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Abstract—Wireless networks increasingly utilize diverse spec-
tral bands that exhibit vast differences in both transmission range
and usage. In this work, we present MAWS (Mobile Access
of Wide-Spectrum Networks), the first scheme designed for
mobile clients to evaluate and select both APs and spectral bands
in wide-spectrum networks. Because of the potentially vast
number of spectrum and AP options, scanning may be pro-
hibitive. Consequently, our key technique is for clients toinfer
channel quality and spectral usage for their current location and
bands using limited measurements collected in other bands and
at other locations. We experimentally evaluate MAWS via a wide-
spectrum network that we deploy, a testbed providing accessto
four bands at 700 MHz, 900 MHz, 2.4 GHz and 5 GHz. To the
best of our knowledge, the spectrum of these bands is the widest
to be spanned to date by a single operational access network.
A key finding of our evaluation is that under a diverse set
of operating conditions, mobile clients can accurately predict
their performance without a direct measurement at their current
location and spectral bands.

I. I NTRODUCTION

Wireless networks operating in unlicensed spectrum can
now utilize frequency bands ranging from 512 MHz (DTV
white spaces) to 5.845 GHz, bands that exhibit vast differences
in both transmission range and available airtime. Joint useof
multiple diverse bands will therefore provide future network
operators with flexibility in coverage provisioning, capacity
planning and interference management.

Mobile access of such wide-spectrum networks introduces
two key challenges. First, mobile clients must assess and select
both APs and spectrum in a timely and efficient manner. More-
over, in wide-spectrum networks, the number of association
options, i.e., AP-channel pairs, is significantly higher than
in single-band networks. Second, these association options
may result in significant differences in client performance.
For example, links operating in lower frequencies may offer
higher channel quality and lower handoff rate (due to reduced
attenuation and increased coverage), yet they are also subject
to increased interference due to greater transmission range.
Thus, mobile clients must account for multiple conflicting
factors in selecting the association option that best meetstheir
individual performance objectives.

Prior work can be classified into three categories:(i) Fixed
band prioritization is a simple mechanism for mobile clients
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to select between independent networks operating in dissim-
ilar bands (e.g., smart-phone preference of WLAN to 3G;
see also [1]). However, it does not account for the spatial,
spectral and temporal variations in channel quality and us-
age.(ii) Scanning dynamically prioritizes association options,
e.g., in single-band scenarios spanning WLAN [2] to ve-
hicular WiFi [3]. Unfortunately, scanning either sacrifices
airtime that increases with the number of bands or, when
additional radios are employed for scanning, increases the
power consumption of the energy-constrained mobile clients.
(iii) Analysis of historical data can also be used to dy-
namically prioritize association options in mobile accessof
single-band networks [4] and non-mobile access of multi-band
networks [5]. Unfortunately, [4], [5] require measurements at
all frequencies and locations, which is prohibitive in wide-
spectrum networks.

In this work, we present the following two contributions.
First, we propose MAWS (Mobile Access of Wide-Spectrum
Networks), the first scheme designed for evaluation and selec-
tion of association options by mobile clients of wide-spectrum
networks. MAWS is a client-side access solution that considers
individualized throughput and delay performance objectives.
In contrast to prior work, MAWS clients dynamically prior-
itize their association options without exclusively employing
scanning or historical data for selection of APs and spectrum.

The key technique in MAWS is a method for mobile clients
to infer channel quality and spectral usage at their current
location without taking a measurement there. To achieve this,
MAWS clients first employ limited-rate scanning to measure
the spectral usage and channel quality in as few as two
different bands at limited locations. Then, MAWS infers
channel quality and spectral usage for the remaining spectrum
and space. To estimatechannel qualityin alternate bands and
locations than those measured, we introduce cross-spectral and
-spatial inference methods that couple the limited measure-
ments with coarse-grained propagation models. To estimatethe
usageof a channel, MAWS exploits any spatial and temporal
correlation of a channel’s usage and calculates a weighted
average of its measured usage at locations of prior visits. Each
weight is related to the distance to these locations as well
as to an estimate of the interference range in the respective
band. Finally, the inferred metrics are coupled with estimates
of the handoff rate under each association option to drive the
calculation of throughput and delay predictions.



Second, we deploy a wide-spectrum network and exper-
imentally evaluate MAWS. Our testbed provides access to
the 700 MHz, 900 MHz, 2.4 and 5 GHz bands. These four
bands span a spectral range of 5.085 GHz; to the best of our
knowledge, this range is the widest to be spanned to date by a
single operational access network. We employ our testbed to
conduct experiments in both outdoor and indoor environments,
under vehicular and pedestrian speeds respectively.

