IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

3845

Efficient Sketching for Heavy Item-Oriented Data
Stream Mining With Memory Constraints

Weihe Li

Abstract—Accurate and fast data stream mining is critical
to many tasks, including real-time series analysis for mobile
sensor data, big data management and machine learning. Various
heavy-oriented item detection tasks, such as identifying heavy
hitters, heavy changers, persistent items, and significant items,
have garnered considerable attention from both industry and
academia. Unfortunately, as data stream speeds continue to
increase and the available memory, particularly in L1 cache,
remains limited for real-time processing, existing schemes face
challenges in simultaneously achieving high detection accuracy,
memory efficiency, and fast update throughput, as we reveal. To
tackle this conundrum, we propose a versatile and elegant sketch
framework named Tight-Sketch, which supports a spectrum of
heavy-based detection tasks. Recognizing that, in practice, most
items are cold (non-heavy/persistent/significant), we implement
distinct eviction strategies for different item types. This approach
allows us to swiftly discard potentially cold items while offering
enhanced protection to hot ones (heavy/persistent/significant).
Additionally, we introduce an eviction method based on stochastic
decay, ensuring that Tight-Sketch incurs only small one-sided
errors without overestimation. To further enhance detection
accuracy under extremely constrained memory allocations, we
introduce Tight-Opt, a variant incorporating two optimization
strategies. We conduct extensive experiments across various
detection tasks to demonstrate that Tight-Sketch significantly
outperforms existing methods in terms of both accuracy and
update speed. Furthermore, by utilizing Single Instruction Mul-
tiple Data (SIMD) instructions, we enhance Tight-Sketch’s update
throughput by up to 36%. We also implement Tight-Sketch on
FPGA to validate its practicality and low resource overhead in
hardware deployments.

Index Terms—Data stream mining, heavy item, persistent item,
significant item, sustained arrival strength, network measure-
ments.

1. INTRODUCTION

ASSIVE data transmission has become a salient char-
M acteristic of social networks [2], financial services [3],
healthcare systems [4], autonomous vehicles [5], smart city
infrastructures [6], and many other areas. Such data streams

Received 3 November 2024; revised 16 April 2025; accepted 24 August
2025. Date of publication 2 September 2025; date of current version 10
October 2025. An earlier version of this paper was presented at the ACM
Conference on Information and Knowledge Management (CIKM), 2023
[DOL: 10.1145/3583780.3615080]. Recommended for acceptance by S. He.
(Corresponding author: Weihe Li.)

The authors are with the School of Informatics,
Edinburgh, EH8 9YL Edinburgh, U.K. (e-mail:
paul.patras@ed.ac.uk).

Digital Object Identifier 10.1109/TC.2025.3604467

University of
weihe.li@ed.ac.uk;

and Paul Patras

, Senior Member, IEEE

convey valuable information that can be useful to a range of
applications, including business intelligence [7], anomaly de-
tection [8], and recommendation systems [9]. One important
objective in stream mining is the identification of heavy items,
which spans heavy hitter detection [10], [11], [12], [13], [14],
heavy changer detection [15], persistent item lookup [16], [17],
[18], and significant item lookup [19]. Heavy hitters indicate
items with large size or frequency. Heavy changers refers to
items whose frequency changes dramatically in two contiguous
time windows. Persistent items represent items which appear
in multiple different time windows, while significant items are
those that have both high frequency and persistence.

Detecting these distinct item types is of paramount impor-
tance in real-world scenarios. For example, heavy hitter detec-
tion can play an essential role in traffic engineering. By iden-
tifying the most resource-intensive services, network operators
can optimize traffic routing for enhanced network efficiency.
Additionally, real-time identification of heavy changers enables
operators to effectively allocate network resources, ensuring
that high-priority services receive sufficient bandwidth while
minimizing service disruptions during network fluctuations.
Moreover, persistent item lookup can significantly enhance the
overall user experience. For example, when it is recognized that
a particular application is persistently consuming data in the
background, network providers can offer users the option to
control or limit their data usage, which helps users avoid unex-
pected overcharging. Besides, in network security, significant
item lookup allows operators to quickly detect and respond to
potential DDoS attacks and abnormal network behavior [19].

However, real-time detection of any of these is challenging,
as high speeds and large volumes preclude recording infor-
mation pertaining to each item in the detection process. To
overcome this obstacle, approximate stream mining leveraging
probabilistic data structures such as skefches has attracted much
interest [10], [12], [20], [21], [22], [23].

A. Limitations of Existing Approaches

Although numerous sketch-based approaches have been in-
troduced for various detection tasks, mining contemporary
ultra-fast data streams still presents substantial challenges to
existing algorithms. The primary limitations of these current
approaches are outlined as follows:

i) Many sketches, such as Count Sketch [24] and Count-

Min Sketch [25], are non-invertible, requiring a full scan
of the item stream to retrieve all hot items. This approach

0018-9340 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8516-0104
https://orcid.org/0000-0002-1037-0158
mailto:weihe.li@ed.ac.uk
mailto:paul.patras@ed.ac.uk

3846

incurs significant memory access overhead and reduces
throughput. Existing invertible sketches often rely on ad-
ditional data structures, like heaps, or complex coding and
decoding processes [18], leading to redundant memory
operations and high computational costs.

ii) For faster processing, an ideal sketch should have effi-
cient update and query mechanisms, utilizing CPU caches
effectively when handling high-speed data streams [20].
CPU cache memory is divided into three levels: L1, L2,
and L3, with L1 being the fastest but smallest, typically
between 8KB and 64KB [26]. Thus, compact sketches
that fit within these cache constraints are essential.

Compact and fast sketches are highly beneficial in
practical applications. For instance, in network traffic
monitoring, they enable quick packet classification and
counting, boosting throughput and response time when
stored in the L1 cache. Similarly, in spam filtering, an
efficient sketch in the L1 cache enhances accuracy and
speed in spam detection. Since L1 caches have strict
memory limitations, algorithms optimized for these con-
ditions demonstrate robustness across various memory
configurations. Using smaller memory portions not only
conserves resources but also speeds up query times for
retrieving heavy items.

iii) Moreover, items that appear in data streams usually fol-
low highly skewed distributions [27], meaning that most
appear infrequently and only a few items exhibit high
frequency (or persistence). Unfortunately, most existing
sketch-based approaches treat all items indiscriminately
and make replacement decisions only based on item size
(or persistence), resulting in the incorrect replacement
of hot items by abundant cold ones. This problem is
exacerbated under L1 cache memory constraints, as hash
collisions are more severe, which further compromises
detection accuracy.

B. The Proposed Method

To tackle these shortcomings, we propose a new sketch
framework named Tight-Sketch, which achieves high detection
accuracy, memory efficiency and processing speed, even under
tight memory size. Tight-Sketch can be deployed for many
heavy-based detection tasks, including heavy hitter detection,
heavy changer detection, persistent item lookup, significant
item lookup, etc. Specifically, Tight-Sketch encompasses four
key techniques in its operation:

i) We attempt to evict an item tracked in a bucket with a
probabilistic decay policy, when hash collisions happen
during the update process. Precisely, we decrease bucket
counters by one with a probability, when a new item ar-
rives; if a bucket’s counter reaches zero, the item recorded
is discarded, and the newly arrived one will be stored.
This way, we ensure Tight-Sketch only owns one-sided
estimation errors, i.e., only bounded underestimation er-
ror, leading to high precision.

ii) Considering the highly-skewed distributions of items in
data streams, we employ different eviction treatments for
different item types. For potentially cold items with small

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

counter values, we adopt a higher eviction probability
than for hot items, to evict the former quickly, leaving
more space for the latter over time.

iii) To avoid erroneously replacing hot items with cold ones,
we introduces a new metric, sustained arrival strength,
that delivers more protection for hot items based on mul-
tidimensional characteristics. This builds on the observa-
tion that most cold items are short-lived and arrive in a
bursty manner [28]. By incorporating the arrival strength
feature into the eviction probability, Tight-Sketch effec-
tively circumvents the effortless ejection of hot items by
cold ones, significantly improving detection accuracy.

iv) To further enhance detection accuracy, we introduce a
new variant of Tight-Sketch called Tight-Opt, which in-
corporates two optimization policies. The first policy in-
volves using fingerprints to compress item keys, while
the second policy provides an additional opportunities for
items to retain their position in the sketch even when
displaced by incoming items, rather than immediately
discarding them. By implementing these optimizations,
Tight-Opt improves detection accuracy, particularly in
scenarios with extremely limited memory (16KB), at the
cost of decreased update speeds. We explore accuracy
and update speed tradeoffs that inform users’ decisions
on selecting the most suitable sketch version.

Key Advantages: Backed by extensive experiments we con-
ducted to validate the effectiveness of our approach, we sum-
marize its key benefits as follows: (i) Tight-Sketch excels in
accuracy and processing speed for various detection tasks. For
instance, heavy hitter detection with 16KB memory achieves an
average F1 score close to 1, up to 24 x higher than that of exist-
ing methods; (ii) Tight-Sketch achieves high update throughput
without relying on pointers or additional data structures. Redun-
dant hash operations are abandoned once an item secures an
available bucket during the update process; (iii) To further en-
hance processing speed, Tight-Sketch leverages SIMD instruc-
tions, leading to a 36% increase in update throughput; (iv) By
incorporating two optimization methods, Tight-Opt enhances
detection accuracy, especially under extremely limited memory
constraints (16KB), though at the cost of reduced processing
speed. In practical scenarios where accuracy is prioritized over
speed, users may prefer Tight-Opt as their default choice. (v)
Finally, we implement Tight-Sketch on FPGA to demonstrate
its low resource overhead and practical viability in hardware
environments.

