PALLAS: A Data-Plane-Only Approach to Accurate
Persistent Flow Detection on Programmable
Switches in High-Speed Networks

Weihe Li%", Beyza Biitiin ™", Tianyue Chu*, Marco Fiore’, Paul Patras®
$The University of Edinburgh, TIMDEA Networks Institute, #Universidad Carlos III de Madrid, Telefénica Research
weihe.li@ed.ac.uk, beyza.butun@imdea.org, tianyue.chu@telefonica.com, marco.fiore@imdea.org, paul.patras@ed.ac.uk

Abstract—In high-speed data center networks, persistent flows
are repeatedly observed over extended periods, potentially sig-
naling threats such as stealthy DDoS or botnet attacks. Mon-
itoring every flow in production-grade hardware switches that
feature limited memory, however, is challenging under typical
high flow rates and data volumes. To tackle this, approximate
data structures, like sketches, are often employed. Yet many
existing methods rely on per-time-window flag resets, which
require frequent control-plane interventions that make them
unsuitable for high-speed traffic. This paper introduces PALLAS,
a fully data-plane-implementable sketch for detecting persistent
flows in high-speed networks with high accuracy, obviating the
need for time-window-based resets. We further propose OPT-
PALLAS, an enhanced variant of PALLAS that improves detection
accuracy by incorporating flow arrival patterns. We present
a rigorous error bound analysis for both PALLAS and OPT-
PALLAS, along with extensive performance evaluations using a
P4-based prototype on an Intel Tofino switch. PALLAS scales
persistent flow detection to line-rate capacity, while state-of-the-
art solutions fail to operate beyond a few Mbps. Our results show
that PALLAS and OPT-PALLAS can accurately detect persistent
flows in traffic volumes over 60x higher than those handled by
the best existing approach. Additionally, even under low-speed
trafficc PALLAS and OPT-PALLAS achieve 4.21% and 7.85%
higher lookup accuracy while consuming only 8.5% and 9.7% of
switch resources, respectively. Extensive trace-driven results on
a CPU platform further validate the high detection accuracy of
OPT-PALLAS compared to existing methods.

Index Terms—Persistent flows, programmable switches, high-
speed networks, sketch, approximate data structure

I. INTRODUCTION

Detecting persistent flows—those that remain active over ex-
tended periods—is vital for network management, recommen-
dation systems, and security applications, such as identifying
and mitigating stealthy data exfiltration and Advanced Persis-
tent Threat (APT) activities [1]. For example, some adversaries
send malicious traffic at a controlled, low rate over an extended
duration to evade traditional volume-based anomaly detectors
[2]. However, in high-speed networks, the sheer flow rates and
massive data volumes make it impractical to track every flow
within the constrained memory of switching infrastructure,
even in cutting-edge programmable switches [3].

To overcome this challenge, a variety of sketch-based
methods have been proposed [4]-[7]. A sketch is a hashing-
based data structure that stores flow information in limited

* These authors contributed equally to this work.

979-8-3315-0376-5/25/$31.00 ©2025 IEEE

memory while retaining acceptable accuracy [8], [9]. Mean-
while, programmable switches are increasingly adopted in
high-speed networks due to their rapid processing capabilities
and high flexibility, enabling adaptable forwarding strategies
through P4-based prototyping [10]. However, programmable
switches still face stringent constraints—such as a limited
number of pipeline stages and a narrow range of arithmetic
operations [l11]—which complicate the implementation of
existing sketch-based methods for persistent flow detection.

Limitations of Existing Methods: (i) Existing sketch-based
methods for persistent flow lookup use a flag to remove
duplicates [4]-[6], [12]. When these methods are implemented
on a programmable switch, a control plane logic needs to reset
the flags periodically, which introduces a delay of typically
tens of milliseconds [13]. At high flow rates this delay
causes untimely flag resets, resulting in inaccurate persistence
tracking and rendering existing methods ineffective. (ii) In
a programmable switch, each packet traverses a pipeline
with a fixed number of stages in a strictly unidirectional
workflow—data flows from the first stage to the last [11]
(e.g., Tofino 1 has 12 stages [14]). Because some sketch-
ing methods involve multiple circular dependencies, using
multiple rows to store tracked items would exceed these
stage constraints, prompting most existing designs to adopt a
single-row approach [11], [12], [15]. However, a single-row
sketch inevitably suffers from severe hash collisions when
memory resources are constrained, causing persistent flows
to be erroneously evicted by non-persistent ones—especially
under common, highly skewed traffic distributions [5].

Our Solution: To surmount these constraints, we present
PALLAS, a new sketch specifically designed for accurate
persistent flow detection on programmable switches. To the
best of our knowledge, this is the first method for persistent
flow detection that maintains reliable performance at high
data rates in a production-grade switch. We address current
limitations as follows. (i) First, instead of relying on per-
time-window flag resets—which necessitate communication
between the control plane and the data plane—we eliminate
the use of flags altogether. We track persistence by using a
global counter to record the current time window and storing
each flow’s latest arrival time window in the sketch buckets.
When a flow arrives, its tracked time window is compared
against the global one to determine whether it is the flow’s
first arrival within that window. (ii) Second, under highly

skewed traffic distributions, persistent flows are prone to being
mistakenly evicted from buckets by a large number of non-
persistent flows. To address this, we adopt a probability-based
update mechanism that assigns lower eviction probabilities to
flows with higher persistence, ensuring robust performance
in practical, skewed traffic scenarios. We further introduce
an optimized version of PALLAS, called OPT-PALLAS, which
improves detection accuracy by incorporating the arrival pat-
terns of persistent flows. In practice, truly persistent flows
rarely remain inactive for extended periods [16]. Thus, when a
flow is absent for a long duration, OPT-PALLAS increases the
likelihood of evicting it from its bucket, freeing up space for
potential new persistent flows. This enhancement introduces a
modest trade-off: a slight reduction in processing speed and
increased complexity in hardware deployment, including the
need to specify additional parameters, such as the total number
of windows, before deployment. Importantly, all operations
in OPT-PALLAS are designed to operate within the limited
arithmetic capabilities of programmable switches, ensuring
practical deployability.

We rigorously model and analyze PALLAS and OPT-
PALLAS, providing formal theoretical guarantees. We then
implement a prototype in P4 on a production-grade Intel
Tofino switch. Experimental results show that PALLAS and
OPT-PALLAS support traffic data rates over 60x higher than
the state-of-the-art method [12], while achieving 4.21% and
7.85% higher F1 scores in low-speed networks. Furthermore,
PALLAS and OPT-PALLAS utilize only 8.5% and 9.7% of
the switch’s total resources on average, while maintaining
low per-packet processing latency—highlighting their practical
efficiency and effectiveness. We also evaluate PALLAS and
OPT-PALLAS on a CPU platform against additional baselines,
and the superiority of our approach remains consistent.

II. BACKGROUND AND RELATED WORK

In this section, we first provide formal definitions of the
data stream and the persistent flow detection problem. We then
review existing approaches and summarize their limitations,
which collectively motivate our design.

A. Formal Definition

Data Stream: Consider a sequence S = (ej,ez,...,e,)
representing a stream of incoming flows, where each flow e; is
described by (key, value). In a network monitoring scenario,
the key could be the source—destination IP pair, while the value
reflects metrics such as the flow’s persistence over time.
Persistence: Let A/ denote the total number of non-
overlapping time windows in a high-speed data stream. Each
window W; (1 < j < M) is defined by a specific boundary
criterion, such as a fixed number of packets (e.g., every 5,000
packets). For a given flow e;, its persistence P,, increases by
one whenever e; appears at least once within W, irrespective
of the frequency of its occurrences in that window.
Persistent Flow Detection: A flow e; is classified as -
persistent if it appears in enough time windows such that
P., > vM, where v € (0,1] is a user-selected threshold and
M denotes the total number of windows.