Our experimental evaluation yields the following findings:
First, for cross-spectral inference, we find that our coupling
of propagation models with limited measurements is more
tolerant to the fading-induced deviation of measured RSSI
when measurements are taken in the most separated bands.
Second, for cross-spatial inference, we find that RSSI mea-
surements from only two other prior locations suffice for
MAWS due to the adequate accuracy of propagation models
for the purposes of selectingdiversebands. Next, we evaluate
MAWS’ inference ofspectral usagefor vehicles and pedestri-
ans in two networks with real users. We find that, despite the
limited availability of measurements, our method can predict
spectral usage with an error of 10-25%. Namely, while packet-
scale channel occupancy varies significantly, MAWS’ passive
second-scale measurements can exploit substantial spatial and
temporal usage correlation. We show that despite MAWS’
imperfect inferences and selections, it nonetheless attains
throughput gains exceeding 100% over scanning, by sub-
stituting most scanning time with transmissions. Moreover,
compared to the common, near-zero-overhead practice of fixed
band prioritization, MAWS enables net throughput gains of up
to 120% including overhead.

The rest of this paper is structured as follows. In Sec. II,
we present MAWS. We describe our wide-spectrum testbed in
Sec. III, and we experimentally evaluate MAWS in Sec. IV.
Finally, Sec. V overviews the related work, and Sec. VI
concludes this paper.

II. MAWS: M OBILE ACCESS OF

WIDE-SPECTRUM NETWORKS

In this section, we presentMAWS, a scheme for mobile
clients of wide-spectrum networks to evaluate and select their
association options, i.e., pairs of APs and channels, whichcan
span multi-band spectrum.

A. MAWS Overview

In MAWS, mobile clients make association and handoff de-
cisions by predicting throughput and delay for each association
option. To predict these two metrics, we propose a methodol-
ogy for mobile clients of wide-spectrum networks to estimate
channel quality and spectral usage. Specifically, mobile clients
employ a limited-rate scanning process via which they measure
channel quality, i.e., link signal strength, in as few as two
channels from two different bands. Via this process, clients
also sparsely estimate across space each channel’s usage, i.e.,
the fraction of time that other nodes use this channel. Using
the limited measurements collected in other bands and at
other locations, a MAWS client infers channel quality and

spectral usage at its current location for its available bands,
despite the lack of a direct measurement. The key technique
to infer channel quality is to estimate the cross-spectral cor-
relation of channel quality at each location and the cross-
spatial correlation for each band by coupling the sporadic
measurements with propagation models. The key technique
to infer spectral usage is to exploit the spatial and temporal
correlation in the usage of each channel and to account that
the spatial correlation increases with decreasing frequency.
Finally, our inference-based methodology is coupled with a
metric estimating each association option’s delay performance,
which is also determined by the propagation characteristics
of the option’s channel. Our inference-based methodology
allows MAWS clients to dynamically prioritize APs and multi-
band spectrum without exclusively employing scanning or
historical values of channel quality and spectral usage. Fig. 1
diagrammatically illustrates the overview of MAWS.

Fig. 1. Diagrammatic Overview of MAWS

B. MAWS Architecture

Our work applies to wide-spectrum access networks with
mobile clients. We consider that APs and clients are equipped
with either a single multi-band radio or multiple single-band
radios. Moreover, we consider that all nodes can access a
common set of bands and employ the same MAC scheme
in all bands. Nevertheless, our work can easily be adapted to
the case where the nodes’ accessible bands are different; our
work can also be extended for networks that do not employ the
same MAC scheme in all bands, by incorporating the MAC’s
impact on throughput and delay performance in the evaluation
of association options.

Furthermore, we consider mobile clients to transmit packets
via a single radio at a time, even if they are equipped with
multiple single-band radios, to conserve energy and increase
their lifetime. Moreover, we assume that mobile clients know
the coordinates of their locations during their scanning and
inference instances. Such localization can be realized via
e.g., intermittent activation of the prevailing GPS devices1 or
spectral fingerprinting.2 In addition, we assume that mobile
clients have access to estimates of AP locations obtained from
AP-logging databases3 or announced by APs via their beacons.

1‘GPS-Enabled Cell Phones Go Mainstream’: http://www.m2mmag.com/
2See Place Lab: http://ils.intel-research.net/place-lab
3See for example: http://wigle.net/



C. Inferring Channel Quality

In this subsection, we present the two methods that MAWS
clients employ for cross-spectral and cross-spatial inference
of link signal strength, our considered channel quality metric.
Mobile clients employ the cross-spectral inference method
at a location where they measure the RSSI of links in two
different-band channels and infer signal-strength valuesfor the
remaining frequencies. Otherwise, clients employ the cross-
spatial inference method to infer the signal strength of a link
in a given band, using RSSI measurements collected in the
same band at other locations.

Both methods infer the average channel quality of a link at
a given location and frequency and do not capture location-
dependent and time-varying effects on signal propagation such
as shadowing and multipath-fading. Nevertheless, our solution
is environment-agnostic and practical, as it does not require
a detailed description of the propagation environment, such
as terrain maps (see e.g., [6]). At the same time, our em-
ployment of measurements can enable more accurate inference
than alternatives employing neither information describing the
propagation environment nor measurements.

