
A Flexible Framework for Debugging
IoT Wireless Applications

Francesco Gringoli, Nahla Ali, Fabrizio Guerrini
Dept. of Information Engineering

University of Brescia Brescia, Italy
<name.surname>@unibs.it

Paul Patras
School of Informatics

University of Edinburgh Edinburgh, Scotland
ppatras@inf.ed.ac.uk

Abstract—Debugging IoT wireless applications can be a tough
task. Different communication protocols may simultaneously
operate in the same RF band, giving rise to ambiguities when
trying to understand in which order frames are transmitted by
the same application or when frames are affected by errors. In
this paper we present a flexible framework for capturing all types
of communication taking place in the 2.4GHz band, irrespective
of the governing standard. As an example, we demonstrate
accurate sniffing and time-stamping of Wi-Fi and Bluetooth Low
Energy frames.

Keywords-IoT debugging, protocol sniffing.

I. INTRODUCTION

Debugging IoT wireless applications can be very difficult, as
multiple communication sessions following different standards
may be employed at the same time in the same frequency
band. Several frameworks for capturing network traffic that
complies with specific standards already exist. Combining data
from different sniffers is however challenging, especially when
timing is crucial, as for instance when synchronising traces is
only possible with the support of an accurate external time
reference. The lacking of such precision leads to ambiguities
when aiming to explain a sequence of actions or more easily
which frames are colliding. Professional equipment that solve
this issue have recently emerged [1], yet they are expensive
and not upgradeable with software written by users, i.e. only
proprietary software can be used to update their decoding
capabilities. Open-source alternatives are largely tied to non-
flexible hardware designed for a specific standard [3] and
work with closed-source firmwares in the lower layers [2]–
[4]. Furthermore, these can only capture traffic on a single
channel at a time and, in the case of Bluetooth, they are
unable to follow a conversation, unless an initial connection
request was intercepted. Similarly, Software-Defined Radio
(SDR) solutions have been proposed to decode one particular
standard over a fixed channel [8]. With respect to Bluetooth
Low Energy (BLE) many papers tried to deal with the se-
curity of its communications, i.e. try to intercept an ongoing
communication and decrypt it without any knowledge of the
initial connection establishment [5]–[7], while we are instead
interested in debugging communication sessions.

To overcome these limitations, in this paper we propose
a flexible framework for i) capturing the entire activity in
the 2.4GHz band, across a total spectral width of 80MHz,

using multiple SDRs with limited receiving bandwidth and
ii) extracting frames originating from transmitters that follow
different standards and time-stamping these using a common
time horizon. To demonstrate the capabilities of the proposed
framework, we focus on a scenario where 802.11g and BLE
frames are simultaneously present on a channel. We construct
specific use cases and present preliminary results confirming
that our solution provides very accurate time-stamps; these
can be used to perfectly understand frame transmission order,
which can drastically simplify wireless protocol debugging in
crowded IoT environments.

The rest of the paper is organised as follows. We introduce
our capturing architecture in Section II, the decoding engine
in Section III, we report preliminary results on capturing BLE
and Wi-Fi frames in Section IV, and we conclude the paper
in Section V.

II. DEBUGGING FRAMEWORK

The hardware setup underpinning the proposed wireless
debugging infrastructure is illustrated in Fig. 1. We use two
Ettus B200 SDR boards [9] for signal capture, which we
connect to a mid-end workstation powered by an Intel Core-
i7 CPU with four cores clocked at 4.2GHz, and equipped
with 16GB of DDR4-3000 RAM. The system runs Ubuntu
16.04 LTS. The two SDR devices support full-duplex operation
with up to 56 MHz of real-time bandwidth. To avoid USB
level bottlenecks, we connect these front ends to the host
through two separate USB-3.0 controllers plugged into the
PCI-E slots of an Asus Z270-A motherboard. The controlling
hosts employs a Samsung 850 EVO SATA III m.2 solid state
drives (SSD) for storing the captured traces.