B. Related Work

Existing sketch-based approaches for persistent flow de-
tection can be broadly classified into two categories: single-
dimensional [6], [7], [12], [17] and dual-dimensional [4], [5],
[16], [18].

1) Single-Dimensional: This category of methods relies
exclusively on tracked flow persistence for replacement oper-
ations during the update process. Small-Space (SS) [19] uses
sampling to track item persistence in a hash table, reducing
space overhead to some extent. However, it still retains many
non-persistent items, resulting in inefficient memory usage.
To address this, PIE [7] represents each item using a Raptor
code [20], storing the code instead of the raw ID to reduce
memory consumption. Despite this improvement, PIE must
still maintain codes for all items within each time window,
even though most are not persistent. Furthermore, the en-
coding and decoding processes are computationally intensive,
making PIE unsuitable for high-speed data streams. On-Off
Sketch [6] employs an On/Off flag to track flow persistence
and uses a simple swap operation to handle hash collisions
during updates. However, its naive replacement strategy often
results in persistent flows being erroneously evicted from
buckets. Pyramid-based On-Off Sketch [17] improves memory
efficiency by incorporating dynamically sized counters. Yet,
its complex design renders it impractical for deployment
on programmable switches. Pontus [12] introduces a novel
metric, the collision decay flag, to enable precise persistence
tracking. However, its reliance on frequent flag resets limits
its scalability in high-flow-rate scenarios, as demonstrated in
Section VIII-B.

2) Dual-Dimensional: These methods incorporate dual fea-
tures during replacement operations to prevent persistent flows
from being easily replaced under limited memory budgets
[4], [5], [16]. For example, P-Sketch [5] considers the packet
arrival frequency of each flow, while Stable-Sketch [4] intro-
duces a novel feature, bucket stability, which accounts for
flow variation within a bucket to offer greater protection to
persistent flows. Pandora [16] observes that most persistent
flows are rarely absent for long periods. Leveraging this
insight, it assigns higher eviction probabilities to flows that
have remained inactive for longer durations, thereby freeing
up space for truly persistent flows. Tight-Sketch [18] leverages
flow arrival patterns and applies different replacement strate-
gies based on a flow’s persistence level. If a flow’s persistence
value exceeds a predefined threshold, a dual-feature strategy
is used, considering both frequency and arrival continuity.
Otherwise, the replacement decision is based solely on the
persistence value. This approach increases the likelihood that
highly persistent flows remain in the sketch, preventing them
from being easily evicted by a large number of non-persistent
flows, leading to high detection accuracy.

3) Limitations of Existing Methods: While dual-
dimensional methods generally achieve higher detection
accuracy than single-dimensional approaches, they incur
greater memory consumption due to the additional features,
reducing overall memory efficiency. Their performance

may degrade as the number of persistent flows increases.
Moreover, both single- and dual-dimensional methods rely
on frequent flag resets for persistence tracking, limiting their
effectiveness on programmable switches and in high-speed
networks, similar to the limitations observed in Pontus
[12]. This dependence on flags for duplicate removal is a
fundamental limitation of existing methods, as they typically
overlook the hardware constraints of programmable switches.

C. Summary

In a nutshell, existing methods for persistent flow detec-
tion encounter significant challenges when implemented on
hardware-programmable switches in high-speed flow scenar-
ios. To overcome these limitations, we propose a novel sketch,
PALLAS, which achieves high accuracy even with constrained
memory resources and high-speed traffic rates, as detailed in
the following section.

III. PALLAS DESIGN

We present the design of the vanilla PALLAS, outlining
its underlying principles, data structure, and core operations:
update and query.

A. Design Philosophy

(i) To ensure compatibility with programmable switches, we
eliminate the flag reset operation typically performed at the be-
ginning of each time window. This reset requires coordination
between the control plane and data plane, introducing delays
that are unsuitable for high-speed traffic. Instead, we use a
global counter to track the index of each arriving packet and
compute the corresponding time window. Each bucket stores
the index of the last time window in which its tracked flow
appeared. By comparing this stored index with the current
window index (see Section III-C for details), we can determine
whether the flow has arrived in the current window, removing
the need for explicit flag resets used in prior work.

(ii)) To improve detection accuracy under skewed traffic
distributions, we adopt a probability-based replacement strat-
egy [5], which has demonstrated superior performance even
under tight memory constraints [9], [12], [21], [22]. Given
that the persistence value of a flow is typically much smaller
than its frequency and considering the limited arithmetic capa-
bilities of programmable switches, we employ a lightweight
probabilistic decay approach rather than direct probabilistic
replacement. This is because, even for a persistent flow, its
relatively small persistence value makes it vulnerable to being
incorrectly evicted when directly compared against the large
number of packets from all flows.

B. Data Structure

Existing sketch data structures can be categorized as flat
[5], [12], [16], [18] and hierarchical [17], [23], [24]. While
the latter often achieve higher memory efficiency through
complex variable-size counters, their intricate designs render
them impractical for deployment on programmable switches.
Thus, we adopt a flat structure for PALLAS.

Figure 1 shows the data structure of PALLAS, which consists
of r rows, each with w columns (buckets). Each row is

w
|

[0 I B e B

r : :

walan i P s

Fig. 1: Data structure of PALLAS.

Br.af= K| P W]
K: Fingerprint P: Persistence
W: Last arrival time window

associated with a unique hash function. A bucket B(v,q)
1 < v <rl1 < g < w) contains three fields: the flow
fingerprint (K), the persistence counter (), and the last arrival
time window (W). A global counter (C') is also maintained
to record the current time window number. The fingerprint, a
compact bit sequence derived from the flow key using the hash
function, reduces memory usage and simplifies programmable
switch implementation, as detailed in Section VI.

C. Main Operations

Update. Algorithm 1 illustrates the update process of PAL-
LAS. Initially, all fields are initialized to O (Line 1). When a
packet from a flow arrives, the global counter (C') increments
by 1, and the current time window index is computed as
|C/G]+1, where G is the predefined time window size (Lines
2-4). Subsequently, one of three scenarios may occur:

(1) When a packet from a flow e; arrives, PALLAS sequen-
tially applies the hash functions Ay, ho, ..., k. to locate the
bucket B(v,q) (Lines 5-7). If the bucket is empty, indicat-
ing no flow is currently tracked, the flow is inserted into
the bucket. The fingerprint field is updated with the flow’s
fingerprint, the persistence counter is initialized to 1, and the
last arrival time window is set to the index of the current time
window. The hash operations terminate (Lines 8-10).

(1) If the fingerprint stored in the hashed bucket matches
the incoming flow’s fingerprint, the algorithm compares the
current time window with the tracked last arrival time window.
If the two values differ (i.e., the last arrival time window
is smaller), this indicates the flow’s first appearance in the
current time window. In this case, the persistence counter
is incremented by 1, and the last arrival time window is
updated to the current time window (Lines 11-15). Conversely,
if the same flow arrives again within the same time window
(i.e., the last arrival time window equals the current time
window), the persistence counter remains unchanged. This
design eliminates the need for flags, allowing all operations
to be fully implemented in the data plane.

