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Abstract—The fifth generation wireless systems are starting
to exploit the large bandwidths available in the millimeter-wave
(mmWave) spectrum to provide high data rates. The exploitation
of mmWave requires the use of compact antenna arrays with
hundreds of antenna elements, which leads to very directional
beam patterns. The beams at both the transmitter and the
receiver are trained periodically to maintain accurate beam
alignments. The trade-off between the training overhead and
the achievable data rate must be considered. In this paper,
we propose an adaptive beam training algorithm using deep
reinforcement learning for tracking dynamic mmWave channels.
Based on the patterns learnt from historical data, the proposed
algorithm can sense the changes in the environment and switch
between different beam training methods so that a high data rate
can be achieved with a minimum amount of beam training.

Index Terms—Beam training, millimeter wave, deep reinforce-
ment learning.

I. INTRODUCTION

In fifth generation (5G) wireless networks, the bandwidth
available in the millimeter-wave (mmWave) spectrum will be
exploited to meet the growing data demands. Currently, most
of the wireless systems operate at sub-6 GHz frequencies
whereas mmWave spectrum spans from 30 GHz to 300 GHz
[1]. Large bandwidths allow high data rates, which makes
mmWave very promising in a variety of applications, such
as virtual reality devices and high-resolution video streaming
[2]. However, mmWave signals have inevitable vulnerabilities
such as high path loss and susceptibility to blockages. To
mitigate these losses, large-scale antenna arrays are used to
concentrate the radiated power into narrow beams such that
the received signal power is maximised for the targeted user
while the interference from other users is minimised. To ensure
reliable wireless connectivity, the beams at both the transmitter
and the receiver are trained periodically to align with each
other. The beam training procedure is typically codebook-
based, where a set of feasible beams are measured and the
strongest one is selected for data transmission [3], [4]. Hybrid
analog/digital beamforming is proposed to reduce the high
power consumption of transceivers used in mmWave multiple-
input-and-multiple-output (MIMO) systems [5], [6]. These
algorithms require the full channel knowledge and lack the
capability of tracking the beams in a mobile scenario. In [7],
the location of the mobile user is associated with a multipath
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fingerprint database which contains a set of potential beams
for training. Without blockages, the selected beams at different
locations within a local area are likely to be correlated in
space. The training time can be saved by searching a set of
selected beams in the codebook [8].

Recently, machine learning approaches have attracted lots
of attention in wireless communications. For example, su-
pervised learning is investigated to solve problems such as
signal detection and beam selection [9], [10]. As a data-driven
approach, supervised learning typically requires huge amounts
of labelled training data in advance. However, it is impractical
to collect and label every channel realisation with its best
beam. Reinforcement learning (RL) is one form of machine
learning, which does not rely on labelled data but learns the
solution from the interaction with the environment [11]. The
multi-armed bandit (MAB) is a simple form of RL, which
can be used to optimise the beam training by treating each
bandit as a beam or a set of beams [12]. But MAB cannot
extract representative features from the environment and thus
its ability of adapting the strategy to the dynamics in the
environment is very limited. A more intelligent beam training
algorithm can be developed via deep reinforcement learning
(DRL), given the recent states of the environment [13]. In [13],
the state is propagated through a deep neural network (DNN)
as the input data, whose size scales the number of antenna
elements. For a mmWave system where large-scale antenna
arrays are typically used, the size of the state could become
very large and slow down the training of the DNN.

This paper proposes an adaptive beam training algorithm
via DRL for mmWave channels with mobility. The proposed
algorithm can switch between different beam training methods
that are developed in [8] so that the beam training overhead
can be minimised while achieving a high data rate. The two
main novel aspects of this paper are summarised as follows:
• A DRL-based beam training framework is proposed,

which models the beam training process with the receiver
mobility as a Markov Decision Process (MDP). The state
of the environment is represented by features extracted
from historical beam measurements and exploited to learn
patterns for the best beam training method to use for
various trajectories. The input data to the DNN, i.e., the
state of the environment, is antenna array-independent, so
this method is applicable to large-scale antenna arrays.