A. Capturing Architecture

We are interested in capturing network traffic on all BLE
and 802.11g channels, as defined by the respective stan-
dards [10], [11]. The carrier frequencies of the corresponding
channels can be expressed as follows

fBLE
k = 2, 402MHz + k · 2MHz, k ∈ [0, 39], (1)

fWi-Fi
n = 2, 407MHz + n · 5MHz, n ∈ [1, 13]. (2)

Since BLE channels are 2MHz-wide and respectively span
20/22MHz in the case of Wi-Fi (for both 802.11g and 802.11b
encodings), we need to capture the frequency spectrum ranging



capture 
device high 

capture 
device low 

controlling host 
with m.2 ssd storage 

Fig. 1. Capturing platform built with a pair of Ettus B200 SDRs connected
to the same controlling host. The lightly coloured antenna of the device on
the left is used to transmit a periodic synchronisation signal.

from 2,401MHz to 2,483MHz. We note that the leftmost
margin is shared by BLE channel 371 and 802.11g channel 1.
The rightmost margin covers 802.11g channel 13, whilst the
rightmost BLE channel is located 3MHz below.

capture device high 
2431-2483 

24
01

 

Wi-Fi ch 13 Wi-Fi ch 7 24
31

 

24
53

 

24
61

 

24
83

 
24

83
 

Wi-Fi ch 7 Wi-Fi ch 1 24
01

 

24
23

 

24
31

 

24
53

 

capture device low 
2401-2453 

BLE 
channels 

37 0 1 5 10 38 11 15 25 36 39 13 23 18 

Fig. 2. ISM band covered by the designed framework. Wi-Fi channels 1–13
and all BLE channels are covered by the two capture devices.

To cover the whole spectrum, we configure the two capture
chains as shown in Fig. 2. We set the signal sampling
frequency to 52MS/sec and tune the carrier of the capture
device low to 2,427MHz and that of capture device high to
2,457MHz. Even though it may not seem strictly necessary,
the large 22MHz overlap between the two devices brings two
main benefits: i) it allows to work with the same sampling
rate, so that processing samples from the two captured traces
can be synchronous, and ii) it enables in principle to share an
entire Wi-Fi channel and use this to synchronise the two traces
during post-processing. Besides, only 5MHz of spectrum could
be saved from either the low or the high capture chain. That is
we could only move to the right by 5MHz the left margin of
the right capture chain, as we need to capture Wi-Fi channel
8. In addition, this configuration is amenable to also capturing
40MHz-wide channels in any configuration. It should be hence
straightforward to extend our framework to enable 802.11n
decoding, which we leave for future work.

Due to their spectral overlap, we do not even need the two
capture chains to be coherent, i.e. they need not be fed with an
external clock reference. This makes the testbed setup consid-
erably simpler. Instead, we synchronise during post-processing
the traces acquired, when extracting samples from both. We
use frames that we capture at both chains to synchronise the
captures. In particular, we could opportunistically use Wi-
Fi frames captured on channel 7 or BLE frames overheard

1Official channel numbers should not be confused with indexes k in Eq. 2

on channels from 13 to 23. The main drawback of such an
approach is the inability to record Wi-Fi frames potentially
transmitted on channel 7. Likewise, we might not be able to
decode BLE frames belonging to data sessions for which a
connection request was not captured previously, as we discuss
in detail in the next section. A more effective solution is to
periodically transmit using capture device low a short BLE
frame with known preamble and with an embedded counter to
avoid synchronisation ambiguities. We perform this operation
by default once per second on BLE channel 18.

The reasons for using two SDR devices with bandwidth
constraints instead of a single device SDR solution capable of
capturing at higher sampling rate are as follows. Alternatives
such as Ettus X300, which supports an operation bandwidth
up to 160MHz, cost as much as four B200 devices and while
providing only the main logic board with ADC/DAC circuitry.
Additional radio daughterboards are required, which further
increase the platform cost. Such a solution further requires
an external power supply and either a PCI-e connection or a
10Gb/s Ethernet interface to be able to stream samples to the
host, which introduces portability limitations.