1) Cross-Spectral Inference:Prior measurements and prop-
agation models indicate that signal strength (denoted byP ) is
inversely proportional to anα-power of frequencyf (see, e.g.,
[7], [8], [9], [10]):

P ∝
1

fα
(1)

A frequency-exponent value ofα = 2 is widely employed for
various environments (see, e.g., [7], [8], [9]), while Riback
et al. suggest a frequency-dependent selection ofα, with
α ∈ {2, 2.3, 3} [10]. While an infinite number of functions
P (f) can satisfy the relationship specified by Eq. (1) for
a given α, only one functionPl(f) represents how signal
propagates in each frequency over a linkl as a result of
the location and composition of obstacles. Specifically, signal
strength decreases with frequency more rapidly as obstruction
increases. Unfortunately, clients do not necessarily foreknow
how channel quality depends on frequency for every link and
every location, and precise modeling of these relationships
requires an extensive collection of measurements.

We propose that clients infer channel quality in a given fre-
quency and location by using their limited, same-location RSSI
measurements in different bands to characterize individual
link models of inverse signal-strength proportionality toanα-
power of frequency. To characterize the individual link models,
we interpolate, for each linkl, the RSSIPl,i measured in
frequenciesfi with a function of the formP (f) = m

fα +b. This
interpolation yields characteristic coefficientsml and bl for
each linkl. Consequently, clients can infer the signal strength
of link l in frequencies that are not scanned, using the function:
P̂l(f) = ml

fα + bl. To enable a low-complexity, analytical
solution, we transform the problem to its equivalent linear
least squares form by conducting the following variable trans-
formation:z = 1

fα . Thus, clients can analytically interpolate
the RSSI measurements with the functionP (z) = mz+b [11].

The interpolation formulas are provided in [12].
2) Cross-Spatial Inference:Prior measurements and prop-

agation models indicate that signal strength decays logarith-
mically with the distanced from the transmitter node [7]:

PdBm(d) = PdBm(d0)− 10γ log
10

(

d

d0

)

+ σ (2)

In Eq. (2), PdBm(d0) is the received signal strength at a
reference distance from the transmitterd0; σ is a zero-mean
Gaussian random variable that represents shadowing, i.e.,the
deviation in PdBm between similar propagation scenarios;
finally, γ is the path loss exponent, a parameter representa-
tive of the propagation conditions in an environment. This
exponent is dependent on frequency and on the location and
composition of obstacles [7]. Unfortunately, mobile clients
do not necessarily foreknow the path loss exponentsγf and
the extent of shadowing in every frequencyf and at every
location, and precise estimation of these parameters requires
extensive measurement collection.

We propose that mobile clients infer channel quality by
utilizing the limited RSSI measurements from previous lo-
cations to estimate path loss exponents for each band, and
hence to apply the log-distance propagation model. To do so,
clients also utilize their location information and estimates
of the AP locations. To estimate the path loss exponents,
clients apply regression analysis to the points(di, Pb,i) for
each bandb, where Pb,i is the measured RSSI in bandb
and at a distancedi from the AP. Our chosen function for
regression analysis expresses the logarithmic decay of signal
strength with distance:P (d) = β − γ10 log

10
(d). We reduce

the problem to linear least-squares fitting via the following
variable transformation:z = −10 log

10
d. This process yields

coefficients γb and βb approximated analytically for each
bandb. Consequently, clients can infer the signal strength for a
link of lengthd in bandb without scanning using the following
function:P̂b(d) = βb−10γb log10(d). The detailed process and
respective formulas are provided in [12].

D. Inferring Spectral Usage

Here, we propose a method for mobile clients to infer, at a
given location, each channel’s usage, i.e., the fraction oftime
that the channel is used by other nodes.

Exploiting cross-spatial and -temporal correlation: Our
method exploits the correlation in sensing a signal at neigh-
boring locations and the temporal correlation in the usage of a
channel. Towards this end, clients infer spectral usage from a
limited number of usage estimates that they collect at locations
of prior visit. Specifically, the usage of the channel centered at
frequencyf is inferred at the current locationgc as a weighted
average of that channel’s measured usage at locationsgi:

ûf (gc) =

∑N

i=1
uf (gi) ∗ wf (gi, gc)

∑N

i=1
wf (gi, gc)

(3)

Usage estimates are denoted byu ∈ [0, 1], with greateru
values denoting higher usage.



In Eq. (3), individual weights are assigned to each usage
estimate, as different pairs of locations exhibit dissimilar
spatial correlation in the usage of a channel. For instance,
the probability that two locations share a common interferer
decreases with the distance of the locations. In addition,
this probability decreases with frequency, as the interference
range also decreases. A weight assignment that captures the
abovementioned relationships is the following:

wf (gi, gc) = max {Ib − d(gc, gi), 0}, (4)

whered(gi, gj) is the Euclidean distance between two loca-
tionsgi, gj; Ib is an estimate for the interference range in band
b and its estimation follows.