(iii) When collisions occur in every row, PALLAS chooses
one row at random and applies the replacement in its hashed
bucket (Lines 16-17). Unlike the approach of selecting the
bucket with the smallest value [5], random selection elim-
inates the circular dependency introduced by comparisons,
simplifying deployment on programmable switches. Next, the
algorithm compares the current time window with the bucket’s
last recorded arrival time window to check if the tracked
flow has already been processed in the current window. If
it has, the incoming flow is discarded, and no replacement
occurs (Lines 18-20). Otherwise, the tracked flow’s persistence
counter is probabilistically decremented, at a rate defined by

Algorithm 1: Update Process of Basic PALLAS

Input: a packet from flow e;, hash functions hi, ho,..., h,,
global counter C, time window size G, min, < +oo
1 Initialization: Set all bucket fields K, 4 (fingerprint), P, 4
(persistence), and W, 4 (last arrival time window) to O for
all buckets B(v, q). Initialize global counter C' < 0.
2 Step 1: Update Global Counter.
3 Increment global counter: C' <+ C' + 1
4 Compute the current time window index:
currentWindow + |C/G| + 1
5 Step 2: Locate Bucket.
6 forv =11 r do
index < hy(e;.key)
// Case 1l: Empty bucket
8 if Koy index == 0 then
Kv,index, Pv,indeX7 Wu,index —
e; .fingerprint, 1, currentWindow
10 return

// Case 2: Same flow already tracked
11 else if K, index == e;.fingerprint then

12 if W ingex < currentWindow then

13 L Pv,index — P’u,index + 1

14 W index ¢— currentWindow

15 return

16 randRow <« randomlInteger(1,)
17 randIndex <— Arandrow (€;.key)
18 Step 3: Probabilistic Decay.

19 if Wiandrow, randindex == currentWindow then
20 return // Discard the incoming flow if
bucket is fresh in current window

1

— then
P, randRow ,randIndex + 1

21 if random(0,1) <

22 RandRow,randIndex — PrandRow,randIndex -1
23 if P, randRow ,randIndex —=— 0 then

24 KrandRow,randindex <— €;.fingerprint
25 PrandRow,randlndcx +—1

26 I/andkow,randIndex < currentWindow
27 return

the reciprocal of its current counter plus one (Line 21). If the
decrement succeeds (Line 22) and the counter reaches zero
(Line 23), the incoming flow replaces the tracked flow. To
this end, the new flow overwrites the fingerprint, resets the
persistence counter to 1, and records the current time window
as the last arrival window (Lines 24-26).

This approach ensures higher persistence flows are more
likely to remain in buckets, thereby achieving high detection
accuracy. Additionally, the simplicity of this method makes it
highly suitable for deployment on programmable switches.
Query. To retrieve persistent flows, PALLAS first determines
whether the given flow is tracked in the buckets by hashing it
across the rows. If the flow is found, its persistence counter
is checked against the predefined threshold vM. If the per-
sistence is greater than or equal to the threshold, the flow is
classified as persistent; otherwise, it is not.

D. Running Examples

To clarify the update procedure, we provide several running
examples illustrated in Figure 2. Here, PALLAS is configured
with two rows, each containing three buckets. The size of

(s 115]

Update

Update

e 34 0/0]| [er|[5]5

./e2|3|4| [e[1]5] [&]5]5
©

t2 [es[1]4] [es[3[3] [es[4]5

n [es[1]4] [es[3]3] [es[4]5]
e214|5] |es|1|5| |er]5]|5

Unsuccessful Successful

Fig. 2: Running examples of PALLAS.

921415\\981115\\e7|5|5| ®
t Yes|1]4] [e:[3]3] [es[4]5] to |es|[1]5] [es|3[3] [es]|4]5

each time window is set to 500 packets. Assuming that 2,100
packets have already arrived, the index of the current time
window is calculated as [2100/500] + 1 = 5.

At t1, when the 2101st packet arrives, flow eg uses the hash
function h; to locate a bucket in the first row. The bucket
is empty: flow eg is inserted, the fingerprint is set to eg’s
fingerprint, the persistence counter is initialized to 1, and the
last arrival time window is set to the current time window (5).

At to, when ey arrives, it finds a matching fingerprint in
the first row. PALLAS compares the tracked last arrival time
window with the current time window. The last arrival window
is 4, i.e., eo has not yet arrived in the current time window:
the persistence counter is incremented by 1 (to 4), and the last
arrival window is set to the current time window (5).

At t3, when eg3 arrives, it encounters hash collisions across
all rows. PALLAS randomly selects a bucket from one of
the rows, i.e., the bucket tracking es. Since es’s last arrival
window is 4, i.e., it has not arrived in the current time window,
a probabilistic decay is triggered with a probability of ﬁ
Two outcomes are possible: if the decay is unsuccessful, no
changes occur and eg is discarded. If the decay succeeds, e5’s
persistence counter is decremented by 1 to 0, letting e replace
es. The fingerprint is set to es’s fingerprint, the persistence
counter is set to 1, and the last arrival window is set to 5.

At t4, when e; arrives, hash collisions occur across all rows,
and the bucket tracking es is randomly selected. However,
because eg’s last arrival window matches the current time
window (5), no replacement occurs, and e; is discarded.

IV. OPT-PALLAS: AN OPTIMIZED VERSION OF PALLAS

In the vanilla version of PALLAS, the probabilistic replace-
ment mechanism triggered by hash collisions across all rows is
based solely on flow persistence. However, as prior work has
shown [5], [12], persistence values are typically much smaller
than flow frequencies. Even a persistent flow—for instance,
one observed across 1,600 time windows with a maximum
persistence value of 1,600 [4]—can still be easily evicted from
buckets due to the overwhelming volume of packets from other
flows, making it more prone to incorrect replacement. Incorpo-
rating additional features beyond persistence can offer stronger
protection for potential persistent flows, reducing their likeli-
hood of being displaced by numerous non-persistent flows—
particularly under highly skewed traffic and limited memory.
To further enhance detection accuracy in such constrained
settings, we propose OPT-PALLAS, an optimized version of
PALLAS. OPT-PALLAS leverages the characteristic that most

persistent flows continue arriving without long interruptions,
providing these flows with greater protection against eviction
from buckets in skewed traffic. Note that these accuracy
improvements come with a modest cost: a more sophisticated
replacement strategy that slightly reduces processing speed
and increases deployment complexity (discussed in Section
IV-C).

A. Rationale

(i) If a flow has not arrived for an extended period,
its likelihood of being truly persistent diminishes [5], [16].
Motivated by this insight, we enhance detection accuracy by
offering stronger protection to flows that exhibit fewer arrival
interruptions. The design of PALLAS naturally supports this
strategy: each bucket records the last arrival window index
W, while the current window index is derived from a global
counter C. This allows us to estimate the number of inactive
windows for a tracked flow. As this inactivity gap increases,
we raise the probability of evicting the flow to free up space
for more likely persistent flows.

(i) To moderate the decay rate for persistent flows under
skewed traffic, we adopt an exponential-based decay strategy
considering both flow persistence and its arrival continuity.
This approach makes such flows more resistant to eviction,
even under severe hash collisions and limited memory, thereby
improving detection accuracy.