B. Storage Architecture

We store on SDD all the data produced by the capturing
architecture, to be used for later processing and decoding. The
total sustained throughput θstream of I/Q samples is:

θstream = 2 · 2 · 52MS/sec · 1B/S = 208MB/sec,

where we considered the two capture devices, the two (I and
Q) samples, the capturing sample rate and a single byte to
represent a real sample.

According to the manufacturer’s technical data sheet, the
SSD supports a sustained writing throughput of 520MB/sec,
which matches the required performance. Nevertheless, we
characterised the maximum sustained write speed obtainable
under several configurations, to find the one that enables
collecting very long traces without the risk of temporary loss,
which would make the two captured traces desynchronise. To
find the optimal setting we tested the following configurations:

• data stored on the same partition as the location of the
Operating System (OS) – this is the worst case, as the OS
is accessing the same partition for operations including
logging, and periodic activity such as starting processes,
etc.;

• data stored on a dedicated partition on the same drive as
the OS – in this case the capturing process is the only
one accessing the file system, but the device is still shared
with the OS. We formatted the partition using either the
ext4 or btrfs file system; the latter should be faster,
as it does not perform any journaling;

• data stored on a dedicated partition on a dedicated device
– in this case the capturing process is the only one
accessing the entire device. We formatted the partition
using the best of previous configurations considered;



• raw access on a dedicated device – in this case the
capturing process has exclusive access to the device and
writes directly to the raw device as if it were a file.

To test access when writing to a partition we used
bonniee++, a free file system benchmarking tool for Unix-
like operating systems [12]. For the last option we developed
a small piece of C code that writes 2GB of data divided into
blocks of 20KB, the size of the captured blocks, and measures
the time taken until the data is physically flushed to the drive.
We report the results of our performance analysis in Table I.

Mode Writing Speed (MB/sec)
Data to OS partition 340MB/sec

Data to dedicated ext4 partition 342MB/sec
on same drive as OS

Data to dedicated btrfs partition 341MB/sec
on same drive as OS

Data to dedicated ext4 partition 342MB/sec
on dedicated drive

Raw access 480MB/sec
to dedicated drive

TABLE I
DIFFERENT STORAGE OPTIONS AND ACHIEVABLE SUSTAINED WRITE

THROUGHPUTS.

All storage options considered largely exceeded the required
208MB/s rate, therefore we decided to use for storage an
ext4 partition on the same drive as the OS, as this was
easier to deploy than raw access. Interestingly, we note that
using the btrfs file system led to similar performance to
that of ext4, while using a dedicated drive did not bring any
improvements. A notable boost appeared when we completely
bypassed the file system, i.e. raw writing to the dedicated
device. Specifically, this led to to a 1.4x speed improvement.
We plan to use this option in a future release of the framework,
for situations where we would need to capture even larger
spectra.

Finally, we developed simple software to interface the two
capture devices with the storage. The software starts two
threads, one that is responsible with fetching the I/Q samples
through the UHD library and storing them into RAM, and
another that periodically dumps to storage the data collected.
The software starts one additional thread that transmits every
second a short BLE frame with known payload, which is later
used to synchronise the captured traces.

III. DECODING ENGINE

To process the traces saved by the two capturing devices we
implemented the multi-protocol decoding tool whose operation
we sketch in Fig. 3. This tool consists of a main loop that
processes the data saved on the storage drive and feeds N
individual decoders, which we create at start up. During an
initial registration phase, each decoder requests a specific
portion of spectrum by setting the central frequency, the
bandwidth, and the expected sampling rate expressed as a
rational number, Rup/Rdown: here Rup is the up-sampling and

Rdown the down-sampling factors that will be used to reach
any target rate that does not divide the original 52MS/sec.
This creates a channeliser that later, during the decoding
phase, shifts the spectrum of the sequence of samples to the
configured central frequency, brings the sampling rate to the
right value and applies a low-pass FIR filter for reducing the
aliasing effect due to the up- and down-sampling operations.
The framework automatically computes the number and values
of the FIR tap coefficients. We illustrate this approach in
Fig. 4. Which trace to use as input for each decoding chain is
chosen during the registration phase, depending on the spectral
characteristics requested by each decoder.

