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Abstract—Wireless networks increasingly utilize diverse spec- to select between independent networks operating in dissim
tral bands that exhibit vast differences in both transmisson range  jlar bands (e.g., smart-phone preference of WLAN to 3G;

and usage. In this work, we present MAWS (Mbhile Access . ;
of Wide-Spectrum Networks), the first scheme designed for see also [1]). However, it does not account for the spatial,

mobile clients to evaluate and select both APs and spectrabinds spect_r_al and t_emporal V?”at'ons_ |r_1_channel q_“a_"'ty an_d us-
in wide-spectrum networks. Because of the potentially vast age.(ii) Scanning dynamically prioritizes association options,
number of spectrum and AP options, scanning may be pro- e.g., in single-band scenarios spanning WLAN [2] to ve-
hibitive. Consequently, our key technique is for clients toinfer  hjcular WiFi [3]. Unfortunately, scanning either sacrifice

channel quality and spectral usage for their current locatbn and  5iime that increases with the number of bands or, when
bands using limited measurements collected in other bandsna

at other locations. We experimentally evaluate MAWS via a wile- additional radios_ are employed for scanhing, incr_ease_s the
spectrum network that we deploy, a testbed providing accesto  POwer consumption of the energy-constrained mobile dient
four bands at 700 MHz, 900 MHz, 2.4 GHz and 5 GHz. To the (iii) Analysis of historical data can also be used to dy-

best of our knowledge, the spectrum of these bands is the wisle namically prioritize association options in mobile access
to be spanned to date by a single operational access network'single-band networks [4] and non-mobile access of multicha

A key finding of our evaluation is that under a diverse set .
of operating conditions, mobile clients can accurately prdict networks [5]. Unfortunately, [4], [5] require measurenmeat

their performance without a direct measurement at their curent ~ all frequencies and locations, which is prohibitive in wide
location and spectral bands. spectrum networks.
In this work, we present the following two contributions.
First, we propose MAWS (ldbile Access of Vide-Sectrum
Wireless networks operating in unlicensed spectrum cafetworks), the first scheme designed for evaluation and:sele
now utilize frequency bands ranging from 512 MHz (DTMion of association options by mobile clients of wide-spewt
white spaces) to 5.845 GHz, bands that exhibit vast diffeen networks. MAWS is a client-side access solution that caersid
in both transmission range and available airtime. Jointafse individualized throughput and delay performance objestiv
multiple diverse bands will therefore provide future netwo |n contrast to prior work, MAWS clients dynamically prior-
operators with flexibility in coverage provisioning, cajfac itize their association options without exclusively enyhg
planning and interference management. scanning or historical data for selection of APs and spettru
Mobile access of such wide-spectrum networks introducesThe key technique in MAWS is a method for mobile clients
two key challenges. First, mobile clients must assess dadtseto infer channel quality and spectral usage at their current
both APs and spectrum in a timely and efficient manner. Morgcation without taking a measurement there. To achie\s thi
over, in wide-spectrum networks, the number of associatiMAWS clients first employ limited-rate scanning to measure
options, i.e., AP-channel pairs, is significantly highearth the spectral usage, and channel quality in as few as two
in single-band networks. Second, these association aptigfifferent bands at limited locations. Then, MAWS infers
may result in significant differences in client performancehannel quality and spectral usage for the remaining spectr
For example, links operating in lower frequencies may offeind space. To estimatdannel qualityin alternate bands and
higher channel quality and lower handoff rate (due to reducgécations than those measured, we introduce cross-spautta
attenuation and increased coverage), yet they are alsectubjspatial inference methods that couple the limited measure
to increased interference due to greater transmissionerangents with coarse-grained propagation models. To estithate
Thus, mobile clients must account for multiple COI’lﬂiCtingjsaga)f a frequency, MAWS exploits any spatial and temporal
factors in selecting the association option that best ntbets correlation of a frequency’s usage and calculates a waighte
individual performance objectives. average of its measured usage at locations of prior visitshE
Prior work can be classified into three categori@sFixed weight is related to the distance to these locations as well
band prioritization is a simple mechanism for mobile cléentas to an estimate of the interference range in the respective
_ band. Finally, the inferred metrics are coupled with estéra
This research was supported by the NSF (CNS-1012831 andX1RG478 . . .
grants) and the European Commission (FP7 grant agreemez67a63 — ©Of the handoff rate under each association option to driee th
FLAVIA project). calculation of throughput and delay predictions.
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Second, we deploy a wide-spectrum network and expepectral usage at its current location for its availabledssan
imentally evaluate MAWS. Our testbed provides access despite the lack of a direct measurement. The key technique
the 700 MHz, 900 MHz, 2.4 and 5 GHz bands. These fotw infer channel quality is to estimate the cross-spectoal ¢
bands span a spectral range of 5.085 GHz; to the best of oelation of channel quality at each location and the cross-
knowledge, this range is the widest to be spanned to date bgpatial correlation for each band by coupling the sporadic
single operational access network. We employ our testbedneasurements with propagation models. The key technique
conduct experiments in both outdoor and indoor environsjento infer spectral usage is to exploit the spatial and tenipora
under vehicular and pedestrian speeds respectively. correlation in the usage of each channel and to account that

Our experimental evaluation yields the following findingsthe spatial correlation increases with decreasing frecyen
First, for crossspectralinference, we find that our couplingFinally, our inference-based methodology is coupled with a
of propagation models with limited measurements is moreetric estimating each association option’s delay peréorce,
tolerant to the fading-induced deviation of measured RS®hich is also determined by the propagation charactesistic
when measurements are taken in the most separated banfishe option’s channel. Our inference-based methodology
Second, for crosspatial inference, we find that RSSI mea-allows MAWS clients to dynamically prioritize APs and mullti
surements from only two other prior locations suffice foband spectrum without exclusively employing scanning or
MAWS due to the adequate accuracy of propagation moddistorical values of channel quality and spectral usage. Fi
for the purposes of selectirdjversebands. Next, we evaluatediagrammatically illustrates the overview of MAWS.