II. PROBLEM DEFINITION AND BACKGROUND

In this section, we introduce the definition and existing work
for four typical detection tasks: heavy hitter detection, heavy
changer detection, persistent item lookup, and significant item
lookup. Then, we reveal that existing methods are challenging
to achieve high accuracy and fast update speed under tight
memory size, which in turn motivates our design.

A. Heavy Item Detection

1) Definition: Heavy items include heavy hitters and heavy
changers. Let S(e) denote the frequency or size of item e, S

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

represent the frequency or total size of all items. Given a pre-
defined threshold ¢, if S(e) > €S (0 < € < 1), we consider item
e to be a heavy hitter. Suppose we split the data stream into
two equal-sized windows (W7 and W5) and use D(e), D to
respectively denote the absolute change of item e and all items
in two adjacent periods. If D(e) > eD, we treat item e as a
heavy changer.

2) Related Work: Existing work for heavy item detection
can be divided into two categories: counter-based and sketch-
based.

Counter-based algorithms leverage hash tables to record the
information (explicit key and value) of heavy items. (Unbiased)
Space-Saving [29], [30] employ a data structure named Stream-
Summary to track heavy items. When the data structure is full
and a newly-arrived item is not tracked, Space-Saving will
discard the item with the lowest frequency. Unbiased Space-
Saving substitutes the least frequent item based on variance
minimization to attain unbiased estimation. Lossy counting [31]
first separates the data stream into fixed-size windows. Then it
processes each window sequentially and maintains a counter
for each item. The algorithm evicts items of minor frequency
at the end of each window from the table. RAP [32] expels the
item with the smallest value via a probability computed by the
frequency, when there is no space for newly arrived items. The
replacement strategy of these methods is based solely on the es-
timated frequency, which cannot provide enough protection for
heavy items under tight memory settings, resulting in modest
detection accuracy. In addition, the update process of counter-
based methods mainly relies on pointers, and many pointer
operations for insertion significantly reduce update speeds.

Sketch-based algorithms harness a compact data structure to
record the accumulated information of all items, attaining high
update speeds and a small memory footprint by sacrificing a
certain level of accuracy. Count-min Sketch [24] uses a two-
dimensional array with r rows; each row has b buckets for track-
ing items hashed to these buckets [25]. When a new item arrives,
Count-min Sketch hashes this item into r different buckets,
and then the corresponding counter in each bucket is increased
by one (or the item’s size). Finally, the smallest value among
r-hashed rows is regarded as the estimated size. Count-min
Sketch is non-invertible, which means it involves considerable
memory access operations that harm update speeds. It also
has a significant overestimation issue under tight memories,
leading to many non-heavy items being incorrectly recognized
as heavy. Count-min Sketch Heap [25] introduces an additional
heap to track heavy items. However, access to this slows the
update speed. To improve detection accuracy and throughput,
MV-Sketch [10] adopts the majority vote algorithm to track
heavy items. HeavyKeeper [12] evicts items from the sketch by
obeying an exponential decay strategy. Literature [11] proposes
an efficient and optimal e-LDP mechanism, known as the Wheel
mechanism, for set-valued distribution estimation and heavy-
hitter identification. Elastic Sketch [22] partitions the sketch
into a heavy and a light part, to record the information of heavy
and non-heavy items, respectively. CocoSketch [33] employs
stochastic variance minimization to support arbitrary partial key
queries. However, these methods mainly replace items only

3847

based on their frequency, which cannot protect heavy items
adequately, leading to many heavy items being replaced by non-
heavy ones.

B. Persistent Item Detection

1) Definition: Given a stream divided into N consecutive
and non-overlapping time windows, the persistence of an item
e is the number of discrete windows in which item e appears,
denoted as P(e). With a user-defined 7, if P(e) > nN (0 <n <
1), item e is persistent.

2) Related Work: Existing solutions for persistent item de-
tection can be divided into sample-, coding-, and sketch-based.

Sample-based methods such as Small-Space [17] record per-
sistent items with a probability and track them into a hash
table. Chen et al. introduce adaptive sampling to track persis-
tent items without knowing the monitoring time horizon [34].
Even though such approaches seek to alleviate memory usage
via sampling, they still track many non-persistent items, lead-
ing to poor memory efficiency. Moreover, the sample rate is
configured according to the memory budget, and small values
amplify detection errors when the memory is tight. To address
this inefficiency, coding-based methods, like PIE [18], leverage
Raptor codes to encode each item and store the code instead of
the item ID. However, every item needs to be encoded in each
window, which wastes resources for processing large volumes
of non-persistent items. Also, encoding and decoding are addi-
tional operations that increase processing times and harm up-
date speeds. Skefch-based methods, such as Count-min Sketch
with a Bloom filter [35], leverage the Bloom filter to eliminate
duplicates within a time window and then employ Count-min
Sketch to track each item’s persistence. However, the Bloom
filter introduces significant false positive errors in tight memory
settings, and the non-invertibility of Count-min Sketch results
in slow update speeds. On-Off Sketch [16] adopt a flag bit to
increase the persistence periodically, and propose to separate
persistent/non-persistent items. Unfortunately, the naive parti-
tioning causes persistent items to be mistakenly expelled by
non-persistent ones, yielding inferior detection accuracy when
memory size is limited.

C. Significant Item Detection

1) Definition: Suppose a data stream is partitioned into N
equal-sized time windows. The significance G(e) of an item
e is a weighted sum of two metrics, the frequency S(e) and
persistence P(e), and is computed as G(e) = aS(e) + SP(e),
where « and f3 are user-defined [19]. Given a threshold G (G >
0), an item e is considered to be a significant item if G(e) > G.

2) Related Work: A conventional approach to identifying
significant items involves using two separate algorithms for
tracking frequent and persistent items. However, this method
comes with substantial time and space overhead, which is
the combined overhead of both algorithms. Moreover, because
these two data structures are independent, this approach tends to
record many items that are either frequent or persistent, leading
to inefficient use of limited memory. Long-Tail Clock (LTC)
[19] leverages two essential techniques, Long-tail Restoring

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3848

2 8x10° 1.0
S N 8 Mv-Sketch
£ S @ On-Off Sketch
o 6x10 £ WavingSketch 9
@ bt
k] o
3 4x10° 5 05
o
b —
5 [V
D2x10
o
2
2 0

16 32 64 128 256
Memory Size (KB)

Memory Size (KB)
(b) F1 score.

(a) Number of wrong replacements.

Fig. 1. Wrong replacement events and detection accuracy with state-of-the-
art sketches, under different memory sizes.

and an adapted CLOCK algorithm, for significant item lookup.
Long-tail Restoring exploits the long-tail distribution feature of
real datasets to mitigate the overestimation, and the adapted
CLOCK algorithm periodically increases each item’s persis-
tence. Nonetheless, the complicated processing makes it hard
for LTC to match high-speed data streams.

D. Summary

Limitations of Prior Art: Existing schemes for different de-
tection tasks struggle to concurrently maintain high accuracy,
high memory efficiency and fast update speed under limited
memory size. To further illustrate the inefficiencies of current
methods, we take three state-of-the-art approaches as examples:
MV-Sketch [10] for heavy hitter detection, and On-Off Sketch
[16] and WavingSketch [21] for persistent item lookup. We
vary the memory size from 16KB to 256KB [36] to count
the number of hot items being mistakenly substituted by cold
ones during the update process, followed by evaluating their
detection accuracy. We conduct these tests using a CAIDA 2016
[37] trace with 0.64M items and set the thresholds e and 7 for
heavy hitter detection and persistent item lookup as 0.0005 and
0.5, respectively. Fig. 1(a) demonstrates that when the memory
size is tight (< 64KB), the number of wrong replacement events
increases significantly. This indicates that current methods are
ineffective in protecting hot items, when using fast L1 cache
memories (which typically range between 8KB and 64KB). The
impact of memory size on detection accuracy is illustrated in
Fig. 1(b), which shows that MV-Sketch’s F1 score is 5.4 x lower
when the memory size is 16KB compared to when it is 256KB.

Motivation: Our analysis indicates that current methods per-
form poorly when the memory size is limited. The main reason
is that under these conditions many hot items are mistakenly
replaced by cold ones due to frequent hash collisions, resulting
in low detection accuracy. In order to address this issue, we
introduce a new sketch-based approach that uses more data
stream features to better protect hot items, while maintaining
fast update speeds.

III. TIGHT-SKETCH DESIGN

In this section, we begin with a data analysis, uncovering the
two fundamental design principles that underlie Tight-Sketch.
We then proceed to introduce the data structure employed by
Tight-Sketch and its core operations, including update and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

=
=]

1.0

CAIDA 2015
CAIDA 2016
CAIDA 2018
CAIDA 2019

CAIDA 2015
CAIDA 2016
CAIDA 2018
CAIDA 2019

o
=
[B[SIN]

0o8ea|

o
o

0.5

I
IS

Distribution

Distribution

e
N

0 (0,10] (10,20] (20,30] (30,40](40,1600]
Persistence

0 ik |
(0,10] (10,20](20,30](30,40] >40
Frequency

(a) Frequency. (b) Persistence.

Fig. 2.
datasets.

Item frequency and persistence distributions in different real-world

query. Additionally, we propose two optimization strategies
aimed at further enhancing the detection accuracy of our pro-
posed method.

A. Design Rules

Rule 1: The distribution of items within real data streams is
often heavily skewed, with the majority being small and only
a minuscule fraction being large [27].

Here, we employ four datasets, CAIDA 2015, 2016, 2018,
and 2019, to confirm this feature. Each trace consists of 0.45M,
0.64M, 1.29M, and 1.53M items. We divide traces into five
parts, according to the frequency and persistence of items. Note
that other number of partitions could be also used. As shown in
Fig. 2(a), we find that most items have a frequency of no more
than 10, and only a tiny portion of items possess a frequency
greater than 40. Similarly, we divide each trace into 1,600
time windows [16], and find that around 92% of items have a
persistence of less than 10, while only 2.5% have a persistence
greater than 40 on average (Fig. 2(b)). These results reveal that
most items are cold and only appear a few times. Therefore, it
is appropriate to discard these cold items as soon as possible,
to leave memory space for hot ones.