B. Operations of OPT-PALLAS

1) Update: The cases where an incoming flow either finds
an empty bucket or a matching bucket are handled identically
to cases (i) and (ii) in the vanilla version of PALLAS, as
described in Section III-C. The key difference between OPT-
PALLAS and the basic PALLAS arises when hash collisions
occur in all rows. Algorithm 2 illustrates the update process
in such scenarios. When a flow collides in all rows, a row is
randomly selected from the r rows in the sketch (Lines 1-2).
If the tracked flow in that row has not appeared in the current
time window, the incoming flow attempts a probabilistic
decay (Lines 3—4). The algorithm first computes the inactivity,
defined as the number of time windows since the tracked flow
last appeared (Line 5). It then calculates the decay probability
as 1 — e‘w, where « is a small positive constant that
controls the decay speed (e.g., 0.11, see Section IX-C for
more details), and P is the persistence of the tracked flow
(Line 6). In this way, a flow with higher persistence and lower
inactivity is more likely to be truly persistent, and thus has a
lower probability of being decayed. This approach not only
increases the likelihood of retaining genuine persistent flows
in the sketch, but also enhances the accuracy of persistence
tracking. A tracked flow is evicted from the bucket only when
its persistence counter is decremented to zero (Lines 7-12).

2) Query: The query operation in OPT-PALLAS remains
identical to that of the basic PALLAS.

C. Discussion

While the finer-grained control in OPT-PALLAS enhances
the accuracy of persistent flow detection (as shown in Sec-

Algorithm 2: Update Process of OPT-PALLAS Under
All-Row Hash Collisions
randRow < randomlInteger(1, r)
randIndex <— Arandrow (€;.key)
if Wianarow,randindgex == currentWindow then
| return

B W N =

5 inactivity = maz(currentWindow — WiandRow,randindex, 1)

aXinactivity

6 if random(0,1) <1 — e FrandRow,randindex then
7 RandRow,randlndex — PrandRow,mndlndex -1

8 if -PmndRuw,mndIndex == 0 then

9 KrandRow,randlndex — €i-ﬁngerprlnt

10 -PrandRow,randIndex +—1

1 WrandRow,randIndex <+ currentWindow
12 return

tions VIII-B and IX-A), it also introduces additional com-
plexity. Specifically, the use of exponential-based compu-
tations poses a challenge for hardware implementation on
the Tofino switch, which has limited support for complex
mathematical operations. In addition, the constrained memory
resources make it difficult to store precomputed values, as
the probabilistic calculations involve numerous combinations
of parameters, leading to substantial storage overhead. We
detail these challenges in Section VI-B, where we also present
a prototype implementation of OPT-PALLAS on the Tofino
using P4 and runtime-assisted lookup tables to approximate
exponential decay.

V. MATHEMATICAL ANALYSIS

In this section, we first demonstrate that both PALLAS
and OPT-PALLAS do not overestimate persistence and sub-
sequently derive the corresponding error bounds.

Theorem V.1 (No Over-Estimation Error). For any element
e; € S, its estimated persistence 155 produced by either
Algorithm 1 or Algorithm 2 can not exceed its true persistence
P.,. Formally, If’ei <P,

Proof. We analyze the behavior of Algorithm 1 and Algo-
rithm 2 over each time window W;. For Algorithm 1, we
employ a case analysis, while for Algorithm 2, we use a proof
by contradiction. In both cases, we show that

Ve; € S,Vj € M, P} < P!

Due to space limitations, the complete proof is provided in
Section A of [25]. O

Here, we prove that both PALLAS and OPT-PALLAS achieve
(e, 0)-persistence, as defined in Section B of [25], thus
demonstrating their low error rates in estimating persistent
flows. Moreover, we show that OPT-PALLAS achieves a lower
error rate than PALLAS, highlighting its superior estimation
accuracy in identifying persistent flows.

Theorem V.2. In Algorithm 1, given a small positive number
€, the probability of failing to identify a persistent flow

is upper-bounded by § ACHwA—exp(®)) \here & =

ewAG ’
—DA . .
—%, w denotes the number of buckets in each row, r is

the number of rows, G is the predefined time window size, n
is the number of distinct flows, and X is the arrival rate.

Proof. Due to space constraints, the detailed derivation of this
bound is provided in Section C of [25]. O

Theorem V.3. In Algorithm 2, given a small positive number
€, the probability of failing to identify a {Jersistent flow is
upper-bounded by 0., =)‘G+w6(i/\e’(p(¢), where ®,, =
—%, w denotes the number of buckets in each row, r
is the number of rows, G is the predefined time window size,

n is the number of distinct flows, and \ is the arrival rate.

Proof. Owing to space constraints, the detailed derivation of
this bound is provided in Section D of [25]. O

Remark V4. Given that o < % we have

~(n=1XG
2rw

a(n—1) S

(I)opt = - rw

= .

Since the exponential function is strictly increasing, it follows
that €®» > e® and thus 1 — e®r < 1 — 2, Substituting into
the expressions for the error bounds yields

Sopt < 0.

Therefore, OPT-PALLAS provides a strictly smaller upper
bound on the error probability than PALLAS.

VI. TOFINO HARDWARE IMPLEMENTATION

We implement a prototype of PALLAS and OPT-PALLAS
in a testbed with industry-grade Intel Tofino programmable
switches using the P4 language.

A. PALLAS Implementation

Figure 3 shows the mapping of PALLAS onto a PISA
pipeline. The figure depicts a toy example including scenarios
of hash collision and no collision of a flow passing through
the pipeline. The design of PALLAS in Tofino consists of
three main components: the blocks per row and a final block
responsible for determining whether to replace a flow or
decrease its persistence count. We employ the Tofino Native
Architecture (TNA) RegisterAction extern function to keep
track of flows, their most recent arrival times, and their
persistence counts. Register entries are allocated according to
the number of buckets used in the experiments. To generate
a unique key for each flow and store the flow keys in the
flow tracking registers, we use the predefined hash function
of HashAlgorithm_t.CRC{x}, applying different bit sizes
for X. Each incoming packet is assigned a 32-bit unique
flow key, which is then used to check for a match in the
corresponding register index (i.e. bucket). The reason why we
use 32-bit hash value instead of using total 64-bit source and
destination ip addresses as a flow key is to reduce the memory
to store the key and optimize the switch implementation. The
optimization is necessary to break dependencies, as compound
conditions are not allowed in P4 implementations and must be
expressed through nested evaluations.

If the flow in the bucket differs from the incoming flow,
a collision is detected. If a collision occurs in both rows,
the packet is forwarded to the replacement decision block, as
depicted in Figure 3, where the target bucket for replacement
or decrement operations is determined using RAND(0,1).
After determining the target bucket, we recirculate the packet
to eliminate dependencies, which increases the total number
of stages required in the switch. Additionally, this approach
is necessary because the TNA restricts accessing the same
register more than once per packet.

In our experiments with both PALLAS and OPT-PALLAS,
although the recirculation rate varies with memory allocation,
it remains low enough to have no noticeable impact on system
functionality, as the design efficiently handles traffic regardless
of rate. In contrast, Pontus shows a lower recirculation rate but
with a limited processing capacity of 5 Mbps, highlighting
a trade-off between recirculation efficiency and throughput.
Overall, the recirculations in both in PALLAS and OPT-
PALLAS are manageable because it does not impede traffic
flow or introduce significant latency—only adding a delay on
the order of a few nanoseconds. This ensures that the system
operates efficiently, even under varying load conditions and
with potential hash collisions.