• We propose a simple solution for evaluating the trade-
off between the achievable spectral efficiency and the
beam training overhead. The significance of the training
overhead in the selection of the beam training method is
adjustable depending on the data rate requirement. The
trade-off is directly described by the reward function that
is maximised during the training of the DNN.

The rest of the paper is organized as follows. Section II
introduces the channel model and signal model. The proposed
beam training algorithm is developed in Section III. Section IV
presents the simulation results and the conclusions are given
in Section V.

II. SYSTEM MODEL

A. Channel Model

The 3rd Generation Partnership (3GPP) 0.5–100 GHz chan-
nel model is adopted to simulate mmWave MIMO channels
[14]. To model realistic beam tracking behaviours, the spa-
tial consistency Procedure A from [14] is implemented to
ensure that the channel transitions due to receiver’s mobility
are spatially-correlated. We assume non-line-of-sight (NLOS)
transmissions with each spatial cluster consisting of M un-
resolvable multipath components. The (u, s)-th entry in the
channel matrix Hl(t) is given by [14]
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where the power of l-th cluster is Pl, [F rx
u,θ(·), F rx

u,φ(·)]T
and [F tx

s,θ(·), F tx
s,φ(·)]T are the receive and transmit radiation

patterns, respectively, κl,m is the cross polarization power
ratio for m-th multipath component in l-th cluster, the initial
random phases Φαβl,m are given in a four dimensional vector
αβ = {θθ, θφ, φθ, φφ} which represents the possible polar-
ization combinations of the channel, the receive and transmit
array responses are given by ej
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u and ej
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s ,

respectively, and the expression ej
2π
λ0

rTtx,l,mvt is the Doppler
component for a mobile velocity v. For more detailed infor-
mation on the 3GPP channel model, please see [14]. We con-
sider an orthogonal frequency-division multiplexing (OFDM)
system with N subcarriers. The length of the cyclic prefix
is assumed to be no shorter than the length of the multipath
channel, L. The channel at subcarrier k is computed using the
Discrete Fourier Transform (DFT) and is equal to

H(k, t) =

L−1∑
l=0

Hl(t)e
−j 2πl

N k. (2)

B. Signal Model

We consider a single-user mmWave MIMO system for the
downlink. The user equipment (UE) with Nr antennas moves
at a constant speed while communicating with a fixed base
station (BS) with Nt antennas. The BS and the UE each have a
single radio frequency (RF) chain for communication with RF
circuits controlling each antenna’s phase (analog beamform-
ing). The analog beamformer is the same for all subcarriers
[15]. The BS and the UE adopt DFT-based beamforming
codebooks F = {f1, f2, ..., fP } and W = {w1,w2, ...,wQ},
respectively. Specifically, we set P = Nt and Q = Nr.
The transmit beam fp and the receive beam wq are given
by fp = 1√

Nt
[e−j2π0 p

Nt , e−j2π1 p
Nt , ..., e−j2π(Nt−1) pNt ]T and

wq = 1√
Nr

[e−j2π0 q
Nr , e−j2π1 q

Nr , ..., e−j2π(Nr−1) qNr ]T, respec-
tively. At time t, the received signal at subcarrier k is given
by

yp,q(k, t) =
√
ρ(t)wH

q H(k, t)fpx(k, t) + wH
q n(k, t), (3)

where ρ(t) is the received signal power, x(k, t) is the unit-
power transmitted symbol and n(k, t) is the Nr × 1 Gaussian
noise vector whose entries are distributed as CN (0, σ2

n).
In this paper, we consider two stages of the beam training

process. Firstly, a beam training method is selected from
multiple candidate beam training methods. Each beam training
method results in a unique subset of the transmit codebook
F(t) ⊆ F and another subset of the receive codebook
W(t) ⊆ W . Secondly, the chosen beam training method is
implemented and the best beam pair is selected from F(t) and
W(t) which are tested for data transmission. The candidate
beam training methods are presented in Section III-A. The best
beam pair (fp̂,wq̂) is selected to maximise the received signal
power, when averaged over N subcarriers, which is given by