MAWS'’ inference ofspectral usagéor vehicles and pedestri- Selections of AP, band and

ans in two networks with real users. We find that, despite the channel at each location

limited availability of measurements, our method can predi —

spectral usage with an error of 10-25%. Namely, while packet Throughput Metrics |
scale channel occupancy varies significantly, MAWS'’ passiv TS<2T
second-scale measurements can exploit substantial lspadia ?r:?::éigzcotfrasl.igng:-Ossts;-esnpéitr:aI Cméséigiiﬁ'l '822;3:59
temporal usage correlation. We show that despite MAWS’ T T
imperfect inferences and selections, it nonethelessnattai Link Signal Strength in Spectral Usage
throughput gains exceeding 100% over scanning, by sub- Certain Bands, Locations at Certain Locations
stituting most scanning time with transmissions. Morepver &L-i.r:\ited-ki;:;/.
compared to the common, near-zero-overhead practice af fixe Scanning Process

band prioritization, MAWS enables net throughput gainspf u
to 120% including overhead.

The rest of this paper is structured as follows. In Sec. I MAWS Architecture
we present MAWS. We describe our wide-spectrum testbed in
Sec. lll, and we experimentally evaluate MAWS in Sec. IV.
Finally, Sec. V overviews the related work, and Sec.
concludes this paper.

Fig. 1. Diagrammatic Overview of MAWS

Our work applies to wide-spectrum access network with
obile clients. We consider that APs and clients are equippe
with either a single multi-band radio or multiple singlera
radios. Moreover, we consider that all nodes can access a
Il. MAWS: M OBILE ACCESS OF common set of bands and employ the same MAC scheme
WIDE-SPECTRUMNETWORKS in all bands. Nevertheless, our work can easily be adapted to
the case where the nodes’ accessible bands are different; ou
work can also be extended for networks that do not employ the
same MAC scheme in all bands, by incorporating the MAC'’s
impact on throughput and delay performance in the evaloatio
of association options.
A. MAWS Overview Furthermore, we consider mobile clients to transmit packet

In MAWS, mobile clients make association and handoff gdia a single radio at a t@me, even if they are equipp(_ed with
cisions by predicting throughput and delay for each astiooia mu!UpIe §|ngle-band radios, to conserve energy gnd serea
option. To predict these two metrics, we propose a methoddi€lr lifetime. Moreover, we assume that mobile clientsno
ogy for mobile clients of wide-spectrum networks to estienatthe coordinates of their locations during their scanning an
channel quality and spectral usage. Specifically, mobiénts inference instances. Such localization can be realized via
employ a limited-rate scanning process via which they meas(¥-9-: Intermittent activation of _t_he prevailing GPS deslrcer_
channel quality, i.e., link signal strength, in as few as tW§)pectral fingerprinting.In addition, we assume that mobile
channels from two different bands. Via this process cﬁentlzlients have access to estimates of AP locations obtairea fr
also sparsely estimate across space each channel's usaagefaip'logging databas@®r announced by APs via their beacons.

the fr_ac_tlon of time that other nodes use this channel. Usmg.GPS_Enablecl Cell Phones Go Mainstream'” htp://www.m2gmom/
the limited measurements collected in other bands and alsee place Lab: http:/ils.intel-research.net/place-lab
other locations, a MAWS client infers channel quality and 3See for example: http:/wigle.net/

In this section, we preselAWS a scheme for mobile
clients of wide-spectrum networks to evaluate and selesit th
association options, i.e., pairs of APs and channels, wtech
span multi-band spectrum.



C. Inferring Channel Quality Our inference method is summarized as follows:

In this subsection, we present the two methods that MAWS0Ss-spectral Signal-strength Inference:
clients employ for cross-spectral and cross-spatial @ffee  « Consider an input olV channel-quality measurements for
of link signal strength, our considered channel qualityret the client-AP linkl:
Mobile clients employ the cross-spectral inference method (fuP), i=1:N
at a location where they measure the RSSI of links in two vy Y
different-band channels and infer signal-strength valaethe collected in at least two different carrier frequencies
remaining frequencies. Otherwise, clients employ thessros (N > 2).
spatial inference method to infer the signal strength oh& li « Consider the transformed variable = jla and the
in a given band, using RSSI measurements collected in the respective measurements;, P;), i=1:N
same band at other locations. o Apply the linear least squares method by conducting
Both methods infer the average channel quality of a link at  linear fitting to the pointg f;, P;) with the function:
a given location and frequency and do not capture location-
dependent and time-varying effects on signal propagatioh s

Py =my x z+by,

as shadowing and multipath-fading. Nevertheless, outisolu where:

is environment-agnostic and practical, as it does not requi N N N

a detailed description of the propagation environmenthsuc my = Ny Z;VPZ — 2 ]Zvlzi Ll
as terrain maps (see e.g., [6]). At the same time, our em- NY 22— (30 #)?
ployment of measurements can enable more accurate inkerenc SYP o SN 2,
than alternatives employing neither information desaghihe b= =2t Ll =i

propagation environment nor measurements. ) N _
1) Cross-Spectral InferencePrior measurements and prop- Infer the channel quality of link in unscanned frequen-

agation models indicate that signal strength (denote@)is cies fi: '
inversely proportional to an-power of frequencyf (see, e.g., fk#fi Vi=1:N,
[71, (8], [9], [10]): . using the following model for link:
Px— 1 .
T @ Bi(fi) = St 4 b