After recirculation, we discard the stored flow or decay
its persistence counter if the condition RAND(O,Qb) <
int(m) and W,androw < Tewrrent holds, where
b is the bit size of the total time windows, W,undRow 18
the arrival time of the most recent packet of the flow, and
Tewrrent 1S the global current time value. It is challenging to
implement division operations in the switch due to hardware
constraints and limitations of the P4 language. Although the
MathUnit extern allows for approximate division, it doesn’t
produce exact results and is restricted by factors such as the
approximation method and the range of inputs. To mitigate
these limitations, we precompute more accurate division ap-
proximations offline and populate the corresponding entries in
the switch’s table.

If a flow match occurs in one of the rows, the persis-
tence counter is incremented by one, provided it has not
been incremented previously within the same window, as in
Figure 3. Finally, all packets traversing the switch pipeline are
forwarded.

B. OPT-PALLAS Implementation

1) Challenges: The deployment of OPT-PALLAS on pro-
grammable switches introduces several challenges. Firstly,
these switches are highly constrained environments, partic-
ularly with regard to executing complex mathematical oper-
ations such as exponential computations. While the use of
MathUnit externs can facilitate the computation of expo-
nentials, they yield only approximate results and incur addi-
tional pipeline stage consumption. Given that programmable
switches typically support a maximum of 12 pipeline stages,
it is imperative to investigate more efficient and accurate
approaches for performing such calculations. Thus, similarly
to PALLAS, we implement decay probability calculations using

@ Last Arrival Time Tracking [Persistence Counter

3¢ Coliision

Flow Tracking

+ Flow Hit

Recirculation

2
1+P
Replacement
Decision A
RAND(0,2") <

RAND(02) <

X X X X

x

(1-=>

)x2¢

ROW 1

ROW 2

Fig. 3: High-level workflow of PALLAS and OPT-PALLAS in
Tofino, illustrating scenarios of hash collision and no collision
for a flow.

lookup tables in programmable switches. The probability value
depends on two parameters: P, representing the persistence
of the tracked flow, and inactivity, which denotes the number
of time windows since the flow last appeared. This results
in a total of (window size)?> possible combinations. Given
the limited resources available in programmable switches,
it becomes necessary to compress the table to ensure the
implementation remains feasible across various window sizes.

2) Implementation Details: The hardware deployment of
PALLAS and OPT-PALLAS differ on how we take the re-
placement decision, as shown in Figure 3. Different from
PALLAS, after recirculation, we discard the stored flow or
decay its persistence counter if the condition of RAN D(0, 2%)

a X inactivity
< Znt((l —e P“"'dk"w"‘“"dlndcx) * 2b) and WrandRow,randlndem
< Teyrrent holds. To support this, we define a lookup
table that stores all possible combinations of (inactivity,
PrandRow,randindex), along with the corresponding precomputed
values of the right-hand side of the inequality. Due to the high
cost of storing all possible combinations—and the observation
that different inactivity values can yield close results for
the same Pundrow,randindex—WE compress the table entries by
using ternary matches with appropriate masks on inactivity,
combined with exact matches on PandRow,randindex- This means
that pairs that share the same Piandrow,randindex and fall within
the same inactivity range are mapped to a single precomputed
value, which is computed as the average of all corresponding
values within that range. With this mechanism, the table
becomes scalable to arbitrary window sizes without degrading
the performance of OPT-PALLAS. However, the window size
must be known in advance to appropriately configure the
lookup table compression.

VII. EVALUATION SETUP

Platforms. To evaluate the performance of PALLAS and OPT-
PALLAS, we implement it on two platforms: (i) Hardware:
A real testbed using off-the-shelf Intel Tofino switches pro-
grammed in P4. (ii) Software: A C++ software version running
on a CPU platform equipped with an Intel(R) Core(TM) i5-
1135G7 @ 2.40GHz processor and 16GB of DRAM.

Baselines. On the Tofino switch, we compare PALLAS and
OPT-PALLAS with Pontus [12], the most state-of-the-art
method for persistent flow detection. In the Tofino hardware

implementation, PALLAS operates using two rows, while Pon-
tus is constrained to a single row due to its more complex
update mechanism. Both PALLAS and OPT-PALLAS use 32-bit
fingerprints, resulting in negligible collision probability even
under high-volume traffic and tight memory constraints. The
number of buckets on the Tofino switch is varied from 1,024
to 16,384, following prior configurations [26]. Since PALLAS,
OPT-PALLAS and Pontus employ identical bucket sizes, the
total memory usage remains consistent for a given number of
buckets, ensuring a fair and balanced comparison.

On the CPU platform, we further validate the consistent
superiority of PALLAS and OPT-PALLAS by comparing them
against additional recent baselines, including Pandora [16],
Stable-Sketch [4], Tight-Sketch [18], and P-Sketch [5]. Al-
though other methods such as On-Off Sketch [6] and PIE
[7] exist, the selected baselines consistently outperform them,
and thus we omit comparisons with those less competitive
approaches. For a fair comparison, all baseline methods are
adapted to use fingerprint-based flow tracking. We set the
number of rows in PALLAS and OPT-PALLAS as 2 [5], [12].
The settings of all considered baselines are aligned with [12].
We vary the memory size from 16KB to 256KB [4], [12], [16],
aligning with the typical range of L1/L2 cache sizes [27].
Traces. We evaluate PALLAS using three real-world CAIDA
traces from 2016, 2018, and 2019. The 2016 and 2018
traces contain 22.3M packets from 730K and 760K flows,
respectively, while the 2019 trace includes 29.5M packets from
1.53M flows. Each trace is split into 1,500 time windows, with
the persistent threshold ~ set to 0.4 [12]. Under this setting,
the ground-truth number of persistent flows is 951, 1,075, and
1,886 for the 2016, 2018, and 2019 traces, respectively. To
assess robustness, we also vary the number of windows and
the threshold in Sections IX-B.

Parameter Settings. The basic PALLAS does not rely on
any additional parameters. OPT-PALLAS introduces a decay
probability controlled by a tunable parameter «, which adjusts
the decay speed. We set « to a small positive value of 0.11.
This parameter selection follows the common practice in prior
sketch-based approaches [5], [16], [21], [22], where values are
determined empirically. A detailed analysis of the impact of
o is provided in Section IX-C.

Metrics. We evaluate performance using five metrics: (i)
Recall, the ratio of correctly identified persistent flows to
all true persistent flows; (ii) Precision, the ratio of correctly
identified persistent flows to all reported persistent flows; (iii)
F1 score, the harmonic mean of recall and precision; (iv) AAE
(Average Absolute Error), which measures the average error
between estimated and true persistence values; and (v) Update
throughput, measured as the number of packets processed per
second (Mpps). All experiments are repeated five times, and
we report the average values.

VIII. HARDWARE EVALUATION (TOFINO-BASED)

A. Alignment of Tofino and Software Versions

We first compare the recall for identifying real persistent
flows on both the Tofino switch and the CPU platform across

1.00 1.00
L0715 L2075
o o
E 0.50 Opt-Pallas-HW E 0.50 Opt-Pallas-HW
g Opt-Pallas-SW g Opt-Pallas-SW
0.25 Pallas-HW 0.25 Pallas-HW
Pallas-SW Pallas-SW
0.00 0
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
Total Number of Entries Total Number of Entries
(a) CAIDA 2016. (b) CAIDA 2018.
1.00
[
= 0.75
o
E 0.50 Opt-Pallas-HW
g Opt-Pallas-SW
0.25 Pallas-HW
Pallas-SW
0.00

1024 2048 4096 8192 16384
Total Number of Entries

(c) CAIDA 2019.
Fig. 4: Recall for PALLAS’s hardware (Tofino) and software
(CPU) implementations, showing consistent results and vali-
dating the accuracy of our hardware implementation (In the
legend, HW and SW denote hardware and software).