Signal processing is performed on a per-block basis. Each
chain is fed with a block of Nblock samples at a time. Because
of the re-sampling, each corresponding decoder is fed with
blocks of approximately NblockRup/Rdown samples at a time
and has to keep an internal state, since it is very unlikely that a
frame will be completely within a single block of data. When a
decoder successfully detects and decodes a packet, it can pass
a string of data through a call-back mechanism. In this way
it reports relevant information about the captured data to the
trace collector, which saves this on storage. We plan to extend
this functionality to add support for saving such captures as
pcap traces.

A. Wi-Fi decoder

For the implementation of the 802.11g decoder we draw
inspiration from the gr-ieee802-11 framework [8], which
was originally developed for GNURadio [14]. We re-
implemented this decoding chain in our toolset, our prototype
comprising blocks that process the incoming symbols and
exploit their structure for i) detecting frames and ii) receiving
the data they contain. Within communications following the
802.11g specification, frames are modulated using Orthogonal
Frequency-Division Multiplexing (OFDM) where 20MHz of
spectrum is divided into 64 carriers that encode symbols
of given time duration. As we show in Fig. 5, all frames
start with a Physical Layer Convergence Protocol (PLCP)
header that is composed of a Short-Training-Sequence (STS),
a Long-Training-Sequence (LTS) and a Signal symbol. All
these fields encode data using a Binary-Phase-Shift-Keying

IQlow 

storage 

IQhigh 

ch
an

ne
lis

er
 

40 BLE 
decoders 

13 Wi-Fi 
decoders 

tra
ce

 c
ol

le
ct

or
 

ascii 
trace 

storage 

decoder 
decoder 
decoder 
decoder 
decoder 

decoder 
decoder 

decoder 
decoder 
decoder 

decoder 
decoder 

Fig. 3. Multi-protocol decoding software: a channeliser extracts several signal
streams at the requested data-rate and centre frequency, then feeds each stream
to separate serial decoders.



j2πf0

52MS/sec 

upsamp 
Rup ! 

downsamp 
Rdown " 

low-pass 
[-F/2,F/2] 

Rup/Rdown 52MS/sec 

Fig. 4. Channeliser chain: each decoder receives the subset of sam-
ples corresponding to frequencies in range [f0 − F/2, f0 + F/2] at rate
Rup/Rdown · 52MS/sec.

STS LTS 

G
I 

G
I 

SIG 

G
I 

DATA 

G
I 

DATA 
G

I 

DATA 

G
I 

DATA 

G
I 

DATA 

G
I 

DATA 

8µs 8µs 4µs 4µs 4µs 

PLCP MPDU 

Fig. 5. The structure of an OFDM 802.11g frame.

constellation at each carrier. As such, we use these fields for
frame detection, carrier frequency offset estimation, channel
equalisation, and time synchronisation. The Signal symbol
embeds information about the length of the following MAC
Protocol Data Unit (MPDU) that carries user-data and its
encoding, i.e. the mapping of bits to OFDM carriers. Thanks to
this approach, frames having PLCP headers of the same length
(20µs) can carry MPDUs at different data-rates, ranging from
6 to 54Mb/s.

FC DUR ADDR1 SC ADDR2 ADDR3 LLC LLC FCS PAYLOAD 

Fig. 6. Logical format of an IEEE 802.11 frame.

While we refer the interested readers to the original pa-
per [8], we remark that, different to BLE, 802.11g frames
are self-contained and no previous knowledge about the trans-
mitter or the network is needed to capture such frames.
For instance, both the binary content of the PLCP and the
MPDU are scrambled and protected (with CRC codes) using
polynomials with well-known coefficients. For this reason,
we can easily decode frames and retrieve useful information
about some of their fields, as shown in Fig. 6. These include
the frame type (e.g. data, management or control), the MAC
address of the sender and that of the receiver, and others
(parsing is not straightforward, as it depends on the first field,
i.e .the Frame Control – FC). Additionally our decoder also
prints the time-stamp of the frame, anchored to its start, which
we compute over the number of processed samples when the
LTS part of the PLCP is decoded. The 20MS/sec sample rate
allows a resolution of 50ns.