I
A frequency-exponent value of = 2 is widely employed for

various environments (see, e.g., [7], [8], [9]), while Rika  2) Cross-Spatial InferencePrior measurements and prop-
et al. suggest a frequency-dependent selectiomvofwith  agation models indicate that signal strength decays lhgari
o € {2,2.3,3} [10]. While an infinite number of functions mically with the distance! from the transmitter node [7]:
P(f) can satisfy the relationship specified by Eq. (1) for d
a given «, only one functionP;(f) represents how signal Pym(d) = Papm(do) — 10 logq (-) to (2)
propagates in each frequency over a lihkas a result of do
the location and composition of obstacles. Specificalypal In Eq. (2), Pismn(do) is the received signal strength at a
strength decreases with frequency more rapidly as obgiructreference distance from the transmittgr;, o is a zero-mean
increases. Unfortunately, clients do not necessarilykito&r Gaussian random variable that represents shadowingthiee.,
how the channel quality depends on frequency for every lileviation in P;z,, between similar propagation scenarios;
and every location, and precise modeling of these relatipss finally, v is the path loss exponent, a parameter representa-
requires an extensive collection of measurements. tive of the propagation conditions in an environment. This
We propose that clients infer channel quality in a given freexponent is dependent on frequency and on the location and
quency and location by using their limited, same-locati®@BR composition of obstacles [7]. Unfortunately, mobile ctien
measurements in different bands to characterize indiVidwto not necessarily foreknow the path loss exponentsind
link models of inverse signal-strength proportionalityaioa-  the extent of shadowing in every frequengyand at every
power of frequency. To characterize the individual link ralsg  location, and precise estimation of these parameters negjui
we interpolate, for each link, the RSSIP,; measured in extensive measurement collection.
frequencieg; with a function of the formP(f) = 7&+0b. This We propose that mobile clients infer channel quality by
interpolation yields characteristic coefficients and b, for utilizing the limited RSSI measurements from previous lo-
each linkl. Consequently, clients can infer the signal strengttations to estimate path loss exponents for each band, and
of link [ in frequencies that are not scanned, using the functidmence to apply the log-distance propagation model. To do so,
B(f) = 7& + bi. To enable a low-complexity, analyticalclients also utilize their location information and esttes
solution, we transform the problem to its equivalent lineasf the AP locations. To estimate the path loss exponents,
least squares form by conducting the following variablesra clients apply regression analysis to the poifds, P, ;) for
formation: z = j% Thus, clients can analytically interpolateeach bandb, where P, ; is the measured RSSI in barid
the RSSI measurements with the functiB(z) = mz+b[11]. and at a distancé,; from the AP. Our chosen function for



regression analysis expresses the logarithmic decay nalsigUsage estimates are denoted tye [0, 1], with greateru
strength with distanceP(d) = 8 — v101log,,(d). We reduce values denoting higher usage.

the problem to linear least-squares fitting via the follagvin In Eqg. (3), individual weights are assigned to each usage
variable transformationz: = —101log,, d. This process yields estimate, as different pairs of locations exhibit dissamil
coefficientsy, and;, approximated analytically for each bandspatial correlation in the usage of a channel. For instance,
b. Consequently, clients can infer the signal strength fanla | the probability that two locations share a common interfere
of length d in band b without scanning using the following decreases with the distance of the locations. In addition,
function: B,(d) = 8, — 107, log,,(d). Our inference method this probability decreases with frequency, as the interfee

is summarized as follows: range also decreases. A weight assignment that captures the
Cross-spatial Signal-strength Inference: abovementioned relationships is the following:
» Consider the RSSF;; that are measured in baril for wi (g, ge) = max {Ip — d(ge, gi), 0}, @)

AP j, at N locations of prior visitg;, i1 =1:N,
all within distance D from the current locatiory.,,. Whered(g;,g;) is the Euclidean distance between two loca-

d(geur,9i) < D, Vi. tionsg;, g;; I is an estimate for the interference range in band
« Consider the locatioii; of the j'th AP. We denote the b and its estimation follows.
Euclidean distance between each locatigrand G; by Estimating Interference Range: Multiple factors affect
d;j. the interference range of a client. In wide-spectrum nekwor
» Consider the transformation= —101log,, d selecting a lower-frequency band can yield a dramatic asze

« Mobile clients estimate the path loss exponent for in interference range. Of course, the interference range al
bandb and AP for the neighborhood within distande depends on the location of the interferer and the client, as

from the current location: distinct propagation conditions are determined by therabst
Apply the linear least squares method by conductirtgpn inbetween each pair of locations. Finally, the intesfece
linear fitting to the points: range may also vary over time, as a result of channel fading.

Unfortunately, clients do not necessarily know the loaaitd

(zij, Pij) = (—10logyo dij, Pyj), i=1:N, their interferers in each band or their interference rangaeh

with the function: location, time and frequency.
We propose that mobile clients of wide-spectrum networks
P(2) =, % 2+ Boj; approximate a single interference range for each band by
where: employing the cross-spatial me_thod for <_:hanne|-_o_|uality in
ference (see Sec II-C2). Specifically, clients utilize RSSI
Yo j = i ZJN i i Nw i i measurements to infer the channel quality of client-AP dink
’ NY 2= () 2i)? at different locations. Thus, clients can estimate the maxn
N N distance I,; from AP j at which signals are received at
By = i P =g 2z interfering power levels, in bankt
’ N
« Infer the channel quality of the link to APat locationg; Ty = max {ij(d) > Pint}

using the approximated log-distance propagation model: _ .
R We denote byi, the average range of AP-generated interfer-
P(dij) = Bo,; — 10 X Y5 x logy (dij) encel;, averaged over all APs. In our scheme, clients con-
. Repeat the method for all bands and all APs sider I, as the estimate of their interference range in band

D. Inferring Spectral Usage E. Limited-Rate Scanning

Here, we propose a method for mobile clients to infer, at a MAWS clients employ limited-rate scanning to sparsely

given location, each channel's usage, i.e., the fractiotinoé Measure the highly variable metrics of channel quality and
that the channel is used by other nodes. available airtime across spectrum and space. Nonetheless,

Exploiting cross-spatial and -temporal correlation: Our these coarse-grained samples suffice to enable, via our meth
method exploits the correlation in sensing a signal at neighds, inference of these two metrics for a wide spectral and
boring locations and the temporal correlation in the usdge oSPatial range. In general, MAWS is a framework encompassing
channel. Towards this end, clients infer spectral usaga fio @ broad set of scanning parameters, which can be adjusted to
limited number of usage estimates that they collect atiooat client velocity and spectrum availability.
of prior visit. Specifically, the usage of the channel cemtier Channel Quality: Clients periodically measure channel
at frequencyf is inferred at current location. as a weighted duality by probing everyr., seconds. At each probing action,

average of that channel’s measured usage at locations  clients select two bands to probe and probe any single channe
of each selected band. Probing two bands minimizes the scan-