0.60 1.00
0.40 0.75
S N S 050
& 0.20 Opt-Pallas 2 Opt-Pallas
’ Pallas 0.25 Pallas
—— Pontus N\ —— Pontus
0.00 0.00
o n o n o n o n

o o
~ \n ~] ~N \n ~ S

— —

))

Traffic Sending Rate (Mbps Traffic Sending Rate (Mbps

(a) 1,024 buckets. (b) 16,384 buckets.

Fig. 5: Recall of OPT-PALLAS (2-row), PALLAS (2-row) and
Pontus (1-row), both implemented in hardware, under different
traffic sending rates.

different traces. Since both methods only exhibit underes-
timation errors—meaning all captured persistent flows are
genuine—the precision is always 1. Hence, we omit the pre-
cision metric. As shown in Figure 4, the capture rates remain
similar across various register entry sizes, demonstrating the
correctness and consistency of our hardware implementation.

B. Comparative Evaluation in Tofino Hardware Switch

We first evaluate the detection accuracy of OPT-PALLAS,
PALLAS and Pontus at varying traffic sending rates, using
1,024 and 16,384 buckets, shown in Figure 5. We observe that
both OPT-PALLAS and PALLAS perform reliably even at high
sending rates, and their performance remains unaffected by
traffic speed. This is because PALLAS ’s entire implementation
resides in the data plane, requiring no control-plane interac-
tion. In contrast, Pontus’s frequent flag resets cause its recall
to drop significantly once the traffic injection rate exceeds
around 5 — 10 Mbps, depending on the allocated memory size,
rendering it less suitable for high-speed environments.

Figure 6 shows the recall and F1 score for OPT-PALLAS,
PALLAS and Pontus, tested with a feasible traffic sending
rate, on the hardware platform. As illustrated, OPT-PALLAS

significantly outperforms PALLAS in all scenarios with limited
memory resources, while OPT-PALLAS’s performance be-
comes comparable—mostly slightly better—when more mem-
ory is allocated. However, on the CAIDA 2019 trace, OPT-
PALLAS consistently outperforms PALLAS across all mem-
ory allocations. The maximum recall and F1 score improve-
ment achieved by OPT-PALLAS over PALLAS is 11.77% and
10.82%, respectively, whereas the highest gain observed for
PALLAS over OPT-PALLAS is only 3.1% and 0.71%. The su-
periority of OPT-PALLAS comes with certain limitations, such
as the constraints on the number of entries that can be stored
due to limited table capacity. While PALLAS allows us to store
millions of entries in its table to calculate the probabilistic
values, OPT-PALLAS allows to store data in only 25K entries.
This is because, in PALLAS, the probabilistic value depends
solely on the persistence value, allowing the use of a table
with exact matches. In contrast, OPT-PALLAS computes the
probability based on both persistence and inactivity values,
requiring a more complex table that combines ternary and
exact matches, which limits the memory we can allocate to
the entries.

Moreover, both OPT-PALLAS and PALLAS consistently out-
perform Pontus in terms of accuracy. For instance, on the
CAIDA 2018 trace, recall of OPT-PALLAS and PALLAS is on
average 9.28% and 7.11% higher, respectively, while on the
CAIDA 2019 trace, F1 score of OPT-PALLAS and PALLAS
is on average 5.98% and 4.21% higher, respectively. This
improvement stems from their probabilistic decay strategy,
which prevents persistent flows from being easily evicted by
non-persistent ones. Moreover, both of their elegant update
procedure supports a 2-row deployment, further boosting de-
tection accuracy.

Resource OPT-PALLAS PALLAS Pontus (1-row)
Hash Bit 4.9% 5.7% 5.7%
Match Crossbars 5.7% 6.0% 4.6%
Gateways 16.7% 17.2% 16.7%
Logical Table ID 23.4% 23.4% 21.9%
VLIW Instruction 7.8% 7.3% 7.3%
SRAM 3.3% 4.3% 4.3%
TCAM 13.9% 0% 0%
Stages Used 12 12 11

Total Average 9.7% 8.5% 8.2%

TABLE I: Comparison of Resource Usage in Tofino Switch

C. Resource Usage and Latency

We examine resource usage, which is an important pa-
rameter to consider when dealing with resource-constrained
user plane devices, and latency, using the Intel P4 Insight
analysis tool [28] offering an in-depth analysis of compiled P4
programs. Table I shows the resource usage of OPT-PALLAS,
PALLAS, and Pontus in Tofino Switch. OPT-PALLAS uses
9.7% of total resources, which gives enough space for other
operations of the switch. OPT-PALLAS and PALLAS utilize
all the stages available because of the dependencies between
the implementation blocks shown in Figure 3. Both OPT-
PALLAS and PALLAS’s hardware design is centered around
registers that consume SRAM resources, yet they use only

mmm Opt-Pallas
mm Pallas
I Pontus

1024 2048 4096 819216384
Total Number of Entries

(a) Recall (CAIDA 2016).

B Opt-Pallas
mm Pallas
BN Pontus

1024 2048 4096 819216384
Total Number of Entries

(b) Recall (CAIDA 2018).

Iy
o
S

<
9
5,

N Opt-Pallas
mm Pallas
Bl Pontus

B Opt-Pallas
s Pallas

F1 Score
o
w
o

o
N
8

0 1024 2048 4096 819216384
Total Number of Entries

(d) F1 score (CAIDA 2016).

1024 2048 4096 819216384
Total Number of Entries

(c) Recall (CAIDA 2019).

I Opt-Pallas
 Pallas
BN Pontus

=
o
S

1.00

o
9
5
o
9
a

B Opt-Pallas
 Pallas
Bl Pontus

F1 Score
F1 Score
o

o
N
8y

0 1024 2048 4096 819216384
Total Number of Entries

(f) F1 score (CAIDA 2019).

1024 2048 4096 819216384
Total Number of Entries

(e) F1 score (CAIDA 2018).

Fig. 6: Recall and F1 score of feasible hardware implemen-
tations of OPT-PALLAS (2-row), PALLAS (2-row) and Pontus
(1-row). PALLAS consistently achieves higher accuracy than
Pontus across all evaluated scenarios.

3.3% and 4.3% of the total available SRAM, respectively.
While OPT-PALLAS utilizes less SRAM, it requires TCAM
resources (13.9%) to implement ternary matches different than
PALLAS and Pontus. Overall, in most of the resources, OPT-
PALLAS consumes less. Despite of the 2-row implementation
in OPT-PALLAS and PALLAS, they have generally a similar
resource usage with Pontus.

Besides utilizing a reasonable amount of memory, OPT-
PALLAS detects persistent flows at line rate, introducing an av-
erage packet processing latency of just 443 ns. This represents
only a 15 ns and 34 ns increase over the PALLAS and hardware
deployable version of Pontus with 1-row, respectively, and a
132 ns increase compared to legacy forwarding in the switch.

