
Pandora: An Efficient and Rapid Solution for
Persistence-Based Tasks in High-Speed Data Streams
WEIHE LI, University of Edinburgh, United Kingdom

In data streams, persistence characterizes items that appear repeatedly across multiple non-overlapping time
windows. Addressing persistence-based tasks, such as detecting highly persistent items and estimating per-
sistence, is crucial for applications like recommendation systems and anomaly detection in high-velocity data
streams. However, these tasks are challenging due to stringent requirements for rapid processing and lim-
ited memory resources. Existing methods often struggle with accuracy, especially given highly skewed data
distributions and tight fastest memory budgets, where hash collisions are severe. In this paper, we introduce
Pandora, a novel approximate data structure designed to tackle these challenges efficiently. Our approach
incorporates the insight that items absent for extended periods are likely non-persistent, increasing their
probability of eviction to accommodate potential persistent items more effectively. We validate this insight
empirically and integrate it into our update strategy, providing better protection for persistent items. We for-
mally analyze Pandora’s error bounds to validate its theoretical soundness. Through extensive trace-driven
tests, we demonstrate that Pandora achieves superior accuracy and processing speed compared to state-of-
the-art methods across various persistence-based tasks. Additionally, we further accelerate Pandora’s update
speed using Single Instruction Multiple Data (SIMD) instructions, enhancing its efficiency in high-speed data
stream environments. The code for our method is open-sourced.

CCS Concepts: • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: Data stream processing, approximate data structure, persistence, persis-
tent items

ACM Reference Format:
Weihe Li. 2025. Pandora: An Efficient and Rapid Solution for Persistence-Based Tasks in High-Speed Data
Streams. Proc. ACMManag. Data 3, 1 (SIGMOD), Article 61 (February 2025), 26 pages. https://doi.org/10.1145/
3709711

1 Introduction
Detecting items that exhibit specific patterns in high-velocity data streams poses a critical chal-
lenge in data mining applications. These streams, sourced from networks, system logs, and user
behavior, often harbor valuable insights into system health [31, 55], security threats [2], user ex-
perience [52], business intelligence [37], and more. However, traditional deterministic analysis
methods face difficulties in efficiently processing these data streams due to their high velocity and
volume [6, 49]. Consequently, an emerging paradigm of probabilistic analysis has surfaced, empha-
sizing the utilization of approximate data structures (sketches) for efficient processing of massive
data under constrained memory budgets [11, 17, 33, 48, 57, 60, 64].
Existing sketch-based work primarily focuses on data characteristics such as frequency [42, 49,

51, 58], cardinality [20, 30, 46, 50], and quantiles [15, 22, 24, 29]. Recently, another crucial data
characteristic—persistence—has garnered significant attention [16, 18, 62]. Given a data stream

Author’s Contact Information: Weihe Li, weihe.li@ed.ac.uk, University of Edinburgh, Edinburgh, Scotland, United King-
dom.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/2-ART61
https://doi.org/10.1145/3709711

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 61. Publication date: February 2025.

HTTPS://ORCID.ORG/0000-0002-8516-0104
https://doi.org/10.1145/3709711
https://doi.org/10.1145/3709711
https://orcid.org/0000-0002-8516-0104
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3709711


61:2 Weihe Li

divided into, non-overlapping, consecutive time windows, the persistence of an item 4 is the
number of distinct windows in which it appears. Persistence is often crucial for various practical
applications, including anomaly traffic detection [21, 54], user behavior analysis [23], and click
fraud detection [45]. For instance, persistent user behaviors, like consistently used features or re-
peatedly visited sections, indicate users’ strong preferences and can guide developers in optimizing
user interface and experience. Another instance involves automated bots repeatedly clicking on
advertisements to boost advertiser revenue in pay-per-click online advertising systems [27].
There are two main detection tasks associated with persistence: (i) persistence estimation, which

provides an approximate estimate of persistence for each item in the data stream, and (ii) persis-
tent item lookup, which identifies items whose persistence exceeds a predetermined threshold. In
addition to these tasks, there is a challenge that has been rarely considered: (iii) mining persis-
tent items with high frequency. This task has significant practical applications in various domains.
For instance, in financial security, detecting accounts or credit cards with persistent and frequent
transaction patterns can aid in identifying fraudulent activities or money laundering schemes. In
cybersecurity, identifying IP addresses that consistently and frequently send requests can facilitate
early detection and mitigation of distributed denial-of-service (DDoS) attacks.

1.1 Limitations of Prior Art
While some work exists on persistence, primarily focusing on persistent item lookup, these meth-
ods can generally be categorized into three main types: sample-based [13, 32], coding-based [18],
and sketch-based [33, 62]. Eachmethod aims to balancememory usage, accuracy, and update speed,
yet they encounter significant limitations, particularly under constrained memory conditions. Be-
low, we briefly outline the key conceptual differences and limitations of these approaches:

(i) Sample-Based Approaches [13, 32]: These methods rely on sampling to track potential
persistent items. Although they offer reduced memory usage by focusing on a subset of items,
they often include too many non-persistent items, leading to memory inefficiency. The reliance on
sampling also means accuracy suffers when memory is constrained, as the reduced sample size
introduces larger estimation errors.

(ii) Coding-Based Approaches [18]:These methods encode every item observed in each time
window to identify persistent items. They come with high memory overhead, especially when en-
coding a large number of non-persistent items. As the number of time windows increases, memory
usage scales linearly, making these methods impractical for environments with limited memory.
Additionally, they require computationally intensive operations, such as matrix multiplication for
encoding and decoding, which significantly slow down updates, making them unsuitable for high-
speed data streams.