Rule 2: The transmission of large amounts of items is of-
ten characterized by repeating patterns of active and inactive
transmission, as already observed widely in practice [27]. In
particular, unlike massive amounts of short-lived cold items
with small frequencies and long inactive periods, the active
periods for hot items are much longer, indicating that their
arrival is more sustained than that of cold ones. To verify this
property, we utilize MV-Sketch [10] and WavingSketch [21] to
observe the sustained arrival strength of items tracked in each
bucket. We set the memory size to 64KB and divide the CAIDA
2015 and 2016 traces into 1,600 time windows [16]. When a
new item arrives, its arrival strength is increased by one if it has
already been tracked in the hashed bucket. Otherwise, the arrival
strength of the item stored in the hashed bucket is reduced by 1,
with a minimum value of 0. Fig. 3 illustrates that the sustained
arrival strength of hot items is significantly higher than that of
cold items. Therefore, sustained arrival strength is a valuable
metric for identifying hot items and can be employed in various
detection tasks.

Summary: Based on the above analysis, we find that hot
items primarily have a higher frequency/persistence and a
stronger sustained arrival strength than cold items. Thus, our

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

3849

/— ".‘fﬂ
f
7
5 0.5 8 0.5lf
o — Heavy Items (C2015) o 7 — PI (C2015)
== Heavy Items (C2016) == PI (C2016)
= Non-heavy Items (C2015) = NPI (C2015)
o «+= Non-heavy Items (C2016) o «==NPI (C2016)
0 20,000 40,000 1000 2000
Arrival Strength Arrival Strength
(a) Heavy item detection. C—CAIDA.(b) Persistent item detection.

(N)PI—(non-)persistent items.

Fig. 3. Sustained arrival strength of hot and cold items.

b buckets

< >

sip[k[e]a b~ |-

B(i,j).k: item key
B(i,j).c: item value counter
B(i,j).a: arrival strength counter

r rows

Fig. 4. Tight-Sketch’s data structure.

Tight-Sketch harnesses these features to evict cold items as soon
as possible and provide more protection for hot items, thereby
significantly improving detection accuracy even under limited
memory budgets.

B. Data Structure

There mainly exist two types of data structures in current
sketches: flat [25] and hierarchical [38]. Instead of the sophis-
ticated hierarchical structure with multiple layers, we choose
the classic flat structure for Tight-Sketch, since it bears faster
processing speed and it is easier to deploy in practice.

As illustrated in Fig. 4, Tight-Sketch’s data structure consists
of r rows, each containing b buckets. Each row is associated
with a different pairwise-independent hash function, denoted as
hi,ha, -+, h.. B(i,j) represents a bucket in the i-th row and
j-th column, where 1 < i <rand 1 < j < b. The bucket B(i, j)
has three fields: B(¢, 7).k, which stores the key of the candidate
item; B(i,7).c, which maintains a statistic of the candidate
item, such as its frequency, persistence, or significance; and
B(i, j).a, which represents the item’s arrival strength.

C. Update and Query

Tight-Sketch supports two basic operations, update and
query. Specifically, update is essential for inserting a newly ar-
rived item into a bucket probabilistically. Query is for returning
the hot items whose value is greater than a predefined threshold.

1) Update: The update process for each incoming item e is
outlined in Algorithm 1, which consists of two stages. The first
stage (Lines 2-10) involves determining whether the incoming
item has already been recorded or if there is an empty bucket to
store it. If not, the second stage (Lines 11-22) involves replacing
the item currently tracked in a bucket with the incoming item
using a probabilistic decay method.

Algorithm 1: Tight-Sketch’s Update Procedure.
Input: a newly incoming item e, hash function
associated with each row hq, ..., h,., min < +oo
1 Initialization: Each bucket’s counters and item key are
initialized to 0 and null, respectively.
// Stage I: locating an available
bucket
2 fori=11to0 rdo
if B(i, hi(e)).k ==null || B(i,hi(e)).k==e.k
then
B(i, hi(e)).k + e.k;
B(i, hi(e)).c < B(i, hi(e)).c+ 1;
B(i, hi(e)).a < B(i, hi(e)).a + 1;
return;

N & B

Ise if B(i,h;(e)).c < min then

9 min < B(i, hi(e)).c;

10 | pi; g+ hi(e);

u | B(i, hi(e)).a « maz(B(i, hi(e)).a — 1,0);
// Stage II: probabilistic decay
12 if B(p,q).c < M then

13 if random(0,1) < 73(%5).6“

14 L B(p,q).c=B(p,q).c—1

15 else if random(0,1) < 5o oo ppaar then
16 | B(p,q).c=B(p,q).c—1

17 if B(p,q).c == 0 then

=}
(o]

then

18 B (p,q) .k + e.k;

19 B (p,q).c+ B(p,q).c+ 1,
20 return;

21 else

22 Discard the incoming item e;
23 return;

Stage I. Upon the arrival of a new item e, Tight-Sketch first
maps this item to a bucket with the hash function £ in the first
row. If the bucket B(1, hy(e.k)) is empty or has been occupied
by item e, the key field of the mapped bucket will be set as e.k,
and both counters will increase by 1. However, if a different
item already occupies the bucket, it indicates that item e was
unable to be stored in the first row, and a hash collision has
occurred. In this case, Tight-Sketch will iteratively check the
remaining rows using the hash functions hs, - - - , h,. tolocate an
available bucket for item e. Once an available bucket is found,
the hash operation terminates (Lines 2-7).

Compared to existing methods that hash an item across
all rows, e.g., MV-Sketch [10] and HeavyKeeper [12], Tight-
Sketch avoids redundant hashing operations and conserves
memory usage, allowing more space to track hot items. Sup-
pose hash collisions happen in all rows, indicating that item
e cannot find an available bucket. In that case, Tight-Sketch
will evaluate the bucket with the smallest value counter to
determine if item e can be successfully stored by replacing the
item currently therein (Lines 8-10). Also, the occurrence of hash

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3850

collisions during the mapping process is an indication that the
item recorded does not have a sustained presence. As a result,
the sustained arrival strength counter for the hashed bucket can
be decremented by 1 (Line 11). This decrease in the arrival
strength counter allows for the potential eviction of the item
in favor of incoming items with a more sustained presence —
recall that hot items tend to have stronger sustained arrival
strength.

Stage II. Tight-Sketch employs a finer grained approach to
item eviction than many recent schemes that often expel items
indiscriminately [17], [25], [29]. Given that in practice most
items are cold, Tight-Sketch prioritizes the eviction of these
items to conserve more space for hot ones. To achieve this,
Tight-Sketch employs a threshold value M, which is usually set
to a small value (e.g., M = 10). If the value counter of a hashed
bucket is less than M, the counter is decreased with a higher
rate of m (Lines 12-13). In contrast, if the value counter
is greater than or equal to M, the counter is decreased with
a more conserv.ative probability (p,q).cxlB(p,q)ﬂ. =] that con-
siders both the item’s value and arrival strength (Lines 14-15).
Hot items with high frequency and sustained arrival strength
will quickly exceed the threshold M and will be harder to
evict. We verify empirically that this process delivers better
guarding of hot items than other probabilistic eviction strate-
gies, such as probabilistic decay without considering the arrival
strength (see Section V-G). If the value counter is successfully
decreased to 0, an incoming item e can replace the incumbent
item in the bucket and set the value counter to 1 (Lines 16-
19). Otherwise, Tight-Sketch will discard the incoming item
(Lines 21-22).

2) Query: Unlike non-invertible approaches that require the
examination of every item in the stream to return all hot items,
Tight-Sketch only requires a scan of each bucket to determine
which items are hot. Specifically, Tight-Sketch checks the value
counter of each bucket to see if it is above a predefined thresh-
old. If so, the item stored in that bucket is reported as hot.

D. Utilizing Tight-Sketch for Various Tasks

We employ Tight-Sketch for four distinct detection tasks:
heavy hitter detection, heavy changer detection, persistent item
lookup, and significant item lookup.

1) Heavy Hitter Detection: Since Tight-Sketch can be di-
rectly deployed for heavy hitter detection, the data structure,
update and query operations are consistent with Sections III-B
and III-C.

2) Heavy Changer Detection: For each time window, we
construct a Tight-Sketch to track the frequency of items and
compare changes in their frequency in adjacent windows, to find
heavy changers. When an incoming item e arrives, we insert it
into Tight-Sketch based on its period. The insertion process is
the same as in Section III-C. Suppose the frequency of item e
in the first and second time windows is S1(e) and Sa(e). If the
variation | Sy (e) — Sz(e)| is greater than the threshold e D, item
e is reported as a heavy changer.

3) Persistent Item Lookup: Each item’s persistence only
increases by 1 in a time window, no matter how many times

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

it arrives. To eliminate duplicates, Tight-Sketch includes a flag
field (true or false) in its data structure [16]. A true flag value
indicates that a bucket has not been accessed in the current time
window and is set to false after access. At the beginning of
each time window, the algorithm first checks the flag in each
bucket. If the flag is true, indicating the recorded item does
not appear in the last window, the arrival strength of that item
will be decreased by 1. Then, all flag fields are reset to true.
To optimize memory usage, the algorithm uses the highest bit
of the arrival strength counter to store the flag field, instead of
adding a separate field to the data structure. This allows Tight-
Sketch to efficiently track and update the status of items while
minimizing memory usage.

