning objective consists of minimizing:
min
w

Liask (w) + A Lstructure (W)y (13)

where A > 0 balances task performance and geometric
regularity. This structure-driven approach ensures that learning
is guided not only by semantic supervision, but also by the
geometric relationships revealed during coreset construction.

Algorithm [1] summarizes all computational steps of ECHO['}

E. Complexity Analysis

Let N = |X| denote the dataset size, and assume fixed
constants for embedding dimension d, input dimension D,
coreset budget B, augmentation budget K, and support size s.
We further assume that the encoder & performs a single linear
mapping from R” to R?. The embedding step applies E to all
N points, requiring O(N D) operations. Grid assignment for
each z; € R? takes O(1) time, so partitioning the embedded
space incurs at most O(N) cost.

Within each occupied cell C}, the displacement vectors d; j
are computed and sorted by norm. Since each sample appears
in exactly one cell and > ;m; = N, the maximum sorting cost
is O (3201, mjlogm; ) = O(log N), which dominates the
linear-time mean and displacement computation.

The PC graph G is constructed over the M < N non-
empty grid cells. Each vertex connects to at most its immediate
neighbors plus one non-adjacent vertex to enforce proximal
connectivity. Thus, the number of edges in G is constrained
by O(M), and constructing the graph can be performed in
O(Mlog M) = O(Nlog N). Empirically, in the 2D space,
this allows up to a 9X runtime speed-up in graph parsing,
compared to traditional fully-connected graphs.

Subsequent steps, including cell-wise sampling for coreset
selection, support vector extraction, and augmentation, operate
over a fixed number of elements per cell or batch and incur
at most O(NN) additional cost. Downstream training proceeds
over batches of size O(1) and is decoupled from N.

Therefore, the overall computational complexity is
O(ND + NlogN), (14)

ISource code: https://github.com/Mobile-Intelligence-Lab/ECHO

Algorithm 1. Hierarchical Optimizations with ECHO

Input: Dataset X' = {(x;,;)}\,, coreset budget B,
support count s, augmentation count K,

model f,,, training iterations 7', learning rate 7.

Output: Trained model f,,

> Embed data using structure-preserving encoder
12, Eyp(x;) foralli=1,...,N
2 Partition Z = {z;} , into uniform grid cells {C;}

> Construct PC graph over centroids c;
3 Build Proximally-Connected graph G = (V, E)

> Rank cells by node degree
4 0 < argsort; (— deg(v;))

> Sample coreset points
s foreach r =1,2,... until |Q| = B do

6 Q« QU{XU(t),ﬂ'U(t)(T‘) t = 1,...,M}
7 Q«{geQli=1,....B}
8 foreach cell C; do

> Compute structural augmentations
9 S](-S) ={d € X; — p; | d among top s by |d||}
10 Qa“gegaugu{uj+7d‘\7des§.s>}

> Train with stochastic augmentations
11 foreacht=1,2,...,7 do

12 Sample A C Q*"8 with |A| = K

13 Q<+ U (QUA)

> Compute task loss
14 £lask(w) — ﬁ Z(xi,yi)eé Etask(fw(xi)v yi)

> Compute contrastive loss
15 Est{ucture(w) — WHZ(L]')GP”fw(Xi) - fw(xj)H22+
T2 (gyeamax(0,m — || fu (i) — fu (%))

> Update model

16 | W —w—7n Vi [‘Clask +A Lstructure]

-
2

return f,

with the N D term arising from the encoder and the N log N
term from intra-cell sorting and PC graph construction. In the
asymptotic regime, D = O(1), this simplifies to O(N log N),
resulting in near-linear scalability with respect to dataset size.

V. EXPERIMENTS

We evaluate ECHO across a range of standard benchmarks to
assess its effectiveness in selecting and learning from compact,
structure-preserving coresets. Specifically, we aim to answer
two central questions:

[RQI1] Can preserving the geometric profile of data enable
models trained on highly compressed subsets to
match the performance of full-data baselines?



[RQ2] To what extent do hierarchical optimizations affect
the runtime efficiency of coreset selection?