(iii) Sketch-BasedApproaches [33, 62]: Sketches leverage probabilistic data structures to esti-
mate persistence with lower memory requirements and faster update speed. However, the eviction
strategies in most existing sketch-based methods often misclassify non-persistent items as persis-
tent during hash collisions, reducing accuracy, especially in memory-constrained environments.

1.2 Challenges
In practice, accurately and swiftly detecting persistence in high-speed data streams presents a
complex and demanding task. This complexity arises from two primary factors:

(i) In real-world applications, small memory sizes (e.g., less than 64KB) are crucial in resource-
constrained environments like embedded systems, IoT devices, and edge computing [53]. These
systems have limited memory and processing power but are responsible for critical tasks such as
network monitoring, traffic analysis, and real-time anomaly detection. In such scenarios, where
memory efficiency is essential, traditional methods often struggle to maintain detection accuracy.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 61. Publication date: February 2025.



Pandora: An Efficient and Rapid Solution for Persistence-Based Tasks in High-Speed Data Streams 61:3

Using smaller memory portions (e.g., 16KB or 32KB) not only conserves resources but also im-
proves efficiency with faster query time for retrieving persistent items. Achieving high accuracy
under stringent resource constraints is particularly challenging, and a method that excels in these
conditions demonstrates its robustness and suitability for deployment across diverse platforms
with varying resource limitations.

(ii) As an item arrives within a time window, its persistence only increases by 1, regardless of
how many times it appears. Consequently, the persistence value is typically much smaller than
the item frequency. Due to the highly-skewed data distribution in practical scenarios, where most
items have small persistence, the eviction of persistent items from buckets by non-persistent ones
is more likely, resulting in low detection accuracy.

1.3 Our Solution - Pandora
To overcome these challenges, we propose a novel approach, Pandora, for diverse persistence-
based detection tasks. Our method achieves high detection accuracy and fast processing speed
simultaneously, even with limited memory resources. Technically, our method is based on a key
insight: the longer a tracked item is missing, the less likely it is to be a persistent item. We refer to
the number of time windows a recorded item is missing as its inactivity degree. To the best of our
knowledge, this is the first study to employ the concept of inactivity degree for various detection
tasks in high-speed data streams. During the update processing, when an incoming item arrives,
Pandora adjusts the replacement probability dynamically in response to hash collisions, taking into
account the inactivity degree. If the inactivity degree of the tracked item is high, the probability
of the incoming item successfully replacing the tracked item in the bucket is elevated; conversely,
if the inactivity degree is low, the probability is reduced. This approach facilitates easy eviction
of items exhibiting low persistence from buckets, making space for potentially persistent items,
thereby ensuring high memory efficiency and accurate lookups. The update procedure is straight-
forward, requiring no additional data structures, which contributes to its high update speed. The
elegant design also enables further acceleration through the utilization of SIMD instructions, en-
hancing its update speed even further.

We rigorously derive the error bound of Pandora to establish its theoretical accuracy. Extensive
trace-driven evaluations demonstrate Pandora’s significant improvements in detection accuracy
across various tasks compared to state-of-the-art methods. For persistence estimation, Pandora
reduces the error by up to 96.2% compared to On-Off Sketch. In persistent item lookup, Pandora
achieves the highest F1 score among considered baselines, improving accuracy by 57.65% over On-
Off Sketch.Moreover, Pandoramaintains high performancewhen identifying persistent itemswith
high frequency, achieving an F1 score of 0.8 under tight 16KB memory constraints. Additionally,
our method achieves the highest update speed in persistent item lookup, being 41.65% faster than
the competitive On-Off Sketch. Furthermore, our method adapts easily to other frequency-based
tasks while maintaining superiority. With the aid of SIMD instructions, we further enhance the
update speed by 19.08%. The code for Pandora can be found at [1].

2 Problem Definition
(i) Data Stream: Given a high-velocity data streamS consisting of various itemsS = {41� 42� � � � � 4=},
where each item 48 can be denoted as a key-value pair (:8 � E8 ). The key :8 is the unique identifier
of the item, and the value E8 corresponds to a metric associated with the item. For instance, in
the network domain, the key could represent a source-destination IP address pair, while the value
could represent the item’s persistence or frequency.

(ii) Persistence Estimation: For a data streamS, we segment it into, consecutive time windows
based on a specified interval. For example, in a network trace, a window can be defined as 2000

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 61. Publication date: February 2025.




	Abstract
	1 Introduction
	1.1 Limitations of Prior Art
	1.2 Challenges
	1.3 Our Solution - Pandora

	2 Problem Definition
	3 Pandora's Design
	3.1 Key Insights
	3.2 Data Structure
	3.3 Pandora's Operations
	3.4 Deployment on Various Tasks

	4 Error Bound of Pandora
	5 Evaluation
	5.1 Setup
	5.2 Parameter Settings
	5.3 Persistence Estimation
	5.4 Persistent Item Lookup
	5.5 Online Lookup
	5.6 High-Frequency Persistent Item Lookup
	5.7 Performance on Frequency-Based Tasks
	5.8 Multiple Cases
	5.9 Ablation Study
	5.10 Boosting Speed with SIMD Instructions

	6 Related Work
	7 Future Work
	8 Conclusion
	References