(fp̂,wq̂) = argmax
fp,wq

1

N

N∑
k=1

|yk,t(fp,wq)|2 ,

s.t. fp ∈ F(t),F(t) ⊆ F ,
wq ∈ W(t),W(t) ⊆ W,

(4)

where the received signal yk,t(fp,wq) is equivalent to
yp,q(k, t) in Equation (3). Noise-free channels are assumed
in the beam training process. The resulting spectral efficiency
in bit/s/Hz is given by

c(t) =
1

N

N∑
k=1

log2

(
1 +

ρ(t)
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n

wH
q̂ H(k, t)fp̂f

H
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)
.

(5)

III. DEEP REINFORCEMENT LEARNING-BASED BEAM
TRAINING ALGORITHM

In this section, we first introduce the beam training methods
proposed in [8]. Next, the DRL framework and the beam
training algorithm are presented.



A. Candidate Beam Training Methods

Based on the spatially consistent property of realistic chan-
nel transitions due to the receiver mobility, a local beam search
approach is proposed, where only the adjacent beams to the
beam recently used are searched [8]. We explain the local
beam search approach implemented at the BS for example and
perform a similar procedure at the UE. In Fig. 1, the transmit
beam used at the previous time-step is represented by the red
box shown in a 2-dimensional illustration of the codebook F ,
which is mapped to the fourth beam in elevation and the third
beam in azimuth. Two local beam search methods, namely
Local Search 1 and Local Search 2, are proposed. For Local
Search 1, the 9 beams that are closest in both elevation and
azimuth dimensions are searched, as shown in blue in Fig.
1(a). The beam search region, for Local Search 2, is extended
to include the 25 beams that are ±2 beams in both dimensions.
The extra beams are colored in green as shown in Fig. 1(b).

(a) Local Search 1. (b) Local Search 2.

Fig. 1: Beam search regions in the codebook F at the BS,
which uses a 6-by-6 uniform rectangular array (URA).

When the UE is connected to the BS for the first time or re-
connected after a while, an exhaustive beam search is activated
to scan all NtNr beam combinations. Prior to performing any
beam training, the current channel condition is assessed using
the beam pair selected previously. The assessment is stored
as a “pre-measurement” and is utilized in the following beam
training process. We consider that one of the following four
beam training methods A, B, C, and D can be selected.
• A: Use the same beam pair selected previously, requiring

only 1 beam measurement.
• B: Perform Local Search 1 at both the BS and the UE,

requiring 9× 9 + 1 = 82 beam measurements.
• C: Perform Local Search 2 at the BS and Local Search 1

at the UE, requiring 25×9+1 = 226 beam measurements.
• D: Perform exhaustive beam search at both the BS and

the UE, requiring NtNr + 1 beam measurements.
The aim of the DRL-based beam training algorithm is to learn
a policy of selecting the beam training method along the path
followed by the UE to achieve a high spectral efficiency with
a minimum amount of beam training.

B. Deep Reinforcement Learning Framework

1) Learning Framework: The beam training process with
UE’s mobility is modelled as a MDP to which RL is applica-
ble. In RL, an agent takes a certain action given the current

states of the environment. A feedback signal, also known as
the reward, is received immediately from the environment in
response to the action [11]. This chosen action will change
the states of the environment. In this paper, we treat the
beam training algorithm as the agent since it selects the beam
training method based on the dynamics in the environment.
The DRL framework is shown in Fig. 2. The key components
of a RL model, i.e., the state, action and reward, are defined
as follows, respectively.

Fig. 2: The DRL framework for the proposed beam training
algorithm.