Upon the arrival of a new item e, Tight-Sketch first searches
for an available bucket with a flag value true. If such a bucket
is found, the value counter and arrival strength counter are
incremented by 1, and the flag field is set to false. If an
available bucket is not identified, Tight-Sketch attempts to evict
the incumbent item with the smallest persistence counter across
all rows. If the flag of the chosen bucket is false, indicating
that the incumbent item arrived in the current time window,
item e is discarded, and the eviction process is terminated. Oth-
erwise, the replacement procedure is carried out according to
Algorithm 1 (Lines 12-22). The query operation for retrieving
persistent items is consistent with Section III-C.

4) Significant Item Lookup: To identify significant items,
Tight-Sketch needs to track the frequency and persistence of
each item. To accomplish this, we modify the data structure in
bucket B(i, j) to include the following fields: k, which indicates
the item identifier; fc, a value counter for item frequency;
fa, a sustained arrival strength counter for frequency; pc, a
persistence counter; and pa, an arrival strength counter for
persistence. We also use the highest bit of pa to record the flag
(true/false) for removing duplicates.

When an incoming item arrives, it will first search for an
available bucket. If it fails, it will attempt to evict the tracked
item with minimal significance among all mapped buckets
in each row. Suppose the significance of the recorded item
is smaller than the threshold M. In that case, Tight-Sketch
will decrease the value counters by 1 with a probability that
only considers the frequency and persistence values. Otherwise,
Tight-Sketch will decay the value counters considering the ar-
rival strength. Since the persistence value is no more than the
frequency value, once the persistence counter is decreased to 0,
the newly arrived item can successfully replace the tracked item
in the bucket. After insertion, Tight-Sketch scans each bucket
to return items with significance higher than G.

5) Running Examples: We use heavy hitter detection as an
example and present multiple scenarios to illustrate the update
process of Tight-Sketch. In these examples, we set M to 10.

Case 1: As illustrated in Fig. 5(a), when a new item e;
arrives, it initially employs the hash function h; to determine
the location of a bucket in the first row. In this case, the hash
result directs item e; to bucket B(1,1). Upon inspection, it
is found that the targeted bucket is empty. Consequently, item
ey is successfully inserted into the bucket, and the bucket’s
information is updated from (Nwull,0,0) to (e1,1,1).

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

B(1,1)

B(1,1)

B(1,2)

Updated> Updated

et |1

=

Null| 0

o
(<2

e2 |6 e (7|7

(a) finding an empty bucket.

Updated
HHE -

4 BAL

(b) matching the bucket successfully.

Upda[e{i E

(1,1) B(1,2)

=]
(&]

I
y\
Vo
|
y\
y\
: | .

B(1,2)

B(2,1)

B(2,2) B(2,1) (2,2)

el 2 Updated | o Updated| 0 H

(c) attempting to replace (without(d) attempting to replace (considering the
considering the arrival strength). arrival strength).

[S |
]
[8]

Fig. 5. Running examples.

Case 2: As illustrated in Fig. 5(b), when an incoming item
es locates a bucket B(1,2) in the first row, it is determined
that ey is already being tracked there. As a result, the bucket’s
information is updated from (e, 6, 6) to (e, 7, 7). The equiva-
lence between the item’s counter value and the arrival strength
counter indicates that the item es is entering the bucket in a
continuous manner.

Case 3: As observed in Fig. 5(c), when item e; arrives, it is
hashed to two buckets, B(1,1) and B(2,1), in the respective
rows using hash functions h; and hs. However, these hashed
buckets are already occupied by items e; and e4. Therefore,
ey disrupts the continuous arrival of the tracked items, causing
their individual arrival strength counters to decrement by 1.
For instance, the arrival strength counter of item e; decreases
from 5 to 4. Subsequently, e; seeks the bucket with the lowest
counter value, which in this case is B(1, 1). Given that the value
counter is smaller than the threshold M, the decay probability
is computed as W11 without taking into account the additional
protection offered by the arrival strength. Fortunately, the decay
operation proves successful, resulting in the value counter of
e being updated to 5. In the event of unsuccessful decay, the
respective value counter remains unaltered. However, since the
value counter of e; does not reach 0 due to decay, item e7 is
discarded.

Case 4: When item eg arrives (Fig. 5(d)), it encounters a
situation where no available bucket is vacant. In this scenario,
it selects the bucket with the lowest value counter to undergo
decay, which is B(2,1). Since the value counter exceeds the
threshold M, the probability of decay is calculated as m.
Consequently, it becomes challenging for items with higher
value counters to be evicted from the bucket.

Furthermore, the incorporation of arrival strength offers the
additional advantage of mitigating the interference from bursty

3851
TABLE 1
COLLISION RATE WITH VARYING FINGERPRINT (FP) LENGTHS
FP Lengths (Bits)
0.5M 0986 0.018 3.41x10~7
M 0.999 0.037 6.83x10~7
2M 1 0.071 1.37x106
3M 1 0.107 2.05x106

items. Typically, those exhibit a high-frequency arrival pattern
within a short time frame, with most bursts belonging to cold
items. With the aid of the arrival strength counter, even highly
bursty items can be effectively removed from the bucket, leav-
ing more space for genuine heavy items.

E. Tight-Sketch Optimization

Here, we introduce a variant of Tight-Sketch called Tight-
Opt, which incorporates the following two optimizations.

1) Optimization 1: Compressing Keys With Fingerprints:
As the default configuration, Tight-Sketch employs a key-
centric approach for item tracking within each bucket. However,
this approach can lead to increased memory usage in scenarios
involving longer keys, such as 5-tuples in network data. To
address this challenge, we introduce a fingerprint-centric opti-
mization method that utilizes a hash function to compute a short
sequence of bits based on the key, referred to as the fingerprint
[39]. This approach helps conserve memory and increase the
number of available buckets for item recording, but introduces
the possibility of false detection when hash collisions occur
between items. When hashing n items into b buckets, each
associated with an z-bit fingerprint, as described in [39], [40],
the probability of a hash collision can be expressed as:

n

Pr{fingerprint collision} =1 — (1 —27%)%.
With a configured memory size of 16KB for our method,
Table I presents the collision rates for fingerprints with varying
numbers of items and lengths. The results indicate that, when
using a 32-bit fingerprint, the collision rate remains negligible
even when processing 3M distinct items.

2) Optimization 2: Giving Items One More Chance: A
heavy item may find all of its hashed buckets already occupied
by other heavy items with large counter fields, especially when
the memory is limited. Hash collisions can also result in tracked
heavy items being evicted from a bucket and thus a decline in
detection accuracy. While Optimization 1 addresses the first is-
sue by using fingerprints, which leaves space for more buckets,
here we focus on the latter.

Table II illustrates the number of hash collisions between
heavy items observed during the update process when employ-
ing the CAIDA 2015 trace, which encompasses 0.52 million
distinct items, and where we adjust the threshold to regulate
the quantity of heavy items in the 100-300 range. We observe
that as the count of heavy items rises, the occurrence of hash
collisions among heavy items also increases, particularly when
memory resources are limited, which could potentially result in
heavy items displacing each other. In particular, under a 16KB

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3852

TABLE 1T
NUMBER OF HASH COLLISIONS BETWEEN HEAVY ITEMS,
AS A FUNCTION OF MEMORY SIZE

Memory Size
of Heavy Ttems 16KB 32KB 64KB

100 62 0 0
200 271 1 0
300 2141 335 21

memory budget, the F1 score of our method decreases from 0.99
to 0.958 in this scenario.

As noted in [36], the majority of buckets are dedicated to
tracking non-heavy items, constituting approximately 70% of
the buckets when employing a 16KB memory allocation with
the CAIDA trace. Consequently, to mitigate this second issue
stemming from hash collisions among heavy items, we provide
more opportunities to handle collision-heavy items by utilizing
the remaining unused buckets or buckets that track potential
non-heavy items. Specifically, when an incoming item displaces
the tracked item within the bucket, we select its neighboring
bucket as the alternative candidate, rather than immediately dis-
carding it. If its neighboring bucket is vacant, the tracked item
can be relocated to this new location. However, if this already
contains another item, the tracked item makes an attempt to
decrement the counter associated with that bucket. If the counter
value of the neighboring bucket reaches 0 as a result, the tracked
item can replace the item currently stored there. If unsuccessful,
the tracked item will be evicted.

3) Trade-off Analysis: While the above optimizations im-
prove the detection accuracy of the basic Tight-Sketch (see
results in Section V-K for a quantitative analysis), they intro-
duce additional complexity to the update process, resulting in a
reduction in processing speed. Specifically, generating finger-
prints requires additional hash operations, and rehashing items
into different buckets further slows down the update throughput.
In practical scenarios, if users prioritize processing speed, it
may be preferable to use the basic Tight-Sketch over Tight-Opt,
while when accuracy is to be prioritized over speed, Tight-Opt
is a viable choice.

IV. MATHEMATICAL ANALYSIS

In this section, we first prove that Tight-Sketch does not
suffer overestimation errors. We then derive an underestimation
error bound, using heavy hitter detection as an example.

A. No Overestimation Error

Theorem 1: For an item e, let S;(e) and S;(e) respectively
denote the real frequency and estimated frequency at any given
time ¢. We have S;(e) < Si(e).

Proof: The detailed proof can be found in [1]. O

B. Underestimation Error Bound

Theorem 2: For a heavy item e, we assume that it will
successfully enter the mapped bucket once it arrives and
remain there until the detection task ends. Given a small

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

positive number o and a heavy item e with frequency
S(e), Pr {5(6) — 5(e) > [am} < 5 [In(S(e)) + L] holds,
where ¢ is the fraction of non-heavy items among all items, L
denotes the Euler-Mascheroni constant, /V is the number of all
entries for all items.