N
Doim Uy (gi) * wr(gs, ge) 3) ning required to enable our cross-spectral inference afingla
Zf’zl ws(giy ge) quality. Moreover, different pairs of bands are selectedrov

tUf(ge) =



time to collect measurements enabling cross-spatialénfsg the complete presentation of the delay metric in the Appendi

of channel quality for all bands. By receiving probe resgans Sec. C.

clients measure the RS$); ¢(g;) for their links to each AR Selection of Association Options:The throughput and

at locationsg; and frequencyf. delay metrics are weighted according to the client’s delay
Spectral usage: Additionally, clients passively estimatesensitivity to yield a joint metric that drives the seleatiof

spectral usage via periodical sniffing. Every, seconds, association options and expresses the relevance of eaom opt

clients sniff a single channel; each sniffing action lasts; s., to the client’s performance objectives:

and channels are selected sequentially. As a result, lient _

calculate usage estimates < [0,1] for the respective fre- Jiog (£) = Th,p(ge) X [1 =0 x Dy, s(ge)] (6)

quencyf, whereu equals the fraction of the sniffing duration  Finally, clients use a hysteresis threshojdto refrain

that clients sense the channel as used by other nodes.  from invoking handoffs to candidate associaticias f) with

marginally higher joint metricgy, ¢ than that of their current

association AP...., feur). Hence, clients select a different
Mobile clients may individually prioritize throughput \ars associationk, f), when:

delay performance, as they may dissimilarly tolerate packe

delay, which includes handoff, transmission and contantio

delay. Denote as the delay sensitivity of a clieni,c [0,1], Selections are followed by a handoff to another AP whe#

such that delay tolerance decreases with AP.,,,, and by a channel switching whén= AP, and f #
Given the inferred and measured metrics of channel quality,,..

and spectral usage, MAWS clients estimate throughput and

delay metrics for their numerous association options ah ede- Example Access Model

location, to select the one that best meets their performane  Similarly to many network architectures in which nodes uti-

jectives. lize more channels than the number of their radios (e.g)[13]
Throughput Metric: For association with APt in fre- nodes of wide-spectrum networks can coordinate through a

quency f, throughput is predicted via estimates for the atontrol channel. Specifically, two nodes can first exchange

tainable link rate and the available airtime of that frequyen packets in the control channel (such as RTS, CTS, probe

requests); such packets specify another channel, in whigh t
Ty, 5 (9¢) = Ri (Pr, 5 (g0), Wi) < [1 = us(ge)] () nodes switch and they further exchange packets (such as data

In Eq. (5),W; is the channel width of the bandhat includes packets, probe responses); subsequently, they switch tack

frequencyf, and R; is the attainable rate under interferencet-he control channel.

free conditions. The dependence & on channel width
and channel quality metrics, such as signal strength, can
empirically estimated. FinallyPy r(g:) and us(g;) are the
inferred or measured metrics of channel quality and usage
location g;, respectively. S
Delay Metric: Delay under each association option is estf’-‘bound in wide-spectrum networks.
mated via a metric in_corporating determinant factors ohgel I1l. EXPERIMENTAL PLATEORM
performance in a wide-spectrum network. Dendig ; < . . : .
[0,1] as the delay metric for the client’'s association to AP This section de_s_cnbes the vy|de-spectrum network that
k in frequencyf we deploy and utilize to experimentally evaluate MAWS.

First, the metric incorporates the delay incurred by the s ur testbed provides access to four spectral bands: the
. o o . ) 00 MHz band* and the ISM bands of 900 MHz, 2.4 and
lection of an association option; selecting a differentdéor )
. . LS 5 GHz. These bands span a spectral range of 5.085 GHz;
the currently associated AP incurs a significantly shorésayl : . )

. ) - t? the best of our knowledge, this range is the widest to be
than handing off to a different AP. Specifically, the chann('e5 anned to date by a sinale operational access network
switching delay is orders of magnitude lesser than hando#_l_0 evaluate MAV)\//S egde Ig a2 tWO-AP network acce;%sed
delay (e.g., 8Qus vs. 25-800 ms; values reported in [12], [2] vald » W ploy w

[3]). The key reason for this difference is that handoffs iRy a mobile and a static node. The mobile node is either

widely employed MAC schemes such as 802.11a/b/g typicaﬁcgormgh.lm a car attveh:jculf\r velomtyd or d|s pla:j:_ed on 31
require association handshakes. rt while moving at pedestrian speeds, depending on the

. . i ._experiment. The other client is stationary and serves the
Moreover, the delay metric penalizes association options L O
rpose of injecting traffic into the network. APs are placed

. . . . u
increasingly with frequency, as the handoff rate Ir]Cre"’lsgﬁproximately 15 meters above the ground at two different

W'th decreasing coverage. Finally, the delay T“et”c errEplo%alconies of Duncan Hall, at Rice University in Houston, TX.
inferred or measured metrics of channel quality and splectra

usage FO estimate the transm|SS|on- a}nd acc_:ess delay (?'gT'he 700 MHz band is allocated for public-safety serviceswelier, it was
contention delay) under each association option. We peovigbt used at the deployment area.

F. Selection of Association Options

Jkof > JAPeur feur T 1

This access model can be realized by a dedicated control
nnel (e.g., [13]) or by dynamic control channels, which
can be established with channel-hopping protocols (eLd]).
hile bandwidth reduction has been a counter-argument to
control channels in single-band networks, spectral ressur



In our testbed, nodes are equipped with multiple singledbaas distance and intermediate obstruction. Fig. 3 depias th
radios, one for each of the four bands to which accessdsployment and the selected Iocat|ons We collect all aurtdo

provided. Fig. 2 illustrates a MAWS node, used for both APs B U A A
\ . b U .
and clients. Finally, the client nodes employ low-gain, 5 dB . : o
\ N\ B o \
a "f ‘ — @ “
. a afl‘(l Q = 2 (7]
\
«
‘ @ @ s
War ; <
@ Ground level \ \ \ \ /
r2nd floor : = @' \ NS
3rd floor N\ \ Y .
lso ™ 1 a N\ ‘