Estimating Interference Range: Multiple factors affect
the interference range of a client. In wide-spectrum networks,
selecting a lower-frequency band can yield a dramatic increase
in interference range. Of course, the interference range also
depends on the location of the interferer and the client, as
distinct propagation conditions are determined by the obstruc-
tion inbetween each pair of locations. Finally, the interference
range may also vary over time, as a result of channel fading.
Unfortunately, clients do not necessarily know the location of
their interferers in each band or their interference range at each
location, time and frequency.

We propose that mobile clients approximate a single inter-
ference range for each band by employing the cross-spatial
method for channel-quality inference (see Sec II-C2). Specif-
ically, clients utilize RSSI measurements to infer the channel
quality of client-AP links at different locations. Thus, clients
can estimate the maximum distanceIbj from AP j at which
signals are received at interfering power levels, in bandb:

Ibj = max
d

{

P̂bj(d) > Pint

}

We denote byĪb the average range of AP-generated interfer-
enceIbj , averaged over all APs. In our scheme, clients con-
sider Īb as the estimate of their interference range in bandb.

E. Limited-Rate Scanning

MAWS clients employ limited-rate scanning to sparsely
measure the highly variable metrics of channel quality and
available airtime across spectrum and space. Nonetheless,
these coarse-grained samples suffice to enable, via our meth-
ods, inference of these two metrics for a wide spectral and
spatial range. In general, MAWS is a framework encompassing
a broad set of scanning parameters, which can be adjusted to
client velocity and spectrum availability.

Channel Quality: Clients periodically measure channel
quality by probing everyπcq seconds. At each probing action,
clients select two bands to probe and probe any single channel
of each selected band. Probing two bands minimizes the scan-
ning required to enable our cross-spectral inference of channel
quality. Moreover, different pairs of bands are selected over
time to collect measurements enabling cross-spatial inference
of channel quality for all bands. By receiving probe responses,
clients measure the RSSIPk,f (gi) for their links to each APk
at locationsgi and frequencyf .

Spectral usage: Additionally, clients passively estimate
spectral usage via periodical sniffing. Everyπu seconds,
clients sniff a single channel; each sniffing action laststsnif s.,
and channels are selected sequentially. As a result, clients
calculate usage estimatesuf ∈ [0, 1] for the respective center
frequencyf , where uf equals the fraction of the sniffing
duration that clients sense the channel as used by other nodes.

F. Selection of Association Options

Mobile clients may individually prioritize throughput versus
delay performance, as they may dissimilarly tolerate packet
delay, which includes handoff, transmission and contention
delay. Denoteδ as the delay sensitivity of a client,δ ∈ [0, 1],
such that delay tolerance decreases withδ.

Given the inferred and measured metrics of channel quality
and spectral usage, MAWS clients estimate throughput and
delay metrics for their numerous association options at each
location, to select the one that best meets their performance ob-
jectives.

Throughput Metric: For association with APk in a
channel centered at frequencyf , throughput is predicted via
estimates for the attainable link rate and the available airtime
of that frequency:

Tk,f (gt) = Ri (Pk,f (gt),Wi)× [1− uf(gt)] , (5)

In Eq. (5),Wi is the channel width of the bandi that includes
frequencyf , andRi is the attainable rate under interference-
free conditions. The dependence ofRi on channel width
and channel quality metrics, such as signal strength, can be
empirically estimated. Finally,Pk,f (gt) and uf(gt) are the
inferred or measured metrics of channel quality and usage for
locationgt, respectively.

Delay Metric: Delay under each association option is esti-
mated via a metric incorporating determinant factors of delay
performance in a wide-spectrum network. DenoteDk,f ∈
[0, 1] as the delay metric for the client’s association to AP
k in frequencyf .

First, the metric incorporates the delay incurred by the se-
lection of an association option; selecting a different band for
the currently associated AP incurs a significantly shorter delay
than handing off to a different AP. Specifically, the channel
switching delay is orders of magnitude lesser than handoff
delay (e.g., 80µs vs. 25-800 ms; values reported in [13], [2],
[3]). The key reason for this difference is that handoffs in
widely employed MAC schemes such as 802.11a/b/g typically
require association handshakes.

Moreover, the delay metric penalizes association options
increasingly with frequency, as the handoff rate increases
with decreasing coverage. Finally, the delay metric employs
inferred or measured metrics of channel quality and spectral
usage to estimate the transmission and access delay (e.g.,
contention delay) under each association option. Due to space
constraints, we provide the complete presentation of the delay
metric in [12].

Selection of Association Options:The throughput and
delay metrics are weighted according to the client’s delay



sensitivity to yield a joint metric that drives the selection of
association options and expresses the relevance of each option
to the client’s performance objectives:

jk,f (t) = Tk,f (gt)× [1− δ ×Dk,f (gt)] , (6)

Finally, clients use a hysteresis thresholdη to refrain
from invoking handoffs to candidate associations(k, f) with
marginally higher joint metricsjk,f than that of their current
association (APcur, fcur). Hence, clients select a different
association(k, f), when:

jk,f > jAPcur,fcur
+ η

Selections are followed by a handoff to another AP whenk 6=
APcur and by a channel switching whenk = APcur andf 6=
fcur.