IX. TRACE-DRIVEN EVALUATION (CPU-BASED)
A. Detection Performance

1) Accuracy: Figure 7 presents the detection accuracy
of various methods. From Figures 7(a)-(c), we highlight
three key observations: (i) OPT-PALLAS consistently achieves
higher F1 scores than PALLAS. For example, with 16KB of
memory, OPT-PALLAS outperforms PALLAS by 7.29% on
the CAIDA 2016 trace. On average, OPT-PALLAS maintains
superior F1 scores across all traces, attributed to its ability
to incorporate arrival patterns and better preserve persistent
flows under limited memory and high hash collision rates.
(i1) The F1 scores of OPT-PALLAS are comparable to those of
the state-of-the-art Pontus (with 2-row). While Pontus benefits
from multiple flags for finer-grained persistence tracking, its

reliance on frequent flag resets and complex update logic pre-
vents practical deployment under a 2-row setting on the Tofino
switch. (iii) OPT-PALLAS outperforms other baselines. Under
the constrained 16KB memory setting, OPT-PALLAS improves
the F1 score over Stable-Sketch by 9.21%, 7.97%, and 8.5%
on the CAIDA 2016, 2018, and 2019 traces, respectively.

From Figures 7(d)—(f), we observe that OPT-PALLAS con-
sistently yields significantly lower estimation errors com-
pared to PALLAS across all traces. Additionally, the AAE of
OPT-PALLAS is comparable to that of the advanced Pontus,
which, despite its accuracy, is impractical for deployment
on programmable switches. Compared to other baselines,
OPT-PALLAS substantially reduces estimation errors, further
validating its effectiveness.

1.0 1.0
R =
0.9 7 /'/.—0— Opt-Pallas /1—0— Opt-Pallas
< 727 e e palias £09 f e allas
R0.8{w” 4, & == Pontus 3 [e pontus
— R -4 Pandora — 72O -4 Pandora
- 7. Stable-Sketch | - 0.81 % /'~‘ Stable-Sketch
077 ¢ — Tight-Sketch K — Tight-Sketch
— . P-Sketch 24 — . P-Sketch
0.6 0.7
16 32 64 128 256 16 32 64 128 256

Memory Size (KB)

(b) F1 score (CAIDA 2018).
60

Memory Size (KB)

(a) F1 Score (CAIDA 2016).

10 “‘ —8— Opt-Pallas
3?&"‘ 50 ‘. ~#- Pallas
0.9 ¢ == Opt-Pallas ", =& Pontus
g XT‘/‘" ~=- Pallas w 40 R\ . 4 Pandora
Sosle /" =i Pontus § 30 \ ‘0‘. Stable-Sketch
— 723 4 Pandora ARy ‘., — Tight-Sketch
- b4 /" Stable-Sketch 20 X \.\\\‘4 = P-Sketch
0.7 '/, —= Tight-Sketch 10 R 3
—+ P-Sketch TSRS
0.6 0 - 3
16 32 64 128 256 16 32 64 128 256

Memory Size (KB)

(d) AAE (CAIDA 2016).

Memory Size (KB)

(c) F1 score (CAIDA 2019).

60 801w
—e— Opt-Pallas kS —e— Opt-Pallas
50 ‘.‘ ~#- Pallas 60 * ~#- Pallas
40 ., =&+ Pontus \ ., =& Pontus
w k . + 4 Pandora w % . + 4 Pandora
3 30 \\ . Stable-Sketch 3 401 AN, Stable-Sketch
» V. AN\ V.
SR »= Tight-Sketch \\\ . »= Tight-Sketch
20 &{\ —+ P-Sketch 20 \\\.\\'«. —~ P-Sketch
IR D) NS
0] NSy, e,
s ~Esattey

6 32 64 138 256 C16 32 64 128 256
Memory Size (KB)

(f) AAE (CAIDA 2019).

Memory Size (KB)
(¢) AAE (CAIDA 2018).

Fig. 7: F1 score and AAE of different methods for persistent
flow detection, as a function of memory size.

2) Processing Speed: The results in Section VIII confirm
that both PALLAS and OPT-PALLAS can handle packets at
line rate on the Tofino switch. To further evaluate their perfor-
mance, we measure their update speed on a CPU platform.
Table II reports the average update speeds across memory
sizes ranging from 16KB to 256KB. We observe that PALLAS
achieves comparable speed to existing methods, while OPT-
PALLAS exhibits slightly lower throughput due to its more
complex replacement logic involving exponential computa-
tions. However, OPT-PALLAS still meets the performance
requirements of high-speed networks such as 10Gbps, which
require 14.88M packets per second processing speed [15].

Method \ OPT-PALLAS PALLAS Pontus Pandora Stable-Sketch Tight-Sketch ~ P-Sketch
CAIDA 2016 20.8 22.0 23.1 22.2 22.1 21.6 21.9
CAIDA 2018 222 23.0 24.0 229 232 227 23.0
CAIDA 2019 21.9 22.7 23.9 23.1 22.9 22.4 22.7

TABLE II: Processing speed (Mpps) comparison across methods and traces.

! | 001 003 005 007 008 009 010 011 012 014 016 040 050
CAIDA 2016 | 0.762 0.813 0.834 0.847 0.845 0.847 0.849 0.854 0.849 0.850 0.798 0.802 0.787
CAIDA 2018 | 0.796 0.848 0.856 0.864 0.858 0.868 0.880 0.867 0.874 0.868 0.866 0.856 0.853
CAIDA 2019 | 0.727 0.769 0.784 0.783 0.799 0.792 0.798 0.804 0.795 0.794 0.798 0.786 0.776

Average | 0.762 0.810 0.825 0.831 0.834 0.836 0.842 0.842 0.839 0.837 0.821 0815 0.805

TABLE III: F1 Score under different o values (memory = 16KB).

B. Multiple Cases

1) Performance under Different Thresholds: In the previous
evaluation, the persistence threshold vy was set to 0.4. To
validate the robustness of our approach, we vary ~ from 0.1
to 0.7, using a fixed memory budget of 16KB and the CAIDA
2019 trace for testing. As illustrated in Figure 8, OPT-PALLAS
consistently achieves the highest F1 score across all threshold
settings compared to the evaluated baselines. When the thresh-
old is low (e.g., v = 0.1), the number of identified persistent
flows increases, and the distinction between persistent and
non-persistent flows becomes less clear, resulting in reduced
detection accuracy. Even under this challenging condition,
OPT-PALLAS outperforms Pontus by 4.2%, demonstrating its
robustness and effectiveness.

o D T I

Bl Opt-Pallas Stable-Sketch
Pallas B Tight-Sketch

s Pontus B P-Sketch
mmm Pandora
0.1 0.2 0.3 0.5 0.6 0.7

Threshold

Fig. 8: Detection accuracy with varying thresholds.

2) Performance under Different Number of Time Windows:
We vary the number of time windows from 1,000 to 2,000
using a 16KB memory under the CAIDA 2019 trace, with
the persistent threshold v = 0.4. As shown in Figure 9,
OPT-PALLAS consistently outperforms the baselines across
different window settings. For example, at 1,200 windows,
OPT-PALLAS achieves an F1 score 2.37% higher than Pontus,
demonstrating its effectiveness and robustness.

e ‘E

. Opt- Pallas Stable-Sketch

Pallas B Tight-Sketch
s Pontus B P-Sketch
mmm Pandora

F1 Score

1000

1200 1400 1800
Number of Time Windows

2000

Fig. 9: Detection accuracy with varying time windows.
C. Parameter Analysis

In OPT-PALLAS, the parameter o controls the replacement
speed of a tracked flow when hash collisions occur. A higher
value of « increases the probability of replacement, which

means that even flows with high persistence may face a
higher risk of eviction. In contrast, a lower « slows down the
replacement process, making it more difficult to evict even
flows with low persistence. To select an appropriate value
for o, we conduct empirical evaluations using various traffic
traces. We vary a from 0.01 to 0.5 and fix the memory size
at 16KB, an extreme case chosen to evaluate the performance
of our method under highly constrained memory conditions.