A. Experimental Setup

Datasets and Model Architectures.

To evaluate the generality and robustness of ECHO, we conduct
experiments on five widely-used benchmark dataset selected
to span a range of dataset sizes and data complexity.

« MNIST [32]: 70,000 grayscale images of handwritten
digits (28x28 pixels), with 60,000 training and 10,000
test samples across 10 classes.

o FashionMNIST [33]: 70, 000 grayscale images (28x28) of
clothing items, also split into 60, 000 training and 10, 000
test samples over 10 categories.

o SVHN [34]: A real-world digit dataset containing 73, 257
training and 26, 032 test color images (3x32x32), with
challenging intra-class variation across 10 classes.

o CIFAR-10 [35]: 60,000 color images (3x32x32) spanning
10 object classes, with a 50,000 / 10,000 train-test split.

o CIFAR-100 [35]: Similar to CIFAR-10 in format but with
increased granularity: 100 object classes, each with 500
training and 100 test samples, totaling 50, 000 train and
10,000 test images.

We use a LeNet-style architecture, as implemented in the
DeepCore library [36], for our evaluations on the MNIST and
FashionMNIST datasets, and adopt the standard ResNet-18
architecture for SVHN, CIFAR-10, and CIFAR-100.

Comparison Methods.

We compare ECHO against eighteen established and state-of-
the-art methods, capturing the full methodological landscape of
modern coreset selection. Following the taxonomy introduced
in Section [lI, we group competing methods into three core
families, alongside a random baseline:

« Representation and diversity-based: Herding, k-Center
Greedy, Facility Location, Graph Cut, Contextual Diver-
sity, Craig, and GradMatch.

o Training dynamics-based: Least Confidence, Entropy, Mar-
gin, DeepFool, Contrastive Active Learning, Forgetting
Events, GraNd, TDDS, and Glister.

o Label-free or foundation model-driven: ELFS.

o Baseline: Random sampling.

All methods except TDDS and ELFS are implemented using
the DeepCore libraryﬂ to ensure consistency and reproducibility.
For TDDS and ELFS, we use their official implementationsﬁﬂ

Experimental Settings.
All experiments are conducted in Python using the PyTorch
framework [37] for model implementation. For each experiment,
we consider coreset sizes of 0.1%, 1%, 5%, 10%, 20%, 30%,
and 50% of the full datasets. We train all models on each
coreset for 200 epochs, including ELFS (replacing its default

2Datasets available in torchvision:
https://docs.pytorch.org/vision/stable/index.html
3https://github.com/PatrickZH/DeepCore
“https://github.com/zhangxin-xd/Dataset-Pruning-TDDS
Shttps://github.com/eltsai/elfs

40,000 training iterations to enable fair comparisons), and
perform evaluations against the entire test sets. For coreset
selection methods that involve a pre-training phase, including
our encoder, the pre-training is performed for 40 epochs.
However, we retain ELFS’s original training schedule of 200
epochs for its clustering heads, as to not degrade the quality
of its selected coresets’ samples. Experiments are conducted
on a parallel computing cluster, using one Nvidia TITAN X
GPU with 24 GB memory.

Except for ELFS training iterations, we use the default
hyper-parameters for all baseline methods as provided in the
DeepCore library or their official repositories. All models
are trained using Stochastic Gradient Descent (SGD) with a
learning rate of 0.1, a cosine decay scheduler with momentum
of 0.9 and weight decay of 5 x 10~%, and a batch size of 256.

For ECHO, we fix the number of support vectors per cell
to s = 2, the support scaling parameter to v = 1, and the
geometric regularization weight to A = 1/2. These values are
held constant across all datasets and coreset sizes, allowing
us to demonstrate the robustness of our approach without the
need for per-task tuning.

B. Comparison against Existing Methods

Addressing our first question, we evaluate ECHO against
eighteen coreset selection baselines on CIFAR-10 across a
range of coreset budgets, from extreme compression (0.1%) to
moderate size (50%). All methods are used to select a subset
from the training data, on which a ResNet-18 model is trained
from scratch. Test accuracy is then measured on the full test
set, with results averaged over five independent runs.