Fig. 3. Measurement Locations

: measurements in the same day and all indoor in the next day;
Fig. 2. A 4-radio MAWS node successive measurements are taken at least 15 minutes apart

antennas for all bands, while APs employ 9 dBi antennas tol) Cross-Spectral InferenceDuring each scanning action,
provide a wider coverage. MAWS clients probe two channels belonging to different

Testbed specifications: Our platform is x86-based, us-bands (see Sec. II-E). Here, we assess how accuratelysclient
ing Gentoo Linux kernel 2.6.34. Nodes are equipped wig@n infer channel quality for the remaining, non-scannetiba
Atheros chipset mini-PCl interfaces from the Ubiquiti Netand how this accuracy can increase under appropriate iselect
works XtremeRange series. These are the XR7, XR9, XR2 a@fd the probed channels. Thus, the input of our inference
XR5 radios, which operate in 760-780 MHz, 902-927 MHZNnethod consists of two same-location RSSI, measured in two
2.401-2.483 GHz and 5.160-5.845 GHz, respectively. Ti§é the four frequencies considered in the experiment; fer th
XR2, XR7 and XR9 interfaces use a 802.11g MAC, while XR§ame location, the inferred RSSI values for the remainirg tw
follows the 802.11a standard. The interfaces function with frequencies are compared with the respective measurements

at h5k open-source driver. We repeat the experiment for each location and for every
possible combination of input selection, i.e., for everpick
IV. EVALUATION OF MAWS of two channels out of the four in which measurements are

In this section, we evaluate MAWS using the deploymef@llected. To distinguish between different input scesmrive
described in Sec. lll. We study the individual components @sociate each combination with a measure of dissimilarity
MAWS as well as their joint interaction. Thus, we assess t€tween the propagation characteristics of the two chasen f
accuracy of the methods inferring channel quality and spectquenciesfi, fo. This measure is driven by models suggesting
usage, and we compare MAWS with alternatives for mobil@€ inverse proportionality of channel quality to anpower
access, such as scanning and fixed-band prioritization. ~ of carrier frequency (Eq. 1), and it is given bys — .

A. Inferring Channel Quality L B . f)‘ ‘ ‘ ‘ ‘ ‘ T a—
To assess the accuracy of the cross-spectral and crogs} 0 ot ?ou;ro; T- 1

spatial methods, we design the following experiment. Fivst ;g 25| . y}:: 75 T

deploy a single-AP wide-spectrum network, in which a mobil¢ & ol P 257 ohe

client collects RSSI measurements of its link to the AP; théz fg=52 GHz

client collects asingle RSSI measurement at each of multlplegén 15 ¢ (fafo)

locations and for each of the four bands of our testbed. Ne%% 10l (forfe) (fyfg)

we provide only a subset of the collected measurements §§

an input to the two inference methods. Then, the methocis

infer RSSI values for the frequencies and locations that are 0 T 02 o4 o8 o8 1 12 14 1s 1s

not included in the subset. These inferred values are C(H'dpal’ Dissimilarity of the Two Probed Frequencies: llflz-l/fz2 (1HZ® x 10%®)

with the respective RSSI measurements. Specifically, weepla

the single AP on a third-floor balcony of Duncan Hall, in RiceFig. 4. Impact of Scanning Frequencies on Inference of CilaQuiality
University. The mobile client collects RSSI measurements a We calculate the difference between the dBm values of
773 MHz, 912 MHz, 2.447 GHz and5.2 GHz. This experiment actual and inferred RSSI as well as the absolute value of
is conducted twice, once outdoors with a car as a mobiletcliethe difference. Fig. 4 depicts the average such absoluteyal
and once indoors with the client placed on a cart. In boths;asaveraged over all instances of inference, as a function of
the selected measurement locations yield client-AP lities t the dissimilarity of the two probed frequencies. The result
cover a wide-range of factors affecting signal propagagiocch shown in Fig. 4 are obtained far = 2 (see Eq. (1)). Fig. 4



70

indicates that the accuracy of our interpolation-basestrarfce §EE T om
method increases with the degree of dissimilarity of the twég 60 s=%8m """"" 1
. . . .z < £=, m - PR
probed frequencies. Specifically, we show in the Appendidgs | £=30m -
Sec. A, that our method infers the time-average Ac:hann@l% 40 e=4om
— Qo — B
quality of a link with an error that increases with> L sg
7w sn o
. . J2 J1 o]
where A; is the difference between an RSSI measureme%té 20 |
and the time-average channel quality in frequerigyThus, §§ 10 g g e
the tolerance of our method to fading-induced deviatiorheft ¢ [+~ | ‘ ‘ ‘ ‘
RSSI measurements from their average value increases with 2 46 8101214161820 2 4 6 8 10 12
fecirmilar : # of RSSI measurements # of RSSI measurements
the d|SS|m|Iar|ty of the two prObed frequenmes. a) Outdoor Environment b) Indoor Environment

Finally, Fig. 4 illustrates that under an appropriate s@ec
of the probed frequencies, our method can infer the RSSIFig- 5. Impact of RSSI Availability on Inference of Channeliglity

values in other bands within 7 dB of the actual RSSI. Tonger links in the outdoor case) as signal strength deea
add perspective to this difference, we empirically compajggarithmically with distance; thus, for a giventhe difference
the link rates attainable under two RSSI values that differ kP(d + €) — P(d) decreases withi. Finding: Inference of

7 dB (see Appendix, Sec. B). We find that the difference @hannel quality with two RSSI measurements is marginally

the rates is upper bounded By% of the highest attainable |55 accurate than inference with the highest number of mea-
rate; moreover, the compared rates are equal under halfsQfements.