As shown in Table III, the F1 scores across different
traces exhibit an increasing trend as « increases from 0.01
to 0.11. However, further increases in « lead to a decline in
performance. To achieve a high detection accuracy, we select
o = 0.11 as the default setting.

X. CONCLUSION

In this paper, we present PALLAS, a novel sketch for
persistent flow detection fully implemented on the data plane
of hardware programmable switches, enabling efficient per-
formance in high-speed traffic scenarios. Unlike conventional
methods, PALLAS eliminates the reliance on persistence-
tracking flags, which require frequent control plane interac-
tions and are unsuitable for fast traffic rates. Instead, PALLAS
leverages probabilistic decay to accurately track persistent
flows within buckets, even in skewed data distributions. Ad-
ditionally, we propose an optimized version, OPT-PALLAS,
designed to further enhance detection accuracy by considering
persistent flow arrival patterns. We formally prove the correct-
ness and soundness of both PALLAS and OPT-PALLAS and
perform extensive evaluations on a Tofino hardware switch,
demonstrating that both methods can handle high-speed data
rates while offering superior detection accuracy. Additional
experiments on a CPU platform further highlight the superior
performance of OPT-PALLAS compared to existing state-of-
the-art approaches.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC) under Grant
EP/V038699/1, SNS JU and the European Union’s Hori-
zon Europe research and innovation program under Grant
Agreement No. 101139270 (ORIGAMI) and No. 101093006
(TaRDIS). Beyza Biitiin is supported by a Comunidad
de Madrid predoctoral fellowship (PIPF-2022/COM-24867).
Weihe Li was partially supported by Cisco through the Cisco
University Research Program Fund (Grant No. 2019-197006).

[1

—

[2

—

[3

[t}

[4

=

[5

=

[6

=

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

REFERENCES

Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang
Huang, “A survey on advanced persistent threats: Techniques, solutions,
challenges, and research opportunities,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 2, pp. 1851-1877, 2019.

Keval Doshi, Yasin Yilmaz, and Suleyman Uludag, “Timely detection
and mitigation of stealthy ddos attacks via iot networks,” [EEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2164-2176, 2021.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz, “Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for sdn,” ACM SIGCOMM Computer Communication Review, vol.
43, no. 4, pp. 99-110, 2013.

Weihe Li and Paul Patras, “Stable-sketch: A versatile sketch for accurate,
fast, web-scale data stream processing,” in Proceedings of the ACM on
Web Conference 2024, 2024, pp. 4227-4238.

Weihe Li and Paul Patras, “P-sketch: A fast and accurate sketch for
persistent item lookup,” IEEE/ACM Transactions on Networking, 2023.
Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong
Zhang, and Bin Cui, “On-off sketch: A fast and accurate sketch on
persistence,” Proceedings of the VLDB Endowment, vol. 14, no. 2, pp.
128-140, 2020.

Haipeng Dai, Muhammad Shahzad, Alex X Liu, Meng Li, Yuankun
Zhong, and Guihai Chen, “Identifying and estimating persistent items
in data streams,” [EEE/ACM Transactions on Networking, vol. 26, no.
6, pp. 2429-2442, 2018.

Graham Cormode and Shan Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58-75, 2005.

Jiawei Huang, Wenlu Zhang, Yijun Li, Lin Li, Zhaoyi Li, Jin Ye, and
Jianxin Wang, “Chainsketch: An efficient and accurate sketch for heavy
flow detection,” IEEE/ACM Transactions on Networking, vol. 31, no. 2,
pp. 738-753, 2022.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87-95, 2014.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie
Miao, Peng Liu, Ruwen Zhang, and Junchen Jiang, “Cocosketch: High-
performance sketch-based measurement over arbitrary partial key query,”
in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021,
pp. 207-222.

Weihe Li, Zukai Li, Beyza Biitiin, Alec Diallo, Marco Fiore, and
Paul Patras, “Pontus: A memory-efficient and high-accuracy approach
for persistence-based item lookup in high-velocity data streams,” in
Proceedings of the ACM on Web Conference 2025, 2025.

Marcelo C Luizelli, Ronaldo Canofre, Arthur F Lorenzon, Fibio D
Rossi, Weverton Cordeiro, and Oscar M Caicedo, ‘“In-network neural
networks: Challenges and opportunities for innovation,” IEEE Network,
vol. 35, no. 6, pp. 68-74, 2021.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

Sajy Khashab, Alon Rashelbach, and Mark Silberstein, “Multitenant
{In-Network} acceleration with {SwitchVM},” in 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24),
2024, pp. 691-708.

Lu Tang, Qun Huang, and Patrick PC Lee, “A fast and compact invertible
sketch for network-wide heavy flow detection,” IEEE/ACM Transactions
on Networking, vol. 28, no. 5, pp. 2350-2363, 2020.

Weihe Li, “Pandora: An efficient and rapid solution for persistence-
based tasks in high-speed data streams,” Proceedings of the ACM on
Management of Data, vol. 3, no. 1, pp. 1-26, 2025.

Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo
Ma, and Shigang Chen, ‘“Pyramid family: Generic frameworks for
accurate and fast flow size measurement,” IEEE/ACM Transactions on
Networking, vol. 30, no. 2, pp. 586-600, 2021.

Weihe Li and Paul Patras, “Tight-sketch: A high-performance sketch for
heavy item-oriented data stream mining with limited memory size,” in
Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, 2023, pp. 1328-1337.

Bibudh Lahiri, Jaideep Chandrashekar, and Srikanta Tirthapura, “Space-
efficient tracking of persistent items in a massive data stream,” in
Proceedings of the 5th ACM international conference on Distributed
event-based system, 2011, pp. 255-266.

Amin Shokrollahi, “Raptor codes,” IEEE transactions on information
theory, vol. 52, no. 6, pp. 2551-2567, 2006.

Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shi-
gang Chen, and Xiaoming Li, “Heavykeeper: an accurate algorithm for
finding top-k elephant flows,” IEEE/ACM Transactions on Networking,
vol. 27, no. 5, pp. 1845-1858, 2019.

Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaom-
ing Li, “Heavyguardian: Separate and guard hot items in data streams,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2584-2593.

Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui, “Stingy
sketch: a sketch framework for accurate and fast frequency estimation,”
Proceedings of the VLDB Endowment, vol. 15, no. 7, pp. 1426-1438,
2022.

Guoju Gao, Zhaorong Qian, He Huang, Yu-E Sun, and Yang Du,
“Tailoredsketch: A fast and adaptive sketch for efficient per-flow size
measurement,” [EEE Transactions on Network Science and Engineering,
2024.

Pallas, “Formal analysis,” https://github.com/Mobile-Intelligence-Lab/
Pallas, Accessed: 2025-08-11.

Minjin Tang, Mei Wen, Junzhong Shen, Xiaolei Zhao, and Chunyuan
Zhang, “Towards memory-efficient streaming processing with counter-
cascading sketching on fpga,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 2020, pp. 1-6.

Simon Scherrer, Jo Vliegen, Arish Sateesan, Hsu-Chun Hsiao, Nele
Mentens, and Adrian Perrig, “Albus: A probabilistic monitoring al-
gorithm to counter burst-flood attacks,” in 2023 42nd International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2023, pp.
162-172.

Intel, “P4 Insight,” https://www.intel.com/content/www/us/en/products/
details/network-io/intelligent-fabric-processors/p4-insight.html.

