
1

Adversarial Attacks Against Deep
Learning-based Network Intrusion Detection

Systems and Defense Mechanisms
Chaoyun Zhang, Xavier Costa-Pérez, Senior Member, IEEE, and Paul Patras, Senior Member, IEEE

Abstract—Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples.
Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious
traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high
importance, but requires to address daunting challenges. Here, we introduce TIKI-TAKA, a general framework for (i) assessing the
robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense
mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five
cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly
available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and
respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade
NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses,
we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We
demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and
attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and
makes the case for their adoption when designing robust and reliable deep anomaly detectors.

Index Terms—Adversarial Attacks, Network Intrusion Detection Systems, Deep Learning

F

1 INTRODUCTION

N ETWORK Intrusion Detection aims at identifying ma-
licious traffic flows, so as to protect computers, net-

works, servers, and data from attacks, unauthorized ac-
cess, modification, or destruction [2]. Given the unprece-
dented growth in the data traffic volume transiting both
wired and wireless infrastructure, Network Intrusion De-
tection (NID) is becoming increasingly important to en-
sure system/service availability and protect individuals’
safety and privacy online. As new cyberattacks proliferate,
traditional intrusion detection methodologies that rely on
pattern matching (e.g., IP address and port number) and
classification are losing effectiveness [3]. In this context,
machine learning-based solutions are gaining traction, as
they rely increasingly less often on deep packet inspection
(hence raising fewer privacy concerns) and may have better
generalization abilities.

Stimulated by recent success in areas such as image clas-
sification, the limited extent of feature engineering involved,
and the decreasing cost of parallel processing hardware,
deep learning – a subset of machine learning – is making its
way also in the networking domain [4]. This includes NID,
where solutions based on Deep Neural Networks (DNNs)
yield demonstrably superior detection accuracy (see, e.g.,

C. Zhang is with Tencent Lightspeed & Quantum Studios, China. X. Costa-
Pérez is jointly affiliated with NEC Labs Europe, Germany; i2CAT Founda-
tion, Spain; and ICREA, Spain. P. Patras is with The University of Edinburgh,
UK and with Net AI, UK. C. Zhang was with The University of Edinburgh
when this work was conducted.
A preliminary version of this paper appeared in the Proceedings of the
2020 ACM SIGSAC Conference on Cloud Computing Security Workshop
(CCSW’20) [1].

[5], [6]). However, due to their complex structures, DNNs
also suffer from limited interpretability, which inevitably
raises important questions: Is deep learning a truly reliable
option for NID? Is there any “Achilles’ heel” that can be exploited
to compromise the expected high detection accuracy of neural
network-based NID models? Answering these questions is
crucial to guaranteeing the reliability of Network Intrusion
Detection Systems (NIDS).

Unfortunately, DNNs have been proven vulnerable to
adversarial examples [7] or backdoor attacks [8] in several
applications [9], [10], whereby they can be fooled by subtle
perturbations introduced in the input [11], which interfere
with the correctness of the inferences made. Since such
adversarial manipulations are often extremely difficult to
detect, deep learning-based NIDS are also at risk. Attackers,
potentially unaware of the properties of an NIDS (i.e., black-
box system), could generate adversarial samples by repeat-
edly changing small subsets of the traffic features, and make
‘queries’ to the NIDS. After each query, the attacker receives
some feedback (e.g., an acknowledgment or lack of any
response), which indicates the success or failure of the attack
attempt.1 Based on this feedback, the attacker can adjust the
perturbations on selected features (e.g., intervals between
consecutive packets) of the traffic, or introduce new ones,
without changing its essence, until succeeding in bypass-
ing the NIDS [12], [13]. By this approach, malicious flows

1. For example, in the LOIC-HTTP DDoS attack HTTTP GET requests
are sent towards a target, which would send back an HTTP response
with a status code.

2

Ensemble Adversarial Training (Sec. 7.2) Adversarial Query Detection (Sec. 7.3)

Model Voting

Ensembling (Sec. 7.1)

Defending Against Adversarial Attacks (Sec. 7)

Adversarial Attacks (Sec. 6)

Tiki-Taka

MLP CNN C-LSTM

Voting

Benign Anomaly

Attack Retraining

White-box

Attackers

Adversarial

Samples

Raw

Training Set

Augmentation

Similarity

Encoder

..
.

Traffic Flows

Bypass

Queries

NES Boundary Pointwise HopSkipJumpAttack Opt-Attack

Training Intrusion Detectors (Sec. 5)

Fig. 1. The TIKI-TAKA framework for crafting and defending against ad-
versarial attacks towards Network Intrusion Detection Systems (NIDS).

could then disguise into benign traffic and compromise
their targets [14], while remaining undetected even by NIDS
thought to be highly accurate. Cyberwarfare is explod-
ing [15] and such adversarial strategies offer cost-effective
means to jeopardize healthcare systems, electronic voting,
banking, industrial automation, and countless more.