As shown in Table [, ECHO consistently outperforms prior
methods across all budget levels. At 0.1% of the data, where
we have 50 samples per class, our approach achieves 65.6% test
accuracy, over 40 percentage points higher than all alternatives.
Notably, ECHO maintains a strong lead even at higher budgets,
reaching 95.2% accuracy at 50% of the training set, essentially
recovering full-data performance with only half the data.

Fidelity Score. To evaluate how consistently each method
preserves performance across coreset sizes, we introduce the
Integrated Fidelity score: a metric that balances accuracy and
compression to capture the overall fidelity of a selection strategy.
For a given coreset selection method m, let B C (0,1] be the
set of tested coreset selection ratios, and let Acc,,(b) denote
the test accuracy achieved at budget b € B. Let Accgy be the
accuracy of the model trained on the full dataset. Then, we
define the integrated fidelity score as:

Acc, (b)
IFS(m) = > w(b) - ————=,
Py Accrun
)=
where w(b) = =—. 15
ijGBe bs

This formulation rewards methods that achieve high accuracy
at lower budgets, reflecting the central goal of coreset learning.
A higher IFS indicates stronger overall fidelity to the full-data
model across the compression spectrum.



TABLE I: Performance of different coreset selection methods on the CIFAR-10 dataset. ResNet-18 models are trained on
coresets produced by the different methods and evaluated on the full test set. Performance is measured as the percentage of
correctly classified samples in the test set (classification accuracy) vs. a baseline accuracy (full training set) of 95.6%. Averages
and standard deviations are reported over 5 runs. The Integrated Fidelity Score is also reported for each method, indicating how
consistently each method preserves the baseline accuracy across all budget sizes. The top-performing method (by fidelity score)

and its three closest contenders are highlighted.

CORESET BUDGET

METHOD FIDELITY
0.1% 1% 5% 10% 20% 30% 50% SCORE
RANDOM 21.5+0.7 36.840.9 64.7+2.0 T74.4+49 82.5+4.6 87.4+35 91.4+2.2 0.65
HERDING [|13]] 2000 20.0+2.3 34.843.3 50.843.4 62.64+3.0 74.2+3.2 80.4+2.9 88.3+1.9 0.58
K-CENTER GREEDY [14]] 2017 18.2+0.5 30.6+1.4 49.842.2 74.9+2.4 85.6+1.8 90.2+1.1 93.4+0.6 0.62
FACILITY LOCATION [|38]] 2021 22.441.8 39.34+1.4 60.64+2.2 74.442.1 85.2+1.7 91.3+0.6 93.9+0.3 0.66
GRAPH CUT [38]] 2021 24.241.8 42.841.4 655411  76.6+1.2 84.1+1.1 87.7+£0.9 93.3+0.5 0.68
CD [118]] 2020 14.941.4 23.1+2.1 37.64+2.4 58.94+1.9 80.8+£2.2 90.4+1.0 94.0+0.5 0.55
CRAIG [[11]] 2020 22.54+1.1 31.0+1.1 44.5+3.3 61.1+3.8 79.4+3.2 88.5+1.4 93.2+0.9 0.59
GRADMATCH [|19] 2021 17.1+£2.0 30.9+1.1  47.1409 61.7+24  80.0£2.6 87.4+1.8 93.0+1.1 0.58
LEAST CONFIDENCE [20]] 2019 14.2+1.1 19.9+2.0 36.0+2.1 57.2+3.4 81.8+2.6 90.1+1.8 94.5+0.2 0.54
ENTROPY [20] 2010 14.5+1.6 21.0+£1.4 35.1£3.0 57.243.1 81.4+2.9 89.6+1.8 94.3+04 0.54
MARGIN [20]] 2019 17.3+1.1 26.9+1.8 43.6+£35 59.4432 81.7£3.0 90.0+0.9 93.9+0.3 0.57
DEEPFOOL [21]] 2015 17.3+0.9 27.142.6  43.04£3.2 60.6+3.4 83.2+2.8 90.0+0.5 94.0+0.3 0.58
CAL [22]] 2021 22.3+2.1 37.5+1.8 60.1+1.4 71.2+0.8 80.7£1.0 86.4+2.2 89.3+0.6 0.64
FORGETTING [23]] 2018 21.24+0.6 35.24+1.5 52.0+2.4 66.9+1.5 86.1+1.3 91.5+0.4 94.0+0.1 0.63
GRAND [24]] 2021 17.5+1.7 26.2+1.5 40.1+2.2 529428 78.3+2.7 91.1+£1.0 94.6+0.4 0.55
TDDS [[25]] 2024 10.3+6.9 24.3+2.6 48.4+26 68.1+2.3 82.4+19 87.6+14 91.8+1.6 0.57
GLISTER [26] 2021 19.842.1 32.6+2.3 50.9+1.9 66.0£3.3 84.7+£1.1 90.8+0.3 93.9+0.5 0.62
ELFS [[31] 2025 17.3+£2.8 32.2+2.1 57.2+1.9 78.4432 86.242.4 87.1+1.1 88.8+0.6 0.63
ECHO (OURS) 65.6+1.3 75.242.6 86.4+3.1 89.44+2.8 92.5+1.4 93.8+0.5 95.2+0.2 0.88