G. Example Access Model

Similarly to many network architectures in which nodes uti-
lize more channels than the number of their radios (e.g. [14]),
nodes of wide-spectrum networks can coordinate through a
control channel. Specifically, two nodes can first exchange
packets in the control channel (such as RTS, CTS, probe
requests); such packets specify another channel, in which the
nodes switch and they further exchange packets (such as data
packets, probe responses); subsequently, they switch backto
the control channel.

This access model can be realized by a dedicated control
channel (e.g., [14]) or by dynamic control channels, which
can be established with channel-hopping protocols (e.g., [15]).
While bandwidth reduction has been a counter-argument to
control channels in single-band networks, spectral resources
abound in wide-spectrum networks.

III. E XPERIMENTAL PLATFORM

This section describes the wide-spectrum network that
we deploy and utilize to experimentally evaluate MAWS.
Our testbed provides access to four spectral bands: the
700 MHz band,4 and the ISM bands of 900 MHz, 2.4 and
5 GHz. These bands span a spectral range of 5.085 GHz;
to the best of our knowledge, this range is the widest to be
spanned to date by a single operational access network.

To evaluate MAWS, we deploy a two-AP network accessed
by a mobile and a static node. The mobile node is either
moving in a car at vehicular velocity or is placed on a
cart while moving at pedestrian speeds, depending on the
experiment. The other client is stationary and serves the
purpose of injecting traffic into the network. APs are placed
approximately 15 meters above the ground at two different
balconies of Duncan Hall, at Rice University in Houston, TX.
In our testbed, nodes are equipped with multiple single-band
radios, one for each of the four bands to which access is
provided. Fig. 2 illustrates a MAWS node, used for both APs
and clients. Finally, the client nodes employ low-gain, 5 dBi

4The 700 MHz band is allocated for public-safety services. However, it was
not used at the deployment area.

Fig. 2. A 4-radio MAWS node

antennas for all bands, while APs employ 9 dBi antennas to
provide a wider coverage.

Testbed specifications:Our platform is x86-based, us-
ing Gentoo Linux kernel 2.6.34. Nodes are equipped with
Atheros chipset mini-PCI interfaces from the Ubiquiti Net-
works XtremeRange series. These are the XR7, XR9, XR2 and
XR5 radios, which operate in 760-780 MHz, 902-927 MHz,
2.401-2.483 GHz and 5.160-5.845 GHz, respectively. The
XR2, XR7 and XR9 interfaces use a 802.11g MAC, while XR5
follows the 802.11a standard. The interfaces function withthe
ath5k open-source driver.

IV. EVALUATION OF MAWS

In this section, we evaluate MAWS using the deployment
described in Sec. III. We study the individual components of
MAWS as well as their joint interaction. Thus, we assess the
accuracy of the methods inferring channel quality and spectral
usage, and we compare MAWS with alternatives for mobile
access, such as scanning and fixed-band prioritization.

A. Inferring Channel Quality

To assess the accuracy of the cross-spectral and cross-
spatial methods, we design the following experiment. First, we
deploy a single-AP wide-spectrum network, in which a mobile
client collects RSSI measurements of its link to the AP; the
client collects asingleRSSI measurement at each of multiple
locations and for each of the four bands of our testbed. Next,
we provide only a subset of the collected measurements as
an input to the two inference methods. Then, the methods
infer RSSI values for the frequencies and locations that are
not included in the subset. These inferred values are compared
with the respective RSSI measurements. Specifically, we place
the single AP on a third-floor balcony of Duncan Hall, in Rice
University. The mobile client collects RSSI measurements at
773 MHz, 912 MHz, 2.447 GHz and5.2 GHz. This experiment
is conducted twice, once outdoors with a car as a mobile client,
and once indoors with the client placed on a cart. In both cases,
the selected measurement locations yield client-AP links that
cover a wide-range of factors affecting signal propagationsuch
as distance and intermediate obstruction. Fig. 3 depicts the
deployment and the selected locations. We collect all outdoor
measurements in the same day and all indoor in the next day;
successive measurements are taken at least 15 minutes apart.