the possible values for two RSSI differing BydB. While
a non-negligible error, such inferences nonetheless suff'g
for MAWS'’ selection objectives without sacrificing additial '
airtime in scanning (see Sec. IV-@inding: Using only two  To assess the accuracy of MAWS in inferring spectral usage,
RSSI measurements in two different bands and an approprigte design the following experiment. A MAWS node traverses
selection of probed frequencies, MAWS clients can infelesanthe coverage area of a network providing access to real users
location channel quality in other bands within 7 dB of tha&t channek. Using kismet the node continuously sniffs this
actual dBm value. single channek. We discretize time in seconds; with each
2) Cross-Spatial InferenceMAWS clients can infer the second;, we associate a single locatignchosen among the
channel quality in a given band and location using sampessibly many visited during;. For each of the second-long
band RSSI measurements from other locations (Sec. II-Clilne-intervalst;, we calculate the fraction of timey(g;) that
Here, we assess the error of this inference as a functiontbé center frequency of channek is sniffed as busy, i.e., the
the number of RSSI measurements and the robustness of fsaction thatkismetreports packet transmissions in Then,
method to inaccurate knowledge of the AP locations. Towardee consider a subset of the entire sniffing process, a subset
this end, we first consider all possible subsats of the N representing periodic sniffing instances, which last;s s.
locations depicted in Fig. 3N;,| € [2, N —1]. For each band, and repeat everyr,; s. These sniffing instances comprise
our inference method employs the single RSSI measuremtr& input of our inference method (Sec. II-D), which yields
at each of thel,, locations, estimates a distinct path lossisage inferences;(g;) for f, at each locatiog;. \We compare
exponent and infers channel quality at the remaiming N;,, the inferred usagé ;(g;) with the actuak.;(g;), for eachi.
locations. The inferred values are compared with the réisgec We generalize our single-frequency assessment for the case
RSSI measurements, which are not employed by our methofi.a wide-spectrum network wittv channels, considering a
We apply our methodology separately for the two differesniffing pattern where a client sniffs a different channedrgv
environment scenarios, i.e., indoor and outdoor. Moreaver m,; seconds and the same channel ewsry =,,; seconds.
repeat the experiment under different values,cd parameter  Networks with real users: To evaluate our inference
representing the difference between the assumed and thed aahethod, we conduct experiments in operational networkd use
length of the client-AP link. by real clients. We consider two networks that provide agces
We calculate the difference between the dBm values tif two different bands(i) The TFA network, an operational,
actual and inferred RSSI, and the absolute value of theban mesh network consisting of approximately 20 APs
difference. Fig. 5 depicts the average such value in infgrriand providing access to channel 11 of the 2.4 GHz band.
channel quality at thév — N;,, locations as a function of the During the experiments, clients maintain vehicular speeds
number of RSSI measuremeniys,. The figure depicts results while sniffing this channel, to traverse the network coverag
from cross-spatial inferences in one band (900 MHz), whikdong a4.1 km route within 800 s(ii) A university network
we observe similar trends and findings for all other bands. Asoviding indoor access to the 2.4 and 5 GHz bands in Duncan
Fig. 5 indicates, two RSSI measurements at different lonati Hall, Rice University. We conduct the experiment once for
enable inference of channel quality within— 6 dB of the each band, sniffing channel 6 in the 2.4 GHz band and channel
value inferred via RSSI measurements \a— 1 locations. 48 in the 5 GHz band. In these two experiments, the client
Moreover, our method’s accuracy increases with link lengthaverses the network coverage at pedestrian speeds along a

Inferring Spectral Usage



200 m route, within260 s. All experiments are conducted(eight combinations for two APs and four bands). Moreover,

during hours that actual users access the networks. we repeat the experiment under different usage values for
03 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ each band; thus, we control band usage by conducting the
Pedestrian/Indoor/ GHz bozoat experiment at hours that no actual users access the medium

Pedestrian/Indoor/2.4 GHz mwsms
0.25 Vehicular/Outdoor/2.4 GHz : ]

and by injecting controlled traffic via another, static nlie

In all scenarios, the client can passively measure RSSI from
its associated AP via the exchanged data packets. Finally,
we repeat the experiment for different durations of pedodi
inactivity, i.e., pausing of thgerf session; such idle intervals
represent the airtime sacrificed to estimate channel guaiid
usage in other channels.

As our platform is limited to only 2 APs and 2 clients,
we utilize the collected measurements to emulate cliert per
formance under each mobile-access scheme in larger-rietwor
scenarios. For our emulation, we consider a linear trajgcto
Fig. 6. Impact of Sniffing Rate on Usage Inferencg, (s = 100 ms)  gnd a placement of 10 APs. Each AP is placed in such

For each of the three velocity/band scenarios, we calcul&emanner that its relative position to a certain segment of
the inference erroe(g;) = |is(g;) — u(g:)| at each location the trajectory is representative of the experiment coretiict
gi. Moreover, we calculate the average inference emor for measuring throughput performance. Moreover, the AP
averaged over all locationg, as a fraction of the maximum placement enables multiple scenarios of coverage overlgpp
usageumq, = max{us(g;)} that is measured during eachin our emulation model, many different association options
experiment. Fig. 6 depicts this normalized metric of averagXist in each location of the trajectory; our experimentgeha
error, as a function of the sniffing period, fty,;; = 100 ms. measured the channel quality of each option and the offered
Under realistic traffic patterns, the usage of a frequency tiroughput under many scenarios of spectral usage and scan-
strongly correlated across space and time. Thus, despgite fing frequency. Our emulation model assigns to each lotatio
existing variations in the usage of a frequency, the averalje AP-channel pair chosen by each mobile-access scheme and
inference errore of our method ranges within 10-25% ofassociates the respective empirical throughput.
the maximum measured usage, even under a very infrequent) MAWS vs. Scanninghs MAWS has errors in inferring
sniffing period, e.gr = 45 s. We consider that the usagechannel quality and spectral usage, we perturb the actual
of N channels can be inferred with such an accuracy Wyeasured and controlled values of these metrics according t
periodically and sequentially sniffing the channels evgns the inference errors quantified in Sec. IV-A and Sec. IV-B.
(our wide-spectrum testbed can operate in up to 40 channelg)contrast, we consider that the scanning-only altereatas
Finding: Under realistic traffic patterns, mobile clientsuc error-free measurements of channel quality and usage. Both
infer spectral usage along their trajectory with an averagéchemes select their own association options at each docati

02

0.15 |

01

Average Inference Error / max(uy)

5 10 15 20 25 30 35 40
Sniffing Period (sec)

error of 10-25% of the maximum measured value. according to Eq. (6), fof = 0. Then, the MAWS throughput at
. ) each location is given by the one measured under the selected
C. MAWS vs. Alternatives for Mobile Access association during periodic inactivity f@t,;; + 2 X tp.0p S.,

Here, we compare MAWS with two alternatives for mobiles MAWS periodically sniffs one and probes two channels.
access{i) exclusive employment of scanning, aij fixed- Moreover, scanning’s throughputis given by the one measure
band prioritization. Association based on scanning alaare cduring periodic inactivity ofV x ¢,,.,, WwhereN is the number
result in more accurate estimates of channel quality aoélchannels in the network.
spectral usage than our inference-based methodologyhwhic 160
is subject to inference errors. However, this accuracy comte
the cost of sacrificing airtime that increases with the numb
of scanned channels. Alternatively, clients can omit soann
and employ static band prioritizations, similarly to totay «
common practice for selecting between different networks g |
operating in diverse bands. However, such an approach féis 6
oblivious to the underlying usage and channel quality oheac
band at any given location.