Proof: The detailed proof can be found in [1]. O

V. EVALUATION
A. Setup

Implementation Platform: To evaluate the performance of
Tight-Sketch, we implement it as well as existing schemes
in C++. We conduct experiments on a computer with 16GB
DRAM memory, and an Intel(R) Core(TM) i5-1135G7 @
2.40GHz CPU. Each core owns a 48KB L1 data cache and a
1,280KB L2 cache. All cores share a 8,192KB L3 cache.

Datasets: We employ three datasets for evaluation:

o CAIDA [37], which contains anonymized IP trace streams
collected from CAIDA. We pick two traces from 2015 and
2018, with 0.52M and 0.77M items, respectively.

o MAWTI [41], which presents traffic traces collected by
MAWTI in Japan. We select a trace with 2.75M items from
2020.

e Campus [42], a dataset consisting of campus network traf-
fic collected over 10 days in 2016. We randomly pick a
trace that contains 0.87M items for evaluation.

For these traces, we regard source-destination pairs as item keys
(8 bytes).

Benchmarks: For heavy item detection, we compare Tight-
Sketch (Tight) with MV-Sketch (MV) [10], CocoSketch (Coco)
[33], Elastic [22], RAP [32], USS [30], UnivMon (Univ) [43],
CMHeap (CMH) [25], CountHeap (CH) [24] and Space-Saving
(SS) [29]. For MV-Sketch, we configure the number of rows
as 4 [10]. For RAP, we set the number of arrays as 2. The
parameter settings of the rest of the schemes are consistent with
[33]. In addition, for a comprehensive assessment, we also com-
pare Tight-Sketch with the advanced probability-based methods
HeavyKeeper [12], and PRECISION [44] in Section V-C1.

For persistent item lookup, we divide each trace into 1,600
time windows [16] and select two off-the-shelf benchmarks,
On-Off Sketch (On-Off) [16] and WavingSketch (Waving) [21].
The number of cells for On-Off Sketch and WavingSketch is
16 [21].

For significant item lookup, we compare Tight-Sketch with
LTC [19], using its default settings.

Memory Resource Allocation: Each algorithm has a spe-
cific bucket or slot size determined by its data structure design
and the type of information it needs to store. In our experiments,
we allocate different numbers of buckets to different algorithms
under a fixed total memory constraint, ensuring that all methods
operate within the same memory footprint for a fair comparison.
This approach aligns with recent established practices in the
field, such as those seen in [10], [12], [20]. We follow the stan-
dard practice of varying memory sizes from 16KB to 256KB, as
recommended by [36], [45]. Specifically, in Tight-Sketch, each
bucket has a fixed size. By specifying the number of rows (r)

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

O CH P Univ -+ Elastic O CH $ Univ -+ Elastic
4-CMH ¥ RAP =k Tight 4-CMH ¥ RAP =k Tight
SS <= MV +* SS <= MV

O USS =& Coco O USS =& Coco

=
=)

Precision
o
(%2}
Recall

0 ‘ : ‘ : 0 ‘ : ‘ :
16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)
(a) Precision. (b) Recall.

3853
O CH $ Univ -+ Elastic O CH P Univ -+ Elastic
«4-CMH ¥ RAP =k Tight 4-CMH ¥ RAP =k Tight
SS <= MV +* SS <= MV
O USS =& Coco 0.4 O USS =& Coco
1.0 ’ A R
0.3
<
S 4
50.5 0.2
—
('8

64 128 >6
Memory Size (KB)
(d) ARE.

ol— | ; | ;
16 32 64 128 256
Memory Size (KB)

(c) F1 Score.

Fig. 6. Heavy hitter detection with different approaches, as a function of memory size (CAIDA 2015).
1.0 1.0
c [
2 S
50.5 20.5
& o
07 : ‘ : : 0 : : : : 0 : : : :
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB)
(a) Precision. (b) Recall. (c) F1 Score. (d) ARE.
Fig. 7. Heavy hitter detection with different approaches, as a function of memory size (CAIDA 2018).

and the total available memory, we can accurately determine
the number of buckets per row based on these parameters.

For methods like Space Saving [29], which require a mini-
mum number of counters to avoid false negatives, we recognize
this as an inherent limitation of the algorithm, especially under
constrained memory conditions. Our experiments are designed
to evaluate the performance of different algorithms under re-
alistic memory constraints, which may not always permit ideal
conditions for every solution. Hence, we consider this a charac-
teristic of the algorithm. To offer a more balanced comparison,
we also evaluate performance per KB in Section V-C, demon-
strating the effectiveness of our method.

Number of Hot Items: In line with [10], we adjust the
threshold for each trace to consistently maintain around 100
hot items for each detection task. Additionally, we analyze the
effect of varying this threshold to assess the robustness of our
approach in Section V-H.

Metrics: We use the following five performance metrics.

e Recall: fraction of true reported items over all true items.

e Precision: fraction of true reported items over all reported

items.
e Fl score: 2XTIecallXprelc.1§zon
recall4+precision R
. S(e)—S(e
o Average Relative Error (ARE): 3) .co %,

which evaluates the error rate of the estimated value.
e Update throughput: the update speed of the algorithm, in
millions of operations per second (Mops).

B. Parameter Setting

Similar to existing work on parameter settings [20], [21],
[45], we conduct an experiment to investigate the impact of
varying the value of M on the detection accuracy of significant
item lookup. Specifically, we vary M from 1 to 100 and observe

its effect on the F1 score. Our experimental results reveal that
when we increase M from O to 10, the F1 score shows a rising
trend. When the memory size is 16KB, the F1 score at M = 10
is 3.1% higher than that at M = 0. This is because most cold
items have a low frequency or persistence and fall into this
range, and setting M to a small value accelerates their eviction
process. When M ranges between 10 and 50, the F1 score shows
a similar trend. However, when we further increase the value
of M, the F1 score decreases. This is because setting M to a
larger value may increase the decay rate of hot items, which
can negatively impact on the detection accuracy. Therefore, we
configure the threshold M as 10. The experiment results on
different detection tasks below demonstrate that such setting is
robust and effective.

C. Performance on Heavy Hitter Detection

We compare the performance of Tight-Sketch with existing
approaches on heavy hitter detection. Figs. 6-9 detail this across
different datasets.

Precision (Figs. 6(a)-9(a)): We find that the precision of
Tight-Sketch is always 1, outperforming existing approaches
even under limited memory size (16KB). Specifically, Tight-
Sketch ameliorates the precision by 4%-356%, 12%-506%,
12%-1106%, and 2%-518% on average under these datasets,
respectively. The superiority of Tight-Sketch stems from its
finer update operations, which avoid overestimation errors and
effectively circumvent the effortless eviction of heavy items by
non-heavy ones.

Recall (Figs. 6(b)-9(b)): Tight-Sketch maintains its op-
timality in terms of recall on different traces, with an im-
provement of up to 85% across the CAIDA 2015 trace, 106%
across the CAIDA 2018 trace, 209% across the MAWI trace,

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3854

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

1.0

< .

o /.-

vy

80.5 & . - :

& ! .0 .
~ [] : ":& - P ’ _ - P

e o Lagir
16 32 64 128 256 32 64 128 256
Memory Size (KB) Memory Size (KB)

(a) Precision. (b) Recall.

Fig. 8.

1.0

F1 score

ol B==" 3 F ‘
16 32 64 128
Memory Size (KB)

(c) F1 Score.

256 128 256

Memory Size (KB)
(d) ARE.

Heavy hitter detection with different approaches, as a function of memory size (MAWI).

Precision

F1 score

16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)
(a) Precision. (b) Recall.

Fig. 9.

TABLE III
OF INCORRECT REPLACEMENT EVENTS (CAIDA 2015)
Memory (KB) 16 32 64 128 256
Tight-Sketch 64 34 15 6 6
MV-Sketch 161,659 41,690 5949 957 220

and 110% across the Campus trace. During the update pro-
cess, Tight-Sketch effectively alleviates the interference of non-
heavy items on heavy items with the help of stream charac-
teristics (the heavy-tail feature helps to evict cold items with
high probability; the arrival strength provides more protec-
tion to hot items). In addition, abandoning hash operations
in time saves memory usage, leaving more space for Tight-
Sketch to record heavy items and thus guaranteeing a high
recall.

F1 Score (Figs. 6(c)-9(c)): Compared with current meth-
ods, Tight-Sketch attains the highest F1 score under different
memory budgets. Even with 16KB of memory, the F1 score
reaches around 1, enhancing the detection accuracy by 39%-
6879%, 70%-1489%, 56%-2450%, and 21%-1500%, respec-
tively, across different datasets.

ARE (Figs. 6(d)-9(d)): We find that Tight-Sketch also
obtains the lowest estimation error as compared to existing
approaches. For instance, under the CAIDA 2015 trace, the
ARE of Tight-Sketch is 23 x and 72 x smaller than that of RAP
and Elastic on average, which demonstrates the effectiveness of
Tight-Sketch.

1) Deep Dive:

1) We investigate the reasons behind Tight-Sketch’s signifi-
cant performance improvements by counting the number
of incorrect replacement events during the update pro-
cess. As observed in Table III, Tight-Sketch efficiently
mitigates the occurrence of mistakenly substituted heavy

0 ? : : : .
16 32 64 128 256
Memory Size (KB)

(c) F1 Score.

Memory Size (KB)
(d) ARE.

Heavy hitter detection with different approaches, as a function of memory size (campus).

0.2

|~ Tight-Sketch =@ MV-Sketch === Elastic | = Tight-Sketch =@ MV-Sketch === Elastic
~¥— CocoSketch —@-SS 0.34 —¥— CocoSketch =SS
2]
[=2] ~
X -
5 g 0.2
2014 o
© o
S 8
« o1
0.0 : : - : 0.0 - y : ¢
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Recall F1score
(a) Recall per KB. (b) F1 score per KB
Fig. 10. Performance metrics per KB for various methods on the CAIDA

2015 dataset.

items by non-heavy ones, leading to high detection ac-
curacy. Compared with MV-Sketch, when the memory
size is 16KB, the number of wrong replacement events
by Tight-Sketch is 2525 x smaller.

ii) We assess the performance of various methods using the
accuracy per byte metric, for heavy item lookup. Specif-
ically, we use the CAIDA 2015 trace and compare our
Tight-Sketch method with MV-Sketch, Elastic, CocoS-
ketch, and Space Saving for identifying the top-100 heavy
items.