State: The current states of the environment are represented
by the features extracted from the beam measurements of past
T time-steps, which include three aspects of information:

1) The spectral efficiency values ct ∈ RT+1, which reflect
the joint impact of the channel conditions and the
selected beam training methods. The vector ct is given
by ct = [ct−T , ct−T+1, ..., ct−1, c̄t]

T, where the first T
elements are the spectral efficiency values achieved at
past T time-steps, and the last element c̄t is obtained
from the pre-measurement at the current time-step t.

2) The indices of selected beam training methods at ∈
RT+1, which label the chosen beam training methods
with the resulting spectral efficiency. The vector at is
given by at = [at−T , at−T+1, ..., at−1, āt]

T, where the
last entry āt always refers to the beam training method
A for estimating the current spectral efficiency c̄t.

3) The distances between adjacent snapshots dt ∈ RT+1,
which imply the spatial dependence between channels
at different locations. The vector dt is given by dt =
[dt−T , dt−T+1, ..., dt−1, dt]

T, where dt represents the
distance from the location at time t to the previous one at
time (t−1). We assume that the BS-UE communications
take place periodically at intervals of ∆τ = 0.1 second.
To investigate the effects of spatial correlation on the
selection of the beam training method, we sample UE’s
trajectory at random integer multiples of ∆τ and im-
plement the proposed beam training algorithm at those
locations. For communications in-between snapshots,
the same beam pair selected previously is used until the
next snapshot is taken. The sampling interval I = x∆τ ,
x ∈ Z+ is assumed to be less than 1 second.

Finally, the state vector is defined by a real-valued stacked
vector, which is given by

st = [cT
t ,a

T
t ,d

T
t ]T. (6)



Note that vectors ct and dt contain continuous values while
each entry of the vector at is one of four discrete values.

Action: The action is designed to be the selection of one
of the beam training methods A–D introduced in Section
III-A, which are listed in the ascending order of the beam
training overhead required. The action space A is discrete
and defined to be the set of the indices of actions (i.e., beam
training methods) which take values of increasing non-negative
integers correspondingly, i.e., A = {0, 1, 2, 3}. As a result, the
last entry āt in the vector at is always 0.

Reward: In the context of wireless communications, the
reward can refer to the performance metric such as the data
rate or the signal-to-noise ratio (SNR). In this paper, we aim
at achieving a high data rate with a minimum amount of
beam training, which is equivalent to maximising the trade-off
between the beam training overhead and the spectral efficiency.
This overhead-rate trade-off is directly reflected by the reward
model. We set the beam training overhead equal to the number
of beam measurements, which can be two to three orders of
magnitude higher than the spectral efficiency in Equation (5).
Hence, we assign a “penalty” to each beam training method
in bit/s/Hz to represent its associated training overhead. The
reward is defined as

rt(i) = αct(i)− (1− α)p(i), 0 ≤ α ≤ 1, i = 1, 2, 3, 4 (7)

where ct(i) is the spectral efficiency achieved using i-th beam
training method, the factor α controls the level of the trade-off,
named “the trade-off factor”, and p(i) represents the penalty
for the i-th beam training method. The values in the penalty
vector p = [pA, pB, pC, pD] with pA < pB < pC < pD

are given in Section IV-A. The positive difference between
adjacent penalty values (p(i) − p(i − 1)) represents the
minimum data rate improvement from the i-th beam training
method such that rt(i) ≥ rt(i− 1) when α = 0.5.

Fig. 3: The DNN architecture created by fully-connected (FC)
layers with ReLU (rectified linear unit) activation functions.
The number of nodes per layer is labelled.

2) DRL-Based Adaptive Beam Training Algorithm: To pro-
cess a large and continuous state space, i.e., the vectors ct and
dt, we use a DNN to approximate the mapping from each state
vector st to its action at. The architecture of the DNN is shown
in Fig. 3, which takes the state-action pair as the input and
outputs the estimated Q-value. The Q-value assesses how good
an action is given a certain state [11]. The DRL-based adaptive
beam training algorithm is summarised in Algorithm 1, which
is based on the deep Q-network (DQN) algorithm proposed in
[16]. Each episode contains T ′ time-steps/snapshots and ends
at a terminal state when t = T ′.