Towards these two comparisons, we design the following 20|
experiment. We place two MAWS APs at different locations
of the university campus, and a mobile client experimentall
measures its throughput performance via a Updf session.
Specifically, we repeat the measurements along the same
trajectory for each possible selection of AP and spectratiba Fig. 7 depicts the throughput gain of MAWS as a function

T T T
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Emulation s
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Fig. 7. MAWS vs. Exclusively Scanning



of the number of channels, féf,.., = 25 ms,ts,;y = 100 ms to the incorporation of channel-quality estimates; suctaia g
and a scanning period of 1 second. To add perspective, it aisoreases with the frequency of the most preferred band and
depicts an analytically calculated gain for different \edwf can reach up to 25%.
torop- We find that the airtime sacrificed by scanning over-
whelms its advantage against MAWS, i.e., the more accurate
evaluation of association options, when the network opsriat Related work can be classified inti) mobile access of
more channels than single-band networks (e.g., 11). Inimukingle-band networks, an@i) non-mobile access of single-
band networks, the MAWS gain can reach up to 140% for 40hd multi-band wireless networks.
channels; specifically, it increases linearly with the nemaf
channels, as so does the airtime consumed by scanning, white
the accuracy of our inference methods remains the same (sedEEE Standards: The 802.21 standard enables handoff
Sec. IV-A, IV-B). Finding: Throughput gains over exclusivebetween different network technologies [15]. In addition,
employment of scanning can exceed 100%. 802.11p is a standard for vehicular communication in the
2) MAWS vs. Fixed-Band PrioritizationiVe consider three dedicated spectral band of 5.9 GHz [16].
versions of fixed-band prioritization: selection of theliggt- ~ Overlaid Cells: In cellular networks, multiple overlaid
frequency band (among those available), selection of theyers of coverage are provided by cells of different sibed t
lowest-frequency, and highest preference of the 2.4 GHd bapperate in the same band. In such networks, cell selection is
with arbitrary preference order for the remaining bandsewh driven by client velocity (e.g., see [17]). At the same tinme-
multiple APs provide coverage at the same location and lile clients widely employ fixed-band prioritization to eet
the most preferred available band, we consider that thd¥tween independent networks operating in dissimilar sand
three policies select the highest-RSSI AP. We consider tf®g., smart-phone preference of W-LAN to 3G; see also [1]).
10-AP network scenario for many different cases of spectralNon-Cellular Single-Band Networks: In our prior work,
usage, which is controlled in our experimental methodalogyehicular clients of multi-hop wireless networks prolorsga-
We assign the empirical throughput performance to MAwWSations to better performing APs by accounting for disjesi
clients as described; moreover, we assign to each fixéd-offered AP throughput [3]. Deshpande et al. propose the di
band prioritization policy the respective throughput esu engagement of mobile clients from scanning via the utilrat
measured under no periods of inactivity (no scanning cost)of historical RSSI values at revisited locations [4]. In ndiye
networks that operate in channels exhibiting identicappga-

120 1 'vs. Always '3?*?52% 5:2‘_*:%“% CxxEn ‘ ‘ ] tion characteristics, mobile secondary users opporicalit

vs. Always Lowest Frequency s access spectrum that is not occupied by primary users [18]

and enable collaborative spectrum sensing [19].
In contrast to prior work in mobile access, MAWS dy-

namically prioritizes diverse spectrum, without exclesyw
employing historical data or scanning.

V. RELATED WORK

Mobile Access

100
80 r
60

40

20 ¢
ﬁ Diverse-Spectrum Networks:Shu et al. address throughput
0 o 5 = 5 maximization by regulating the scanning frequency of cog-
Difference between traffic injection rate in the most preferred band nitive radios [20] Moreover, prior Work addresses Spe‘ntru
and rate in remaining bands (Mbps) . . g . .
_ _ o access in networks operating specifically in the UHF white-
Fig- 8. MAWS vs. Fixed Band Prioritization spaces (see, e.g., [21]). To predict channel availabiityen
Fig. 8 depicts the throughput gain of MAWS over eacht al. employ historical measurements ranging from 20 MHz
of the fixed-prioritization policies. The x-axis represeiiie to 3 GHz and identify patterns of channel usage [5], while Tu-
difference between the rate of injected traffic in the highesnuluru et al. employ methodologies based on neural networks
preference band,,., and the rate for all remaining bandsand Markov chains [22].
R,.s. Finding: Despite scanning, MAWS vyields significantly Single-Band Networks: Deployed urban-scale networks
higher throughput performance than fixed-band prioritiaat can be evaluated via propagation models, terrain maps and
when the usage of the statically preferred band is equal areasurements obtained within a wide range of locations [6].
higher than that of the remaining bandshe reason is that In contrast to prior work in non-mobile access, MAWS con-
MAWS incorporates estimates of spectral usage and chansielers client mobility; clients are temporarily presena gfiven
quality in the selection of association options, despites¢h location and evaluate their association options via cepsgial
estimates being imperfect. Specifically, the MAWS gain due ind -spectral inference methods employing measurements
the incorporation of spectral-usage estimates increasesrly collected at other locations. In contrast to all prior work,
with the additional traffic rate in the statically preferreand; MAWS is the first scheme designed for evaluation and se-
for an additional rate ofill Mbps, the gain can reach up tolection of APs and channels by mobile clients of wide-
120%. Under identical band usage, MAWS incurs gain dpectrum networks.