In our framework we register 13 decoders, each centered
at one of the central frequencies of the corresponding 20MHz
Wi-Fi channel. To receive a sequence of samples at 20MS/sec,
we set Rup = 5 and Rdown = 13. Finally, the decoders provide
to the trace collector only the frames that have passed the
Frame Check Sequence (FCS) test.

Preamble 
1B 

AA or 55 

Protocol Data Unit (PDU) 
2-257B 

Access Address 
4B 

8E89BED6 

FCS 
3B 

header 
(length) 

Payload 
up to 255B 

Fig. 7. Logical format of a BLE frame.

B. BLE decoder

We developed the BLE decoder from scratch and presently
this only supports the 1Mb/s Gaussian-Frequency-Shift-
Keying (GFSK) encoding with modulation index in the range
[0.45− 0.55]. Different to Wi-Fi, capturing BLE frames on a
given channel among the 40 available is not straightforward,
even though the frame format used and which we show in
Fig. 7 is very simple. Note however that both the Access
Address (AA) and the polynomial used for protecting the
frame with a 3-byte CRC are not fixed by specification.

In BLE a node can communicate either by broadcasting
frames on Advertisement channels (37, 38 and 39), or by
transmitting unicast frames to an associated peer on Data
channels (from 0 to 36). While in the former case frames
are protected with a standard CRC polynomial and addressed
to a fixed Advertisement AA (0x8E89BED6), in the latter
case both the AA and the CRC polynomial are negotiated
by peers when they establish a communication session. To
this end, one peer acts as a peripheral and advertises itself
on the Advertisement channels. The other peer, the central,
transmits a Connection Request (CR) that embeds the AA and
the CRC polynomial, and hop interval parameters that will
be used to set up the Frequency Hopping (FH) procedure.
After the connection is established, frames are transmitted
in a FH fashion. For this reason, the 40 BLE decoders that
we register in our framework have to share a connection
database that we fill with parameters captured from CRs that
we receive on channels 37–39. Once a decoder on channels
0–36 intercepts a valid preamble, it keeps decoding the frame
and checks whether the AA is in the database. If this is the
case, the decoder then verifies the validity of the FCS using
the corresponding polynomial. Decoders on channels 37–39
instead use the standard parameters.

In our implementation, the decoders provide the trace col-
lector with the AA that identifies the session and the frame
type extracted from the PDU header only for correct frames.
This further includes the time-stamp that is anchored on the
first bit of the detected preamble. Since we perform wide band
capture across all the BLE channels simultaneously, we do
not need to execute any FH procedure. We simply register
multiple decoders centered at the central frequencies of the
40 BLE channels, setting Rup = 1 and Rdown = 26. This
ensures decoders receive a sequence of 2MS/sec, which in
turn enforces a time-stamp resolution of 0.5µs.



C. Trace synchronisation

As we mentioned in Sec. II-A, the capture engine transmits a
custom BLE synch frame once per second on BLE channel 18.
This frame is generated with 0xBEEF as AA and 0x123456
as CRC polynomial, which we add to the BLE database. We
also register a BLE decoder on channel 18, which we feed
with data coming from capture device high, while a second
one is fed with data from the other device. In this way, the trace
collector measures the time-stamp difference between identical
frames addressed to 0xBEEF and reported by the two BLE
decoders. It then adjusts the timing of the following frames by
taking into account this difference. The trace collector drops
all the frames received before the first synch frame, to avoid
ambiguities.