Fig. 3. Measurement Locations

1) Cross-Spectral Inference:During each scanning action,
MAWS clients probe two channels belonging to different
bands (see Sec. II-E). Here, we assess how accurately clients
can infer channel quality for the remaining, non-scanned bands
and how this accuracy can increase under appropriate selection
of the probed channels. Thus, the input of our inference
method consists of two same-location RSSI, measured in two
of the four frequencies considered in the experiment; for the
same location, the inferred RSSI values for the remaining two
frequencies are compared with the respective measurements.
We repeat the experiment for each location and for every
possible combination of input selection, i.e., for every choice
of two channels out of the four in which measurements are
collected. To distinguish between different input scenarios, we
associate each combination with a measure of dissimilarity
between the propagation characteristics of the two chosen fre-
quenciesf1, f2. This measure is driven by models suggesting
the inverse proportionality of channel quality to anα-power
of carrier frequency (Eq. 1), and it is given by| 1

fα

1

− 1

fα

2
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Fig. 4. Impact of Scanning Frequencies on Inference of Channel Quality

We calculate the difference between the dBm values of
actual and inferred RSSI as well as the absolute value of
the difference. Fig. 4 depicts the average such absolute value,
averaged over all instances of inference, as a function of the
dissimilarity of the two probed frequencies. The results shown
in Fig. 4 are obtained forα = 2 (see Eq. (1)). Fig. 4 indicates
that the accuracy of our interpolation-based inference method
increases with the degree of dissimilarity of the two probed
frequencies. Specifically, we show in [12] that our method
infers the time-average channel quality of a link with an error

that increases with
∆2 −∆1

1

fα

2

− 1

fα

1

, where ∆i is the difference

between an RSSI measurement and the time-average channel
quality in frequencyfi. Thus, the tolerance of our method
to fading-induced deviation of the RSSI measurements from
their average value increases with the dissimilarity of thetwo
probed frequencies.

Finally, Fig. 4 illustrates that under an appropriate selection
of the probed frequencies, our method can infer the RSSI
values in other bands within 7 dB of the actual RSSI. To
add perspective to this difference, we empirically comparethe
link rates attainable under two RSSI values that differ by7 dB
(see [12]). We find that the difference of the rates is upper
bounded by17% of the highest attainable rate; moreover, the
compared rates are equal under half of the possible values
for two RSSI differing by 7 dB. While a non-negligible
error, such inferences nonetheless suffice for MAWS’ selection
objectives without sacrificing additional airtime in scanning
(see Sec. IV-C).Finding: Using only two RSSI measurements
in two different bands and an appropriate selection of probed
frequencies, MAWS clients can infer same-location channel
quality in other bands within 7 dB of the actual dBm value.

2) Cross-Spatial Inference:MAWS clients can infer the
channel quality in a given band and location using same-
band RSSI measurements from other locations (Sec. II-C1).
Here, we assess the error of this inference as a function of
the number of RSSI measurements and the robustness of our
method to inaccurate knowledge of the AP locations. Towards
this end, we first consider all possible subsetsNin of the N

locations depicted in Fig. 3,|Nin| ∈ [2, N−1]. For each band,
our inference method employs the single RSSI measurement
at each of theNin locations, estimates a distinct path loss
exponent and infers channel quality at the remainingN−Nin

locations. The inferred values are compared with the respective
RSSI measurements, which are not employed by our method.
We apply our methodology separately for the two different
environment scenarios, i.e., indoor and outdoor. Moreover, we
repeat the experiment under different values ofǫ, a parameter
representing the difference between the assumed and the actual
length of the client-AP link.
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Fig. 5. Impact of RSSI Availability on Inference of Channel Quality

We calculate the difference between the dBm values of
actual and inferred RSSI, and the absolute value of the
difference. Fig. 5 depicts the average such value in inferring



channel quality at theN −Nin locations as a function of the
number of RSSI measurementsNin. The figure depicts results
from cross-spatial inferences in one band (900 MHz), while
we observe similar trends and findings for all other bands. As
Fig. 5 indicates, two RSSI measurements at different locations
enable inference of channel quality within0− 6 dB of the
value inferred via RSSI measurements inN − 1 locations.
Moreover, our method’s accuracy increases with link length
(longer links in the outdoor case) as signal strength decreases
logarithmically with distance; thus, for a givenǫ, the difference
P (d + ǫ) − P (d) decreases withd. Finding: Inference of
channel quality with two RSSI measurements is marginally
less accurate than inference with the highest number of mea-
surements.

B. Inferring Spectral Usage

To assess the accuracy of MAWS in inferring spectral usage,
we design the following experiment. A MAWS node traverses
the coverage area of a network providing access to real users
at channelc. Using kismet, the node continuously sniffs this
single channelc. We discretize time in seconds; with each
secondti, we associate a single locationgi chosen among the
possibly many visited duringti. For each of the second-long
time-intervalsti, we calculate the fraction of timeuf(gi) that
the center frequencyf of channelc is sniffed as busy, i.e., the
fraction thatkismet reports packet transmissions inc. Then,
we consider a subset of the entire sniffing process, a subset
representing periodic sniffing instances, which lasttsnif s.
and repeat everyπut s. These sniffing instances comprise
the input of our inference method (Sec. II-D), which yields
usage inferenceŝuf (gi) for f , at each locationgi. We compare
the inferred usagêuf(gi) with the actualuf (gi), for eachi.
We generalize our single-frequency assessment for the case
of a wide-spectrum network withN channels, considering a
sniffing pattern where a client sniffs a different channel every
πut seconds and the same channel everyN × πut seconds.