As illustrated in Fig. 10(a), our method consistently
maintains the highest recall per KB across various target
recall values, demonstrating its effectiveness and memory
efficiency. We exclude the precision per KB from this
analysis since our method only experiences underestima-
tion errors. This ensures that the heavy items we capture
are always the real ones, resulting in a constant precision
of 1 across all memory budgets, which is superior to all
baselines. Fig. 10(b) shows that our method also achieves
the highest F1 score per KB. Similar trends are observed
for other metrics, such as (1 - ARE)/byte.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

O CH $ Univ -+ Elastic| O CH $ Univ -+ Elastic|
4-CMH ¥ RAP % Tight ¢-CMH ¥ RAP % Tight
* SS < MV * SS < MV

O USS =& Coco

F1 score

16 32 64 128 256
Memory Size (KB)

(a) F1 Score.

Memory Size (KB)
(b) ARE.

Fig. 11. Detailed performance for heavy changer detection across the
CAIDA 2015 dataset.

iii) To validate Tight-Sketch’s superior performance and ver-
ify statistical significance of the results, we conduct
further evaluations comparing its performance to that
of established baselines across five additional CAIDA
datasets, labeled as Traces #1 through #05. These traces
vary in size: Trace #1 contains 730,000 items, Trace #2
comprises 1.53 million items, while Traces #3, #4, and
#5 include 450,000, 640,000, and 1.29 million items,
respectively. For these evaluations, we set the target re-
call and F1 score to 0.9 and assess the performance per
KB of various methods. We exclude precision from our
analysis, as our method consistently achieves a precision
of 1 regardless of memory constraints.

Our method achieves recall per KB of 0.06, 0.1, 0.09, 0.09,
and 0.08 for Traces #1-#5, respectively. In comparison, MV-
Sketch’s recall per KB is 0.013, 0.014, 0.026, 0.012, and 0.0072
for the same traces. These results demonstrate our method’s
significantly higher recall per KB. This superiority is main-
tained when compared to other baselines. Regarding F1 score
per KB, our method achieves 0.1, 0.1125, 0.1125, 0.1125, and
0.1, while MV-Sketch attains 0.013, 0.014, 0.026, 0.012, and
0.0072, which are lower than our method’s.

We further conduct paired t-tests comparing Tight-Sketch’s
performance against that of MV-Sketch across five CAIDA
datasets. For recall per KB, Tight-Sketch consistently outper-
forms MV-Sketch, with a mean difference of 0.06956. The
t-test yields a t-statistic of 10.25 (df = 4), resulting in a
p-value less than 0.001. Similarly, for F1 score per KB, Tight-
Sketch demonstrates significantly better performance, namely
a mean difference of 0.09306, with a t-statistic of 31.69 (df
= 4), yielding a p-value less than 0.0001. The extremely low
p-values for both metrics indicate that the observed differences
in performance are statistically significant.

D. Performance on Heavy Changer Detection

Figs. 11 and 12 provide a detailed performance analysis of
different approaches for heavy changer detection across various
network traces.

The results depicted in Fig. 11(a) and Fig. 12(a) demonstrate
that Tight-Sketch achieves an average F1 score that is 30.69%
and 594.04% higher than that of the most competitive approach,
Elastic, when applied to the CAIDA 2015 and MAWI datasets,

3855

O CH $ Univ -+ Elastic O CH $ Univ -+ Elastic
¢-CMH ¥ RAP % Tight ¢-CMH ¥ RAP e Tight
* SS < MV * SS < MV
O USS =& Coco L0 O USS =& Coco
. w
~ ~
° R
S \\
1% [~4
: 0.5 N
w
Q‘~- w ...o,_,___...

16 32 6 18 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)

(a) F1 Score. (b) ARE.

Fig. 12. Detailed performance for heavy changer detection across the
CAIDA 2015 dataset.

10 0.3 i
. ’H—T%-H
Py
[o
: g Eo.z \
2050/ < \
o ’ / O On-Off 0.1 N O On-Off
7 /-‘ -O- Waving . -O- Waving
d—-—0 Tight V| % Tight
0 16 32 64 128 256 0 %E 35 gs 158 2%6
Memory Size (KB) Memory Size (KB)
(a) F1 Score. (b) ARE.
Fig. 13. Detailed performance for heavy changer detection across the MAWI
dataset.

respectively. Since the MAWI trace exhibits less skewness,
the performance of the considered benchmarks is significantly
diminished in comparison to the CAIDA trace. However, Tight-
Sketch still maintains its high detection performance in this
scenario, demonstrating its robustness and effectiveness. More-
over, as illustrated in Fig. 11(b) and Fig. 12(b), Tight-Sketch
significantly reduces estimation errors, further confirming its
superiority.

E. Performance on Persistent Item Detection

Here, we assess the performance of various approaches for
persistent item lookup. Figs. 13(a) and 14(a) highlight Tight-
Sketch’s superior F1 score. Specifically, we observe a 25%
improvement over On-Off Sketch on the CAIDA 2015 trace and
a 5163% enhancement on the MAWI trace. Furthermore, Tight-
Sketch achieves the lowest estimation errors, as Figs. 13(b) and
14(b) reveal. For instance, when applied to the MAWTI trace,
Tight-Sketch reduces the estimation error by an average factor
of 22.31 compared to On-Off Sketch.

Besides, we employ an additional MAWTI trace to conduct
an extended assessment of Tight-Sketch and On-Off Sketch’s
F1 scores for detecting the top-100 persistent items under
larger memory allocations. Table 1V reveals that Tight-Sketch
consistently outperforms On-Off Sketch in scenarios where
the memory size ranges from 300KB to S00KB. This perfor-
mance difference arises because the majority of items within
the MAWTI trace exhibit non-persistent behavior. The simplistic
replacement strategy employed by On-Off Sketch results in
the erroneous replacement of many persistent items with non-
persistent ones, thereby reducing detection accuracy. Notably,

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3856

1.0 o O On-Off
4 \; 0= Waving
v "\ = Tight
S 2 \O
20.5 [1 On-0 < 2 N,
* -O- Waving N,
& Tight O--0--0--0._
S O e e 0
16 32 64 128 256 16 2 64 128 256
Memory Size (KB) Memory Size (KB)
(a) F1 Score. (b) ARE.
Fig. 14. Detailed performance for persistent item detection across the

CAIDA 2015 dataset.

TABLE IV
F1 SCORE OF PERSISTENT ITEM LOOKUP UNDER LARGER MEMORY
ALLOCATIONS

Memory Size (KB) 300 350 400 450 500
Tight-Sketch 0958 0974 0.99 0.99 0.99
On-Off Sketch 0.006 0.0056 0.005 0.005 0.0045

we observe that On-Off Sketch attains an F1 score of 0.95 only
when the memory size is increased to approximately 1.2MB.

FE. Performance on Significant Item Detection

We configure the threshold values «v and (5 to 1. Our findings
in Fig. 15 demonstrate that Tight-Sketch consistently attains
the highest level of detection accuracy, even when working
with limited available memory. Remarkably, with a memory
size constraint of 16KB, Tight-Sketch achieves an F1 score
that surpasses that of the state-of-the-art LTC by an impressive
margin of 178%, solidifying its superiority.

G. Analysis of Item Eviction Strategy

We investigate three alternative eviction strategies: minus,
probability decay without considering arrival strength, and
probability replacement. The minus method involves decreasing
both the value and arrival strength counters by 1 when a hash
collision occurs with an incoming item. When the value counter
decays to 0, a new arrival replaces the current item in the
bucket. Probability decay without considering arrival strength
involves decaying the counter based only on the probability of
m . Probability replacement directly replaces the incum-
bent item with a probability of W'

We take persistent item lookup as an example and utilize
the MAWI trace to conduct a comparison. Results demonstrate
that our approach achieves the highest F1 score across a range
of memory sizes (16KB to 256KB). Compared with the mi-
nus, probability decay without considering arrival strength, and
probability replacement methods, our Tight-Sketch approach
shows improvements of 12.96%, 2.47%, and 16.5%, respec-
tively, when the memory size is 16KB.

H. Impact of Different Thresholds

We sought to identify the top 100 hot items from high-speed
streams in the above experiments. Here, we examine the impact
of varying thresholds on the performance of different methods.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

|

7’
’

.
o O LTC

= Tight

ol—
16 32 64 128 256
Memory Size (KB)

o
V]

F1 score

Fig. 15. F1 Score for significant item detection over the CAIDA 2015 trace.
Q Tight & Coco D Elastic
@ MV D RAP 1.0
Lo . ,
2 5
o
Q0.5 2 05
— T
o
0 0

2 4 6 8 10
Threshold (*107%)

(a) Heavy hitter detection. (b) Persistent item lookup.

Fig. 16. Detection accuracy under different thresholds (memory size: 32KB,
CAIDA 2018).

To do so, we fix the memory size at 32KB and vary the € and
threshold values for heavy hitter detection and persistent item
lookup, respectively, in the range of 0.0002-0.001 and 0.3-0.7.
As shown in Fig. 16, Tight-Sketch is superior across a range
of thresholds. In the case of heavy hitter detection, when ¢ is
set to 0.0002, Tight-Sketch outperforms Elastic by 66%. For
persistent item lookup, we observe that the performance of On-
Off Sketch and WavingSketch decreases as n increases. This
is due to the fact that the number of persistent items decreases
with increasing thresholds, and the rough replacement strategies
of On-Off Sketch and WavingSketch result in many persistent
items being incorrectly replaced by non-persistent ones, leading
to low detection accuracy. In contrast, Tight-Sketch achieves the
highest detection performance, with a 349% improvement over
On-Off Sketch when 7 is set to 0.7. These results highlight the
robustness of Tight-Sketch under a range of thresholds.