ECHO attains an integrated fidelity score of 0.88, substan-
tially outperforming all baselines. Its next-best contenders,
namely Graph Cut (0.68), Facility Location (0.66), and random
selection (0.65), trail by a wide margin, particularly at the
low end of the budget range. These results demonstrate
that preserving and learning from the geometric structures
of datasets is not only sufficient for retaining predictive
performance under compression, but also is decisively effective.

C. Validation across Datasets

For this experiment, we focus on the three top-contender
baseline methods (Graph Cut, Facility Location, and Random)
as comparison points, enabling focused and representative
analysis while highlighting the structural advantages of ECHO.

As shown in Fig. |2l ECHO consistently outperforms all
baselines across five datasets of increasing complexity: MNIST,
FashionMNIST, SVHN, CIFAR-10, and CIFAR-100. At the
extreme 0.1% budget, it achieves up to 60% accuracy gains over
the best baseline (e.g., SVHN and CIFAR-100), and maintains
clear margins as the budget increases.

Importantly, ECHO adapts well across both low-variance
(e.g., MNIST) and high-variance (e.g., CIFAR-100) datasets,
demonstrating strong generalization without task-specific tun-

ing. This validates the universality of its structure-driven
selection strategy, making it a reliable method for dataset
compression across various real-world settings.

D. Ablation Study

To isolate the contributions of ECHO’s key design choices,
we conduct an ablation study focusing on two parameters: the
number of support vectors per region (s) and the structural
regularization (weighted by ). The results, presented in Fig-
ure [3] compare each variant against our default implementation
setting (i.e., s = 2, A = 1/2), as well as the top-three contender
baselines identified earlier.

Impact of Support Vectors. Setting s = 0 (i.e., removing
support vectors entirely) leads to a significant drop in per-
formance, particularly at smaller coreset budgets (e.g., ~35%
drop at 0.1%). This validates the importance of boundary-
aware augmentations: without support vectors, the coreset
captures regional centers but fails to represent local geometric
spread critical for decision boundary formation. By contrast,
s = 1 recovers a substantial portion of the lost accuracy, and
s = 2 further closes the gap to full performance, indicating
diminishing but meaningful returns from modeling local extent.
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Fig. 2: Comparison of ECHO and its top-three contenders (Random, FL, GC) across five datasets.
Methods when applied to large-scale datasets or in low-latency settings.
In Table [l we compare the end-to-end runtime of ECHO
--- ECHO (default parameters) ~e- Random . . . . .
ECHO with s=0 - Facility Location against its top-performing contenders: Facility Location (FL),
—— ECHO with s=1 * Graph Cut Graph Cut (GC), and the Random baseline. Each method is
—— ECHO witha=0 - Accuracy at 100%
100 evaluated over a range of coreset budgets (from 0.1% to 50%),
with average runtimes reported across five runs.
90 —
80 TABLE II: Runtime of ECHO vs its top-three contenders.
__________ Averages and standard deviations are reported over 5 runs.
§ 70— e
§ 60 SETUP RUNTIME (IN SECONDS) / CORESET BUDGET
‘5 METHOD
8 PHASE
S 50 0.1% 1% 10% 50%
0 RANDOM 0.0057 0.0055 0.0055 0.0057
% FL [38] 222.14£0.5 | 29.540.1 121.440.1 997.84£0.5 3887.141.3
GC [38] | 221.94£0.8 | 22.140.1  22.840.3  48.940.5  499.4+0.5
K2 O
0
0.1%0.5% 1% 5% 10% ECHO 77.940.3 4.1040.1 4.2340.1 5.5340.3 6.5040.2