Networks with real users: To evaluate our inference
method, we conduct experiments in operational networks used
by real clients. We consider two networks that provide access
to two different bands:(i) The TFA network, an operational,
urban mesh network consisting of approximately 20 APs
and providing access to channel 11 of the 2.4 GHz band.
During the experiments, clients maintain vehicular speeds
while sniffing this channel, to traverse the network coverage
along a4.1 km route within 800 s.(ii) A university network
providing indoor access to the 2.4 and 5 GHz bands in Duncan
Hall, Rice University. We conduct the experiment once for
each band, sniffing channel 6 in the 2.4 GHz band and channel
48 in the 5 GHz band. In these two experiments, the client
traverses the network coverage at pedestrian speeds along a
200 m route, within 260 s. All experiments are conducted
during hours that actual users access the networks.

For each of the three velocity/band scenarios, we calculate
the inference errorǫ(gi) = |ûf (gi)− uf(gi)| at each location
gi. Moreover, we calculate the average inference errorǭ,
averaged over all locationsgi, as a fraction of the maximum
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Fig. 6. Impact of Sniffing Rate on Usage Inference (tsnif = 100 ms)

usageumax = max{uf(gi)} that is measured during each
experiment. Fig. 6 depicts this normalized metric of average
error, as a function of the sniffing period, fortsnif = 100 ms.
Under realistic traffic patterns, the usage of a frequency is
strongly correlated across space and time. Thus, despite the
existing variations in the usage of a frequency, the average
inference errorǭ of our method ranges within 10-25% of
the maximum measured usage, even under a very infrequent
sniffing period, e.g.π = 45 s. We consider that the usage
of N channels can be inferred with such an accuracy by
periodically and sequentially sniffing the channels everyπ

N
s

(our wide-spectrum testbed can operate in up to 40 channels).
Finding: Under realistic traffic patterns, mobile clients can
infer spectral usage along their trajectory with an average
error of 10-25% of the maximum measured value.

C. MAWS vs. Alternatives for Mobile Access

Here, we compare MAWS with two alternatives for mobile
access:(i) exclusive employment of scanning, and(ii) fixed-
band prioritization. Association based on scanning alone can
result in more accurate estimates of channel quality and
spectral usage than our inference-based methodology, which
is subject to inference errors. However, this accuracy comes at
the cost of sacrificing airtime that increases with the number
of scanned channels. Alternatively, clients can omit scanning
and employ static band prioritizations, similarly to today’s
common practice for selecting between different networks
operating in diverse bands. However, such an approach is
oblivious to the underlying usage and channel quality of each
band at any given location.

Towards these two comparisons, we design the following
experiment. We place two MAWS APs at different locations
of the university campus, and a mobile client experimentally
measures its throughput performance via a UDPiperf session.
Specifically, we repeat the measurements along the same
trajectory for each possible selection of AP and spectral band
(eight combinations for two APs and four bands). Moreover,
we repeat the experiment under different usage values for
each band; thus, we control band usage by conducting the
experiment at hours that no actual users access the medium
and by injecting controlled traffic via another, static client.
In all scenarios, the client can passively measure RSSI from



its associated AP via the exchanged data packets. Finally,
we repeat the experiment for different durations of periodic
inactivity, i.e., pausing of theiperf session; such idle intervals
represent the airtime sacrificed to estimate channel quality and
usage in other channels.

As our platform is limited to only 2 APs and 2 clients,
we utilize the collected measurements to emulate client per-
formance under each mobile-access scheme in larger-network
scenarios. For our emulation, we consider a linear trajectory
and a placement of 10 APs. Each AP is placed in such
a manner that its relative position to a certain segment of
the trajectory is representative of the experiment conducted
for measuring throughput performance. Moreover, the AP
placement enables multiple scenarios of coverage overlapping.
In our emulation model, many different association options
exist in each location of the trajectory; our experiments have
measured the channel quality of each option and the offered
throughput under many scenarios of spectral usage and scan-
ning frequency. Our emulation model assigns to each location
the AP-channel pair chosen by each mobile-access scheme and
associates the respective empirical throughput.

1) MAWS vs. Scanning:As MAWS has errors in inferring
channel quality and spectral usage, we perturb the actual
measured and controlled values of these metrics according to
the inference errors quantified in Sec. IV-A and Sec. IV-B.
In contrast, we consider that the scanning-only alternative has
error-free measurements of channel quality and usage. Both
schemes select their own association options at each location
according to Eq. (6), forδ = 0. Then, the MAWS throughput at
each location is given by the one measured under the selected
association during periodic inactivity fortsnif + 2× tprob s.,
as MAWS periodically sniffs one and probes two channels.
Moreover, scanning’s throughput is given by the one measured
during periodic inactivity ofN×tprob, whereN is the number
of channels in the network.
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Fig. 7. MAWS vs. Exclusively Scanning

Fig. 7 depicts the throughput gain of MAWS as a function
of the number of channels, fortprob = 25 ms,tsnif = 100 ms
and a scanning period of 1 second. To add perspective, it also
depicts an analytically calculated gain for different values of
tprob. We find that the airtime sacrificed by scanning over-
whelms its advantage against MAWS, i.e., the more accurate
evaluation of association options, when the network operates in

more channels than single-band networks (e.g., 11). In multi-
band networks, the MAWS gain can reach up to 140% for 40
channels; specifically, it increases linearly with the number of
channels, as so does the airtime consumed by scanning, while
the accuracy of our inference methods remains the same (see
Sec. IV-A, IV-B). Finding: Throughput gains over exclusive
employment of scanning can exceed 100%.