B. Non-mobile Access

MAWS Throughput Gain (%)




VI. CONCLUSIONS
In this paper, we present MAWS, the first scheme design

for mobile clients to evaluate and select their associatid¥]

options in wide-spectrum networks. The key technique

MAWS is for clients to infer channel quality and spectrag3)
usage for their current location and bands using limited
measurements collected in other bands and at other losation
We experimentally evaluate MAWS using a four-band wide-
spectrum network that we deploy. Our evaluation reveals th&l
MAWS vyields significant throughput gains over alternatives’

for mobile access.
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APPENDIX
On the Error of Cross-spectral Inference

Lemma 1:Consider a link! and let P;, P, denote two
RSSI measured fot in frequenciesf; and f,, respectively;
also consider the transformatian= fia Our cross-spectral
inference method yields a link mode?,(z) whose slope
differs from thAat of the time average channel qualityz) by

2 = 1, 2 =

Z9 — 21 a 7e
P; and its timez—averége value.
Proof: Consider thatm,b exist to satisfy Eq. (1), i.e.,

11), where/\; is the difference between

1

P(z) = m x z +b. Our cross—spectra[ inference me}hod
(Sec. 1I-C1) will determine a link modeP, = m x z + b,
where
. PP Pi(z2) + Ao — Pi(z1) — &y _
29 — 21 22 — 21
mxzg+b+Ag—mxz —b—»A;
22 — 21 B
m X (22—21)+A2—A1 —ma Ag—Al.

22 — 21 22 — 21

Ay — A Ay — A
Thus,m —m = 2 L - 12 11
R R

B. Comparison of Actual and Estimated Link Rates

Claim 1: The difference between the estimated attainable
link rate under actual and inferred RSSI values is upper
bounded byl 7% of the highest attainable link rate. Moroever,
for half of the cases in the [-95, 0] dBm range, the inferred
and actual RSSI values yield identical estimates of attdéna
link rate.

Demonstration: To compare the link ratef(s,) and
R(s2) attainable under the inferreds;() and actual chan-
nel quality (s2) we design the following experiment. First,
we empirically estimateR(.), by measuring link rate under
many values of channel quality. We connect a sender and a
receiver via a coaxial cable to enable packet transmissions
under interference-free conditions. To measure link rateu
different channel quality conditions, we gradually ingea
the attenuation of the link by adding cascaded attenuators
to it. For each of the different attenuation scenarios, we
extensively measure UDP throughput usipgrf.> We repeat
the experiment for every available transmission rate, ard w
record the highest attained link rate. We validate this eicgdi

Shttp://iperf.sourceforge.net/



11

estimate for all four bands in which our testbed operates by handoff decreases with coverage and thus increases with
repeating the measurement of UDP throughput in each of thhequency/:
bands. t(f) = [ = Fnin ’

Our measurements lead to conclusions that are consistent Fraz — Fin
with the literature (e.g., [23])R(.) can be approximated aswhere F,,,;,,, Finaz denote the minimum and maximum fre-
a piecewise linear function, where one region correspoadsduencies in the wide-spectrum network, respectively. Next
zero throughput, another to the maximum throughput, and (%, f) denotes the delay incurred with the selection of AP

an intermediate region, UDP throughput can be approximatgcnd carrier frequency as a new association:
as a linear function of channel quality in dBm. Specifically,

our empirical estimate oR(s) is the following:

0, if k=AP..., [f= feur
DSUJ .
0 Mbps 5 < =75 dBm H(k, f) = Dow + Dap’ if k= APeur, [ # feur
R(s) =< T x s+656Mbps —75<s < —35 dBm _ Dar bt ap
35 Mbps s > —35 Mbps dBm Dy + Dap’ curs

Consider 1-dBm increments offrom -95 dBm to 0 dBm. Wheré Ale. and f.,, denote the AP and frequency of the
Then for 48% of the case®(s +7) equalsR(s). For the rest CUrrent association respectively, while,,,, D 4p denote val-
of the casesR(s + 7) — R(s) < 6 Mbps. 6 Mbps is 17% of ues for the channel switching and handoff delay, respédgtive

the highest attainable rate, which is 35 Mbps. Finally, d;.(P) is a measure expressing the transmission delay

- under channel quality’:

R; (P)

. i dyp(P)=1— ——2 2
C. Delay metric o (P) oy (R ()]

Here, we propose a metric indicating the delay performance R
of a mobile client under each association option in a wid&herei is the band including carrier frequengyand Py, ¢ (g:)
spectrum network, i.e., under each pair of an AP and a carri#gnotes the inferred or measured channel quality of thetdie
frequency. link to AP £ at locationg; and frequencyf.

Multiple factors can affect the delay experienced by the
packets of a client: the handoff frequency and duration,els w
as the transmission and access delay, i.e., the time tosaicce
fully transmit a packet. In wide-spectrum networks, clgecan
switch their association with an AP to a different frequency
at a significantly smaller delay cost than initiating a h&hdo
to a different AP. Furthermore, carrier frequency affetts t
tendency of a client to handoff, as well as the transmission
and access delay. Specifically, as frequency increases, the
number of handoffs initiated by a client also increasesabse
AP coverage decreases. Moreover, the transmission delay
increases with frequency, as channel quality decreasds wit
the latter. Finally, access delay may decrease with fregyen
as so does the interference range of the client.

We propose a metric for each association option that in-
corporates the abovementioned factors affecting delay per
formance; this metric expresses how carrier frequencies of
dissimilar propagation characteristics may affect theaylel
performance of a client. Specifically, clients calculateath
location g; the delay-driven metridy, s for each pair of an
AP k and a carrier frequency, which is given by:

Di.t(g:) = H(k, f)+tn(f)+ ﬁi(gi) + dir Py (9:)) -

In Eq. (7), all variables range ifo), 1], and their higher values
indicate higher delay. As a metric indicative of the acceday

in frequencyf and at locatiory;, we consider the respective
usage metriciis(g;), which is either measured or inferred
according to the method proposed in Sec. II-D. Moreover,
tr(f) is a measure indicating that the tendency of a client