Coreset Size

Fig. 3: Effect of support vector count per PC graph node (s)
and use of structural loss (\) on the effectiveness of ECHO.
Comparisons are made with ECHO (default implementation,
i.e., s=2, A=1/2), Random, Facility Location, and Graph Cut.

Effect of Structural Regularization. When )\ is set to
zero, effectively removing the contrastive loss that enforces
geometric consistency during learning, performance uniformly
degrades across all budgets. While the degradation is less steep
than omitting support vectors, the decline still averages 3—-5%
across the board, underscoring the benefits of geometry-aligned
learning even after structurally informed selection.

Comparison with Baselines. Across all tested ablations,
even the weakest variant of ECHO outperforms traditional
methods such as Facility Location, Graph Cut, and Random
selection, especially at low budget regimes. This highlights
that the inductive bias introduced by our proximity-aware
graph structure and spatial partitioning is itself a strong
prior, even in the absence of augmentation or contrastive
refinement. These results demonstrate that each component
of ECHO contributes complementary value: region-centric
selection ensures coverage; support vectors resolve geometric
edges; and structural learning improves generalization.

E. Runtime Analysis

Beyond accuracy, the utility of any coreset selection method
depends critically on its computational efficiency, particularly

Despite incorporating a structural encoder, spatial parti-
tioning, PC graph construction, priority-based selection, and
support-vector augmentation, ECHO is remarkably efficient.
Its total coreset selection time remains under 7 seconds even
at 50% budget, over 550x faster than Facility Location and
75 x faster than Graph Cut at the same budget level.

This efficiency stems from two of our key design choices:

(1) our use of a low-dimensional embedding space (2D),
which enables rapid grid partitioning and graph construc-
tion at near-linear time (see Section [[V-E)), and

the amortized cost of structural augmentation, which
remains essentially constant across coreset sizes. Notably,
ECHO’s runtime increases only marginally with budget
size (from 4.1s at 0.1% to 6.5s at 50%), whereas Facility
Location scales super-linearly, and Graph Cut’s runtime
grows by over 20X across the same range.

2

Even when factoring in the setup phase (including encoder
training), ECHO still completes in just ~78 seconds, compared
to ~222 seconds for Facility Location and Graph Cut. This
confirms that hierarchical optimizations (structurally grounded
coreset selection) do not need to come at the cost of runtime.

VI. DISCUSSION & CONCLUSION

This work introduces ECHO, a structure-driven coreset
selection framework that unifies geometric encoding and
principled augmentation to preserve data utility under extreme



compression. Through extensive comparisons across five dif-
ferent datasets against eighteen coreset selection baselines,
we show that ECHO consistently achieves state-of-the-art
performance. With up to 60% accuracy gains at very low
coreset budgets, our approach outperforms all benchmarked
methods, while remaining orders of magnitude faster in runtime.

Our findings demonstrate that by treating structure as the
foundation for learning, we can seamlessly enable robust
generalization from very few data samples.

Future work will explore applications and extensions of
ECHO to unsupervised settings, different data modalities, and
data streaming scenarios, where structure-aware learning may
further enhance data efficiency and robustness. Although our
results demonstrate strong generalization, the effectiveness
of our proposed approach may in practice be influenced
by embedding quality, suggesting that adaptive or higher-
dimensional embeddings may further improve performance.
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