Algorithm 1 DRL-Based Adaptive Beam Training Algorithm

Initialization:
1: Initialize the critic network Q(s, a) with random param-

eters ϑQ, and initialize the target critic network Q′(s, a)
with parameters ϑQ′ = ϑQ.
Optimization:

2: for each episode, do
3: Perform exhaustive beam search to obtain an initial

reference beam pair (fp̂,wq̂).
4: for t = 1, 2, ..., T ′, do
5: Given the state st, select a beam training method
at according to the ε-greedy strategy.

6: Execute the chosen beam training method at and
compute the reward rt.

7: Obtain the next state st+1 = [cT,aT,dT]T.
8: Store the experience (st, at, rt, st+1) in the expe-

rience buffer D.
9: Sample a mini-batch of random samples from D.

10: Estimate the target value and perform gradient
descent with respect to ϑQ.

11: Update ϑQ′ : ϑQ′ = δϑQ + (1− δ)ϑQ′ , δ = 0.01.
12: end for
13: end for

3) Maximum Reward Beam Training Strategy: In this paper,
we implement another beam training strategy called Maximum
Reward (MR), which selects the best beam training method
in a brute-force manner. For a given trade-off factor α, MR
evaluates all beam training methods A–D sequentially and
selects the one with the highest reward for beam training, i.e.,
it = argmaxi rt(i), i = 1, 2, 3, 4. MR always selects the opti-
mal beam training method for the current channel condition, at
the expense of a very high beam training overhead in practice
and thus it is only implemented to benchmark Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
beam training algorithm. We consider a single-cell scenario
using the 3GPP NLOS channel model [14]. The UE is assumed
to move within the cell at a constant speed v = 1 meter/second
along a straight trajectory. Each trajectory consists of T ′ = 99
steps, at which the proposed beam training algorithm is imple-
mented. To stabilise the training of the DNN, we normalise
the channel coefficients in Equation (1) so that the channel



gain is constrained to a limited range. The normalised channel
coefficient is h̄u,s,l(t) = hu,s,l(t)/max(|hu,s,:(t)|). Further,
the input features, i.e., the values in the state vector st, are
scaled to lie within the range [−2, 2]. All presented results
are averaged over 500 Monte-Carlo runs. The simulation
parameters can be found in Table I. To start with, we set the
number of past samples in the state vector to T = 5. We also
implement exhaustive beam search (ExBS), multilevel beam
search (MLBS) using hierarchical codebooks [5] and MAB-
based beam search (Algorithm 1 in [12]) for comparison.

TABLE I: Simulation parameters

Parameters Values
BS antenna configuration 8-by-8 URA
UE antenna configuration 4-by-4 URA

No. of subcarriers N 64
Carrier frequency 30 GHz

SNR 0 dB
No. of NLOS clusters L 20

No. of scatterers per cluster M 20
Discount factor γ 0.9
Learning rate µ 0.001

No. of training episodes 1000 to 2000
Exploration factor ε 0.1

A. Impact of the Trade-off Factor α

Fig. 4: Average spectral efficiency achieved by DRL, MAB,
MR, MLBS and ExBS for different trade-off factors α.

We consider two penalty vectors when computing the re-
ward in Equation (7), which are p1 = [0.5, 0.75, 1.0, 1.5]
and p2 = [0.5, 0.75, 1.0, 2.0], respectively. Based on trial
experiments on random channel realisations [14], we assume
that a local beam search can be selected when providing a
minimum data rate improvement of 0.25 bit/s/Hz, whereas the
exhaustive beam search is expected to improve the data rate
by at least 0.5 or 1.0 bit/s/Hz to be selected. For α ≤ 0.4, p1

is used and for α ≥ 0.6, p2 is used. Fig. 4 shows the average
spectral efficiency achieved with different trade-off factors α.
The corresponding beam training overhead can be found in
Table II. The factor α controls the balance between the spectral
efficiency and the beam training overhead required, which
does not affect MLBS or ExBS. As α increases, the benefit
of achieving a higher spectral efficiency increases whereas
the beam training overhead reduces in significance. When

Fig. 5: PMF of action selections for DRL and MAB in terms
of varying trade-off factors α.