1. Update Throughput and Query Time

1) Update Speed: Heavy Hitter Detection. To assess the

update speed of Tight-Sketch, we begin by examining its per-
formance in heavy hitter detection. In Fig. 17, we compare the
update throughput of various algorithms across different mem-
ory sizes. The results clearly indicate that Tight-Sketch achieves
the highest update speed, surpassing MV-Sketch by 17% on
the CAIDA 2015 trace and 15% on the CAIDA 2018 trace.
This superior performance can be attributed to Tight-Sketch’s
straightforward update rule and the elimination of unnecessary
hash operations, resulting in faster execution.
Persistent Item Lookup. Fig. 18 illustrates that Tight-Sketch
sustains its rapid update speed for persistent item detection
when compared to established approaches. Notably, when com-
pared to On-Off Sketch, our method enhances the update
throughput on average by 72% over the CAIDA 2015 trace and
by 90.36% over the MAWI trace.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

O CH » Univ -+ Elastic O CH P Univ -+ Elastic
4-CMH ¥ RAP =k Tight 4-CMH ¥ RAP =k Tight
* SS < MV

O USS = Coco

Update Throughput
Update Throughput

16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)

(a) CAIDA 2015. (b) CAIDA 2018.

Fig. 17. Update throughput (mops) for heavy item detection with different
schemes across the CAIDA traces.

5 201 5
o o
E] 520 —
¢ |B--o-_p g
EE o S
F 10 0 F |B--0--p--p--n
2 0—+—0—+—0—-—=0—-=0| &
‘g. -g. o—..—o—..-—o—..—o—u—o
S |0 On-Off -O-Waving s Tight| 5 |0 On-Off -O- Waving % Tight

o

16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)

(a) CAIDA 2015. (b) MAWIL.

Fig. 18. Update throughput (mops) for persistent item lookup with different
schemes across different traces.

2) Query Time: In practice, long query times can result in
a backlog of data, leading to performance degradation and an
increased likelihood of errors. This is particularly true when
dealing with real-time applications, where data must be pro-
cessed and acted upon in real time. Delays in processing can
lead to inaccurate or outdated results, which can significantly
impact the performance and effectiveness of the application.

Here, we utilize the CAIDA 2015 trace to evaluate the query
time of Tight-Sketch for heavy hitter detection. Table V presents
the query time of different algorithms, with our findings demon-
strating that Tight-Sketch achieves the lowest query time among
the tested algorithms. This can be attributed to the invertibility
of Tight-Sketch and the fact that it doesn’t require extra hash
operations during the query process, resulting in a shorter query
times than with existing schemes. Conversely, MV-Sketch re-
quired additional hash operations during querying, leading to
longer query times. We observe a similar trend in the results
for other detection tasks, such as persistent item lookup.

J. Optimization With SIMD Instructions

During the update process, Tight-Sketch must sequentially
check the buckets in each row to locate one available for an
incoming item. In the worst case, Tight-Sketch must check
all rows, which slows the update speed. To further increase
performance, we employ SIMD instructions and process se-
quential operations in parallel. SIMD instructions are widely
supported across modern CPU architectures, including x86 (In-
tel and AMD) and ARM platforms, making these optimizations
applicable to a wide range of computing environments. In our
implementation, we use Intel’s AVX2 instruction set.

3857

TABLE V
QUERY TIME FOR HEAVY ITEM DETECTION (32KB)

Scheme Tight MV Elastic USS
Query Time (ms) 29.073 161.481 105.069 655.831
TABLE VI

TIGHT-SKETCH’S UPDATE THROUGHPUT (MOPS) FOR
HEAVY ITEM DETECTION WITH SIMD
OPTIMIZATION (CAIDA 2018)

Memory Size (KB) 16 32 64 128 256
Tight-SIMD 242 243 246 248 254
Tight-Sketch 17.8 18.1 185 19 19.4

As an incoming item arrives, we first utilize the primitive
MurmurHash3 x64 128 to obtain the hash value based on
the item key. Then, we divide the hash value into 7 parts, where
r is the number of rows in the Tight-Sketch data structure.
Next, we obtain the bucket positions in each row and track
them into a register array and use mm256_cmpeq epi64
to compare the newly arrived item’s key with items recorded in
r rows in parallel. With this method, Tight-Sketch with SIMD
instructions can quickly locate an available bucket for a newly
arrived item in a single step.

Table VI presents a comparison of the update speed for heavy
item detection using Tight-Sketch, both with and without SIMD
instructions. The results reveal notable improvements, with up
to a 36% boost in performance.

K. Performance of the Optimized Tight-Sketch

We evaluate the effectiveness of each optimization com-
ponent by comparing different variants. Tight-Opt.1 repre-
sents Tight-Sketch with only the fingerprint-based optimiza-
tion, while Tight-Opt includes both optimizations. We vary the
heavy-hitter threshold from 2 x 10™% to 6 x 10~ and use the
CAIDA 2015 and CAIDA 2018 traces for testing.

Fig. 19 shows that Tight-Opt consistently achieves higher
detection accuracy compared to the original Tight-Sketch. For
example, when the threshold is set to 3 x 10~%, Tight-Opt
achieves F1 scores that are 9.58% and 6.34% higher than Tight-
Sketch on the CAIDA 2015 and 2018 traces, respectively. We
also observe that both optimization strategies contribute to this
improvement. Specifically, with a threshold of 2 x 10~ on
the CAIDA 2015 trace, the fingerprint compression increases
the F1 score by 14.34%, while the additional bucket mech-
anism further improves it by 1.93%. These results highlight
the effectiveness of the optimization strategies incorporated in
Tight-Opt.

However, the performance increase in the update process
of Tight-Opt comes at the cost of reduced update speed. As
shown in Fig. 20, we compare the update speeds of Tight-Opt,
Tight-Opt-1, and the original Tight-Sketch. The results indicate
that Tight-Sketch achieves faster update speeds than Tight-Opt.
For example, on the CAIDA 2015 trace with a threshold of
2 x 1074, Tight-Opt is around 6% slower than Tight-Sketch.
Therefore, for scenarios where accuracy is prioritized over
speed, Tight-Opt is a more suitable choice.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

3858
1.0 [@] I‘nghx . [] Tlg'hl—optl‘;‘ Tlgh\—ppt 1.0 [] :nghx . [] Tlg'hl—optl .“‘ TIgM—IOp(
00 0 09
o o
b & 0.8
o 0.8 o 07
07 4 5 6 06 s
Threshold (*107%) Threshold (*107%)
(a) CAIDA 2015. (b) CAIDA 2018.
Fig. 19. Comparison of the detection accuracy under different thresholds

(memory size: 16KB).

Tight
T

Tight-Opt1 () Tight-Opt |
T i T

H
&

VaVaYa
-
&

VAVAYAYA

SN

<]

v
%

(7

PAAAAAAA

Update throughput
o S

Update throughput
S

=)

4 5
Threshold (107%)
(b) CAIDA 2018.

4 5
Threshold (1074
(a) CAIDA 2015.

Fig. 20. Comparison of the update speed under different thresholds (mem-
ory size: 16KB).

Deep Dive. We further compare the detection accuracy and
update speed of Tight-Sketch and Tight-Opt with several re-
cent approaches for heavy hitter detection, including Heavy-
Guardian, WavingSketch, and DHS. The evaluation is con-
ducted using the CAIDA 2015 trace, with a memory size of
16KB and a heavy-hitter threshold set to 2 x 10~%. For Heavy-
Guardian [39], WavingSketch [21], and DHS [40], we use the
code provided in [40].

Table VII presents the F1 score and update throughput of
various approaches. As shown, Tight-Opt achieves the highest
F1 score, attributed to its fingerprint-based key compression
and the strategy that gives items an additional chance to re-
main in the buckets. Regarding update throughput, the original
Tight-Sketch is the fastest, benefiting from its elegant update
strategy. The reduction in throughput for Tight-Opt is due to
the added overhead of fingerprint computation and selecting an
extra bucket upon successful eviction.

Additionally, we compare the performance of Tight-Opt with
P-Sketch [45] for persistent flow detection. The number of rows
in P-Sketch is set to 4. We divide the CAIDA 2015 trace into
1600 time windows and use a persistence threshold of 0.5.
Under a memory constraint of 16KB, Tight-Opt achieves an
F1 score of 0.937, compared to 0.856 for P-Sketch, resulting
in a 9.46% improvement in accuracy. Overall, these results
demonstrate the effectiveness of our methods.

L. Practical Deployment of Tight-Sketch

We implement a 2-row Tight-Sketch in Verilog and target
the UltraScale+ XCU200-L2FSGD2104E FPGA. Due to the
parallelism of FPGAs, we process incoming items hashed into
two rows concurrently during deployment.