2) MAWS vs. Fixed-Band Prioritization:We consider three
versions of fixed-band prioritization: selection of the highest-
frequency band (among those available), selection of the
lowest-frequency, and highest preference of the 2.4 GHz band
with arbitrary preference order for the remaining bands. When
multiple APs provide coverage at the same location and in
the most preferred available band, we consider that these
three policies select the highest-RSSI AP. We consider the
10-AP network scenario for many different cases of spectral
usage, which is controlled in our experimental methodology.
We assign the empirical throughput performance to MAWS
clients as described; moreover, we assign to each fixed-
band prioritization policy the respective throughput values,
measured under no periods of inactivity (no scanning cost).
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Fig. 8 depicts the throughput gain of MAWS over each
of the fixed-prioritization policies. The x-axis represents the
difference between the rate of injected traffic in the highest-
preference bandRpref and the rate for all remaining bands
Rrest. Finding: Despite scanning, MAWS yields significantly
higher throughput performance than fixed-band prioritization
when the usage of the statically preferred band is equal or
higher than that of the remaining bands.The reason is that
MAWS incorporates estimates of spectral usage and channel
quality in the selection of association options, despite those
estimates being imperfect. Specifically, the MAWS gain due to
the incorporation of spectral-usage estimates increases linearly
with the additional traffic rate in the statically preferredband;
for an additional rate of11 Mbps, the gain can reach up to
120%. Under identical band usage, MAWS incurs gain due
to the incorporation of channel-quality estimates; such a gain
increases with the frequency of the most preferred band and
can reach up to 25%.

V. RELATED WORK

Related work can be classified into:(i) mobile access of
single-band networks, and(ii) non-mobile access of single-



and multi-band wireless networks.

A. Mobile Access

IEEE Standards: The 802.21 standard enables handoff
between different network technologies [16]. In addition,
802.11p is a standard for vehicular communication in the
dedicated spectral band of 5.9 GHz [17].

Overlaid Cells: In cellular networks, multiple overlaid
layers of coverage are provided by cells of different sizes that
operate in the same band. In such networks, cell selection is
driven by client velocity (e.g., see [18]). At the same time,mo-
bile clients widely employ fixed-band prioritization to select
between independent networks operating in dissimilar bands
(e.g., smart-phone preference of W-LAN to 3G; see also [1]).

Non-Cellular Single-Band Networks: In our prior work,
vehicular clients of multi-hop wireless networks prolong asso-
ciations to better performing APs by accounting for disparities
in offered AP throughput [3]. Deshpande et al. propose the dis-
engagement of mobile clients from scanning via the utilization
of historical RSSI values at revisited locations [4]. In cognitive
networks that operate in channels exhibiting identical propaga-
tion characteristics, mobile secondary users opportunistically
access spectrum that is not occupied by primary users [19]
and enable collaborative spectrum sensing [20].

In contrast to prior work in mobile access, MAWS dy-
namically prioritizes diverse spectrum, without exclusively
employing historical data or scanning.

B. Non-mobile Access

Diverse-Spectrum Networks:Shu et al. address throughput
maximization by regulating the scanning frequency of cog-
nitive radios [21]. Moreover, prior work addresses spectrum
access in networks operating specifically in the UHF white-
spaces (see, e.g., [22]). To predict channel availability,Chen
et al. employ historical measurements ranging from 20 MHz
to 3 GHz and identify patterns of channel usage [5], while Tu-
muluru et al. employ methodologies based on neural networks
and Markov chains [23].

Single-Band Networks: Deployed urban-scale networks
can be evaluated via propagation models, terrain maps and
measurements obtained within a wide range of locations [6].

In contrast to prior work in non-mobile access, MAWS con-
siders client mobility; clients are temporarily present ata given
location and evaluate their association options via cross-spatial
and -spectral inference methods employing measurements
collected at other locations. In contrast to all prior work,
MAWS is the first scheme designed for evaluation and se-
lection of APs and channels by mobile clients of wide-
spectrum networks.

VI. CONCLUSIONS

In this paper, we present MAWS, the first scheme designed
for mobile clients to evaluate and select their association
options in wide-spectrum networks. The key technique in
MAWS is for clients to infer channel quality and spectral
usage for their current location and bands using limited

measurements collected in other bands and at other locations.
We experimentally evaluate MAWS using a four-band wide-
spectrum network that we deploy. Our evaluation reveals that
MAWS yields significant throughput gains over alternatives
for mobile access.
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