TABLE II: Average number of beam measurements for dif-
ferent beam training strategies in terms of varying trade-off
factors α.

α 0 0.2 0.4 0.6 0.8 1.0
DRL 1 31 59 133 656 1025
MAB 33 67 148 202 389 612

MLBS 106
ExBS 1024
MR 1331

α = 0.4, DRL achieves higher spectral efficiency than MLBS
and saves about 45% on the required beam measurements.
Except for α = 0, DRL provides higher spectral efficiency
than MAB and even costs fewer beam measurements when
0.2 ≤ α ≤ 0.6. Fig. 5 presents the probability mass functions
(PMF) of action selections for DRL and MAB, respectively.
For α = 0, the reward is solely described by the beam training
overhead and thus DRL always selects the beam training
method A for the minimum training overhead. In contrast,
when α = 1.0, the DRL approach is equivalent to ExBS
which achieves the maximum spectral efficiency irrespective
of the training overhead. As α takes higher values, both DRL
and MAB tend to implement more expensive beam training
methods for higher spectral efficiency.

B. Effect of the Number of Past Samples T

The effect of the amount of past information required is
investigated, which is represented by the number of past
samples T in the state vector st. Separate DNNs are trained
with T = 3 (DRL-3), T = 5 (DRL-5) and T = 7 (DRL-7),
respectively. Based on Fig. 4 and Table II, we observe that
DRL can provide higher spectral efficiency than MLBS and
MAB, with fewer beam measurements for α = 0.4. Thus,
we choose α = 0.4 specifically for the following simulations.
Fig. 6 presents the average reward achieved over the UE’s
trajectory. All DRL models provide higher rewards than MAB
and MR, where MR yields the lowest reward because it
tests all given beam training methods. To visualise the action
selections that result in the presented reward in Fig. 6, we



demonstrate the distributions of action selections in Fig. 7.
DRL-3 achieves the highest average reward, which means that
it provides the optimal beam training strategy and obtains the
best overhead-rate trade-off. This also implies that including
more past samples in the state vector may degrade the training
of the DNN by adding redundant information. In Fig. 8, all
DRL models are shown to provide higher spectral efficiency
than MAB and MLBS. For example, at SNR = 15 dB, DRL-3
achieves higher spectral efficiency than both MAB and MLBS
by about 0.05 bit/s/Hz while saving 67.5% and 54.7% on the
required beam measurements, respectively. The number of past
samples T does not make a huge difference on the spectral
efficiency but it does affect the amount of beam training.
Moreover, the DNN architecture in Fig. 3 is lightweight, with
321 neurons in total, which can select the beam training
method efficiently and rapidly in real-time implementations.

Fig. 6: Average reward achieved by DRL-3, DRL-5, DRL-7,
MAB and MR at sampled locations when α = 0.4.

Fig. 7: Action distributions for MR, DRL-3, DRL-5, DRL-
7 and MAB when α = 0.4. The average number of beam
measurements (#BM) and the average reward r̄ are labelled.

V. CONCLUSIONS

This paper describes a novel adaptive beam training al-
gorithm using DRL for dynamic mmWave channels. The
proposed algorithm can learn from the historical beam mea-
surements and intelligently switch between different beam
training methods based on channel conditions. Simulation
results show that DRL can approach the performance for
exhaustive beam search while saving at least 92.2% on the
required beam training overhead. A flexible reward model
is proposed which can be tuned to meet different data rate

Fig. 8: Average spectral efficiency for DRL-3, DRL-5, DRL-7,
MAB, MLBS, MR and ExBS at different SNRs when α = 0.4.

requirements. The effects of the amount of past information
required are also investigated. For future work, it is worthwhile
to test the current DRL model using different channel datasets,
such as the MATLAB ray-tracing simulation data.
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