IV. RESULTS

In this section we present the results of preliminary tests that
we performed to validate our framework, while we will pursue
a more comprehensive evaluation as future work. For the
first test we use a pair of USRP-N210 devices, synchronised
with a MIMO cable, and transmit a sequence of mixed Wi-Fi
and BLE frames. To this end we tune one USRP device to
2.442GHz and the other to 2.452GHz, which are the carriers
of Wi-Fi channels 7 and 9. Using a sample rate of 25MS/sec
we emulate the scenario depicted in Fig. 8 where we transmit
a frame every 2ms, covering BLE channels from 9 to 28.
We start and end the sequence with a couple of 1,462B Wi-

W
i-F
i	c
ha
nn
el
7

W
i-F
i	c
ha
nn
el
9

BLE ch 9

BLE ch 28

W
i-F
i	c
ha
nn
el
9

0 5 10 15 20 25 30 35 40 45

BLE ch 37

BLE ch 38

BLE ch 39

Time (ms)

BLE ch 18

Fig. 8. Transmissions emulated for first test.

Fi data frames encoded at 6Mb/s, which corresponds to a
transmission time of 1,982µs. In between we sweep the 20
BLE channels with 125B long frames, whose transmission
takes approximately 1ms. We encode these with the AA
and polynomial that we pre-stored in the database to enable
decoding, except for the frame transmitted on advertisement
channel 38, for which we use standard parameters. We isolate
the testbed by running the capture within a concrete building
basement.

TABLE II
OUTPUT OF THE FRAMEWORK FOR TRANSMISSIONS AS IN FIGURE 8

WIFI:CH = 7:TS = 0:LEN = 1462B:DATA:R6:DA = ...
BLE:CH = 9:TS = 2001:LEN = 125B:AA = 12345678
BLE:CH = 10:TS = 4001:LEN = 125B:AA = 12345678
BLE:CH = 38:TS = 6000:LEN = 37B:AA = 8E89BED6
BLE:CH = 11:TS = 8000:LEN = 125B:AA = 12345678
BLE:CH = 12:TS = 10000:LEN = 125B:AA = 12345678
BLE:CH = 13:TS = 12001:LEN = 125B:AA = 12345678
BLE:CH = 14:TS = 14001:LEN = 125B:AA = 12345678
BLE:CH = 15:TS = 16000:LEN = 125B:AA = 12345678
BLE:CH = 16:TS = 18001:LEN = 125B:AA = 12345678
BLE:CH = 17:TS = 20001:LEN = 125B:AA = 12345678
BLE:CH = 18:TS = 22001:LEN = 125B:AA = 12345678
BLE:CH = 19:TS = 24001:LEN = 125B:AA = 12345678
BLE:CH = 20:TS = 26001:LEN = 125B:AA = 12345678
BLE:CH = 21:TS = 28001:LEN = 125B:AA = 12345678
BLE:CH = 22:TS = 30001:LEN = 125B:AA = 12345678
BLE:CH = 23:TS = 32000:LEN = 125B:AA = 12345678
BLE:CH = 24:TS = 34001:LEN = 125B:AA = 12345678
BLE:CH = 25:TS = 36001:LEN = 125B:AA = 12345678
BLE:CH = 26:TS = 38001:LEN = 125B:AA = 12345678
BLE:CH = 27:TS = 40000:LEN = 125B:AA = 12345678
BLE:CH = 28:TS = 42001:LEN = 125B:AA = 12345678
Wi-Fi:CH = 9:TS = 44000:LEN = 1462B:DATA:R6:DA = ...
Wi-Fi:CH = 7:TS = 46000:LEN = 1462B:DATA:R6:DA = ...
BLE:CH = 9:TS = 48001:LEN = 125B:AA = 12345678

We report the trace produced by our framework throughout
this experiment in Table II. Observe that all the channels (CH)
and the frame lengths (LEN) are correctly reported. In the
case of BLE the AA value is also accurate, whilst for 802.11
frames the type (DATA) and datarate (R6 stands for 6Mb/s)
extracted match the values of the transmitted frames. Note that
we cut the Wi-Fi MAC addresses in this example. Finally, note
the increasing time-stamps (TS) with at most 1µs uncertainty,
which we expect is due to the missing synchronisation between
the transmitting and receiving USRP devices that we used.
The trace collector automatically sets the time-stamp of the
first captured frame to zero.