Specifically, Tight-Sketch’s FPGA implementation employs
a fully pipelined update process divided into four stages. In

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 11, NOVEMBER 2025

TABLE VII
COMPARISON OF F1 SCORE AND SPEED (IN MOPS) ACROSS DIFFERENT
SCHEMES FOR HEAVY HITTER DETECTION

Scheme Tight-Sketch Tight-Opt DHS Waving HeavyGuardian
F1 score 0.725 0.845 0.746 0.435 0.446
Speed 18.716 17.825 4987 5478 5.343
TABLE VIII
FPGA RESOURCE USAGE

Component Used Quantity Utilization

Look-Up Tables 2815 0.24%

LUTRAM 33 0.01%

Flip-Flops 1719 0.07%

Block RAM 384 17.78%

1/0 Pins 67 9.91%

stage one, two independent CRC32 hash modules compute two
distinct 32-bit hash values in parallel from the incoming item
key to generate bucket addresses. In stage two, these addresses
are applied to dual-port 128-bit BRAMs that store each bucket’s
content, which includes the key, a 32-bit value counter, and a 32-
bit arrival continuity metric; note that each BRAM read requires
two clock cycles. In stage three, the update logic evaluates each
accessed bucket. If the bucket is empty or already contains the
same key, both the counter and the arrival continuity are directly
incremented. Otherwise, similar to [33], a 32-bit random num-
ber is generated and, using a multiplication-based probability
check (that is, if the product of the random number and the
counter, or the counter multiplied by the arrival continuity when
the counter exceeds the threshold M, is less than 232), the
counter is decremented. If the counter falls to zero, the bucket
is updated with the new key and the counters are reset to one.
Finally, in stage four, each row independently writes back the
updated bucket content to its memory. Overall, this design is
implemented in around 400 lines of Verilog code.

Table VIII lists the resource utilization of Tight-Sketch on the
FPGA platform. We observe that Tight-Sketch consumes only
a small fraction of the available Look-Up Tables (0.24%), LU-
TRAM (0.01%), and Flip-Flops (0.07%). Although 384 Block
RAM blocks are used, corresponding to 17.78% utilization,
and 67 /O pins account for 9.91% utilization, these resources
remain well within the device’s limits. This low overhead leaves
sufficient resources available for other tasks and confirms that
Tight-Sketch is well-suited for high-speed, real-time item pro-
cessing in practice.

VI. CONCLUSION

This paper presents Tight-Sketch, a new sketch designed for
heavy-oriented tasks, offering high detection accuracy under
limited memory and fast update speed. It uses a probabilistic de-
cay strategy to selectively replace items in buckets based on bi-
dimensional features. We apply Tight-Sketch to various heavy-
based detection tasks and validate its effectiveness through
extensive experiments on diverse datasets. Results show that
Tight-Sketch consistently outperforms existing methods. We
further improve its accuracy with two optimizations and boost
update speed using SIMD instructions, making it well-suited for

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

LI AND PATRAS: EFFICIENT SKETCHING FOR HEAVY ITEM-ORIENTED DATA STREAM MINING

high-speed data streams. Moreover, our FPGA implementation
confirms its low resource overhead in practice.

(1]

[2

[t

(3]

[4

=

[5

[t}

[6]

[7]
[8

—

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

W. Li and P. Patras, “Tight-sketch: A high-performance sketch for heavy
item-oriented data stream mining with limited memory size,” in Proc.
ACM CIKM, 2023, pp. 1328-1337.

N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” in Proc. ACM SIGMOD, 2016, pp. 1481-1496.
B. Ball, M. Flood, H. V. Jagadish, J. Langsam, L. Raschid, and P.
Wiriyathammabhum, “A flexible and extensible contract aggregation
framework (CAF) for financial data stream analytics,” in Proc. ACM
DSMM, 2014, pp. 1-6.

H. Huang, T. Gong, N. Ye, R. Wang, and Y. Dou, “Private and secured
medical data transmission and analysis for wireless sensing healthcare
system,” IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1227-1237, Jun.
2017.

C. Zhang, K. Ota, J. Jia, and M. Dong, “Breaking the blockage for big
data transmission: Gigabit road communication in autonomous vehicles,”
IEEE Commun. Mag., vol. 56, no. 6, pp. 152—157, Jun. 2018.

J. J. Astrain, F. Falcone, A. J. Lopez-Martin, P. Sanchis, J. Villadangos,
and I. R. Matias, “Monitoring of electric buses within an urban smart
city environment,” I[EEE Sensors J., vol. 22, no. 12, pp. 11364-11372,
Jun. 2022.

M. B. Schrettenbrunnner, “Artificial-intelligence-driven management,”
IEEE Eng. Manag. Rev., vol. 48, no. 2, pp. 15-19, 2nd Quart. 2020.
Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in Proc. IEEE 22nd Int. Conf. Netw.
Protocols, 2014, pp. 131-142.

S. Giindiiz and M. T. Ozsu, “A web page prediction model based on
click-stream tree representation of user behavior,” in Proc. ACM KDD,
2003, pp. 535-540.

L. Tang, Q. Huang, and P. P. C. Lee, “MV-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
Proc. IEEE Conf. Comput. Commun., 2019, pp. 2026-2034.

S. Wang et al., “Locally private set-valued data analyses: Distribution
and heavy hitters estimation,” IEEE Trans. Mobile Comput., vol. 23,
no. 8, pp. 8050-8065, Aug. 2024.

J. Gong et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows.” in Proc. USENIX ATC, 2018, pp. 909-921.

S. Sheng, Q. Huang, S. Wang, and Y. Bao, “PR-sketch: Monitoring per-
key aggregation of streaming data with nearly full accuracy,” in Proc.
VLDB Endowment, 2021, pp. 1783-1796.

C. H. Song, Pravein Govindan Kannan, B. K. H. Low, and M. C. Chan,
“FCM-sketch: Generic network measurements with data plane support,”
in Proc. 16th Int. Conf. Emerg. Netw. EXperiments Technol., 2020, pp.
78-92.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. ACM IMC,
2003, pp. 234-247.

Y. Zhang et al., “On-off sketch: A fast and accurate sketch on persis-
tence,” in Proc. VLDB Endowment, 2020, pp. 128-140.

B. Lahiri, J. Chandrashekar, and S. Tirthapura, “Space-efficient tracking
of persistent items in a massive data stream,” in Proc. ACM DEBS, 2011,
pp. 255-266.

H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” in Proc. VLDB Endowment, 2016, pp. 289-300.

T. Yang, H. Zhang, D. Yang, Y. Huang, and X. Li, “Finding significant
items in data streams,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
2019, pp. 1394-1405.

Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “BurstSketch:
Finding bursts in data streams,” in Proc. ACM SIGMOD, 2021, pp.
2375-2383.

J. Li et al., “WavingSketch: An unbiased and generic sketch for finding
top-k items in data streams,” in Proc. ACM KDD, 2020, pp. 1574-1584.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

3859

T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. ACM SIGCOMM, 2018, pp. 561-575.

J. Zhu, Z. Gao, P. Reviriego, S. Liu, and F. Lombardi, “Dependability
of the k minimum values sketch: Protection and comparative analysis,”
IEEE Trans. Comput., vol. 74, no. 1, pp. 210-221, Jan. 2025.

M. Charikar, K. Chen, and M. F. Colton, “Finding frequent items in
data streams,” in Proc. ICALP, New York, NY, USA: Springer-Verlag,
2002.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55,
no. 1, pp. 58-75, 2005.

W. Li and P. Patras, “Stable-sketch: A versatile sketch for accurate, fast,
web-scale data stream processing,” in Proc. ACM Web Conf., 2024, pp.
4227-4238.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM SIGCOMM, 2010, pp. 267—
280.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92-99, 2010.

A. Metwally and D. A. E. Abbadi, Agrawal “Efficient computation of
frequent and top-k elements in data streams,” in Proc. ICDT, New York,
NY, USA: Springer-Verlag, 2005, pp. 398-412.

D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in Proc. ACM SIGMOD, 2018, pp. 1129-1140.

G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proc. VLDB Endowment, 2002, pp. 346-357.

R. B. Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner, “Ran-
domized admission policy for efficient top-k, frequency, and volume
estimation,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1432-1445,
Aug. 2019.

Y. Zhang et al., “CocoSketch: High-performance sketch-based mea-
surement over arbitrary partial key query,” in Proc. ACM SIGCOMM,
2021, pp. 207-222.

L. Chen, R. C.-W. Phan, Z. Chen, and D. Huang, “Persistent items
tracking in large data streams based on adaptive sampling,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 1948-1957.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

J. Huang et al., “Chainsketch: An efficient and accurate sketch for heavy
flow detection,” IEEE/ACM Trans. Netw., vol. 31, no. 2, pp. 738-753,
Apr. 2023.

“The CAIDA anonymized internet traces.” CAIDA. Accessed: Feb. 6,
2024. [Online]. Available: http://www.caida.org/data/overview/

T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond sketch:
Accurate per-flow measurement for big streaming data,” /EEE Trans.
Farallel Distrib. Syst., vol. 30, no. 12, pp. 2650-2662, Dec. 2019.

T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “HeavyGuardian:
Separate and guard hot items in data streams,” in Proc. ACM KDD, 2018,
pp. 2584-2593.

B. Zhao, X. Li, B. Tian, Z. Mei, and W. Wu, “DHS: Adaptive memory
layout organization of sketch slots for fast and accurate data stream
processing,” in Proc. ACM KDD, 2021, pp. 2285-2293.

“Mawi working group traffic archive.” Mawi. Accessed: Feb. 6, 2024.
[Online]. Available: http://mawi.wide.ad.jp/mawi/

M. Singh, M. Singh, and S. Kaur. “10 days DNS network traffic from
April-May, 2016.” Mendeley Data. Accessed: Feb. 8, 2024. [Online].
Available: https://data.mendeley.com/datasets/zh3wnddzxy/2

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM, 2016, pp. 101-114.

R. B. Basat et al., “Designing heavy-hitter detection algorithms for
programmable switches,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp.
1172-1185, Jun. 2020.

W. Li and P. Patras, “P-sketch: A fast and accurate sketch for persistent
item lookup,” IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 987-1002,
Apr. 2023.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 17,2025 at 09:19:16 UTC from IEEE Xplore. Restrictions apply.

http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
https://data.mendeley.com/datasets/zh3wnddzxy/2

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