For the second test we set up a BLE network with a
couple of RedBear Nano v1.5 [13]. We program one acting
as central peer to connect 1.7s after it receives the first
advertisement from the other, which acts as peripheral. After
this the central transmits data for 1s, one frame every 450ms,
followed by several other data frames, almost in random order.
We parse the trace output to report only the time-stamps
of advertisement frames transmitted by the peripheral, other
advertisements from any neighbouring nodes, and data frames
transmitted by the central. We consider as t = 0 the time-
stamp of the first advertisement transmitted by the peripheral.

Fig. 9 reports the receiving frequencies as a function of the
time-stamps. Our framework detects the connection request
and reports the typical frequency hopping pattern in the data
frames. We also see that the peripheral stops transmitting
advertisement frames after the connection has been estab-
lished, while we observe that advertisements from external
BLE device continue to be transmitted.

Following this preliminary results we conclude that the
proposed framework for debugging IoT wireless applications
can accurately discriminate between different technologies and
precisely record packet timings and contents.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (sec)

2400

2410

2420

2430

2440

2450

2460

2470

2480

F
re

q
u
e
n
c
y
 (

M
H

z
)

data from central

adv from peripheral

other adv

Fig. 9. Experiment with two BLE nodes. Traffic before and after the central
connects to the peripheral at t = 1.78s. Experimental results.

V. CONCLUSIONS

In this paper we presented an extensible framework for
capturing multi-standard transmissions in the 2.4GHz band.
Through a set of controlled experiments, we demonstrated
that the framework can correctly capture and decode frames
transmitted at the same time over different frequencies by
different wireless technologies (Wi-Fi and BLE), which are
stored on disk for offline analysis. We have shown that the
trace collector can accurately follow BLE data sessions after
a proper connection request, which does not require explicit
synchronisation with the hopping sequence agreed between a
communicating pair. Future work will focus on extending the
proposed framework to enable decoding of other Bluetooth
standards including 5.0 and also of 802.11n frames, both MCS
encoded and transmitted over 40MHz channels using a single

spatial stream.

ACKNOWLEDGMENTS

This work was partially funded by the projects BSL (Brescia
SMART LIVING “Energia e servizi integrati per la valoriz-
zazione del benessere”) and SCUOLA (Smart Campus as
Urban Open LAbs “Smart Cities and Communities Regione
Lombardia”).

REFERENCES

[1] Ellisys Bluetooth Tracker, available online at
https://www.ellisys.com/products/btr1/

[2] Monitor mode for QCA/ath10k wireless cards, available online at
https://wireless.wiki.kernel.org/en/users/drivers/ath10k/monitor

[3] Project Ubertooth, available online at
http://ubertooth.sourceforge.net/usage/start/

[4] BLUEFRUIT LE SNIFFER, available online at
https://www.adafruit.com/product/2269

[5] A. K. Das, P. Pathak, C. N. Chuah, and P. Mohapatra, “Uncovering
Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers”,
Proceedings of the 17th International Workshop on Mobile Computing
Systems and Applications, New York (USA), Feb. 23-24, 2016.

[6] J. Classen, D. Wegemer, P. Patras, T. Spink, M. Hollick, “Anatomy of a
Vulnerable Fitness Tracking System: Dissecting the Fitbit Cloud, App,
and Firmware”, PACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, In Press.

[7] D. Cauquil, “BtleJuice: the Bluetooth Smart MitM Framework”, DEF
CON 24, Hacking Conference, Las Vegas (US), Aug. 4-7, 2016.

[8] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE
802.11a/g/p OFDM Receiver for GNU Radio”, Proceedings of the
second workshop on Software radio implementation forum, SRIF-13,
Hong Kong, China, August 12, 2013.

[9] Ettus USRP B200, available on line at
https://www.ettus.com/product/details/UB200-KIT

[10] IEEE document standard, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 2012

[11] Bluetooth Core Specifications, available on line at
https://www.bluetooth.com/specifications/bluetooth-core-specification

[12] R. Coker, Bonnie++, available on line at
https://www.coker.com.au/bonnie++/experimental/

[13] BLE Nano, available on line at http://redbearlab.com/blenano/
[14] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency
Spectrum”, Linux Journal, 122, June 2004.