In this paper, we tackle the severe intrusion detection
issues faced by classifiers under adversarial attacks. We
first scrutinize the robustness of state-of-the-art deep learn-
ing NID models against different adversarial mechanisms,
considering attacks in practical decision-based settings (i.e.,
attackers can only infer if the traffic generated was classified
as benign or malicious, without knowledge about the exact
class to which the traffic was mapped). We test the effective-
ness and efficiency of each attack in two detection scenarios:
one-to-all and one-to-one, i.e., aiming to discriminate mali-
cious vs. benign traffic, and respectively to identify precise
types of attacks. We then propose three solutions to defend
against this new class of threats, which effectively reduce
the success rate of each attack to a large extent. This enables
more robust and reliable NID. In a nutshell we make the
following key contributions:

[C1] We implement three types of DNN architectures based
on state-of-the-art NID models, i.e., Multilayer Per-
ceptron (MLP), Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM), and perform
NID on the realistic cyber defense dataset CSE-CIC-
IDS2018 [16]. The NID models implemented achieve
over 98.7% detection accuracy based on a limited set of
features, which matches the performance of previously
reported NIDS implementations (details in Sec. 5).

[C2] To demonstrate the NIDS considered can be evaded,
we employ five state-of-the-art attack strategies to
generate adversarial samples (i.e., NES, BOUND-
ARY, HOPSKIPJUMPATTACK, POINTWISE, and OPT-
ATTACK), bounding traffic feature manipulations to re-
alistic domain constraints (i.e., leaving unchanged those
features that may alter flow semantics). We conduct a

comprehensive evaluation on the effectiveness of each
adversarial attack and provide an in-depth analysis of
their characteristics (see Sec. 6).

[C3] We propose three defense mechanisms to strengthen
deep learning-based NIDS against adversarial attacks,
namely: model voting ensembling, ensembling ad-
versarial training, and query detection. Each defense
method can either operate individually or jointly with
the others. Experiments show these methods drastically
reduce the attack success rates, significantly improving
the robustness of the NIDS considered as we bring de-
tection rates close to 100%. Furthermore, the proposed
methodology generalizes well to other environments,
as our results of testing with a previously unseen
dataset reveal (Sec. 7),

We name our general attack–defense framework TIKI-
TAKA2 and illustrate the workflow of our methodology in
Fig. 1. To the best of our knowledge, we are the first to
introduce defense mechanisms against adversarial attacks
targeting NIDS.

2 RELATED WORK

DNNs are increasingly used for NID purposes, as they help
minimize feature engineering efforts and operate with high
detection accuracy [2]. However, recent research suggests
that there exist loopholes that can degrade the performance
of neural NIDS, as perturbation added to their input can
trigger traffic misclassification [4], [17]. Thus, defending
deep learning-based approaches from adversarial samples
becomes a crucial issue for network security.

2.1 Deep Learning-based NID

Niyaz et al. employ sparse autoencoders for self-taught
learning and extract important features from traffic flows
[5]. They conduct NID on the NSL-KDD dataset [18] and
achieve 98.84% F1 scores. Faker and Dogdu design an MLP
to discriminate malicious traffic [19] in the CIC-IDS2017
dataset [16]. Although the model structure is simple, the
MLP achieves significantly higher detection rates than Ran-
dom Forest (RF), Gradient Boosting Tree (GPT), and Support
Vector Machine (SVM) structures. Similar conclusions have
been reached in [6], where Vinayakumar et al. compare
the MLP with a large set of traditional machine learning
approaches to NID, showing that deep learning yields better
performance.

CNN-based approaches have been employed for NID as
well [20]. Zhang et al. design a two-branch CNN and employ
feature fusion, to resolve the class imbalance problem of the
dataset used [21]. Their proposal detects a minor class of
anomalies with higher accuracy, while being more efficient
in terms of execution time. Recurrent Neural Networks
(RNNs) are popular candidates for extracting temporal
features of traffic flows [22]. Zhang et al. perform NID
on raw packet-level traffic [23]. They combine CNNs and

2. TIKI-TAKA is a football tactic that encourages short and fast ball
passing, and tackling on the spot when losing ball possession. We
use this to metaphorize the frequent queries passed to an NIDS in
the attack process, with the detector subsequently regaining control
through defenses.

3

LSTMs to extract important spatial and temporal features,
achieving higher detection rates than when using each of
these components individually.

In our study, we select MLP, CNN, and LSTM as rep-
resentative models to perform NID, then test them against
adversarial attacks, and subsequently augment these mod-
els with a set of defense mechanisms that we propose for
enhancing their robustness.

2.2 Attacking Deep Learning-based NIDS
The majority of existing methods that employ adversarial
samples to compromise classifiers target image applications
(e.g., [24], [25], [26]). Research on evading deep learning-
based NIDS is scarce. Wang et al. employ four sets of white-
box attack algorithms designed for image classification, to
bypass MLP-based intrusion detectors trained on the NSL-
KDD dataset [27]. Their experiments suggest that these
attack algorithms are transferable to the NID domain and
the MLP detectors are vulnerable to adversarial samples.
However, attackers may not have access to the neural model
underpinning the targeted NIDS, which make such settings
more useful to NIDS designers to assess the robustness of
their systems [14].

Yang et al. generate adversarial samples in black-box
settings [28] using three types of approaches, namely sur-
rogate models [29], Zeroth Order Optimization (ZOO) [30],
and Generative Adversarial Networks (GANs) [31]. These
methods can reduce the performance of MLP-based clas-
sifiers, thus becoming a threat to NIDS. Kuppa et al. con-
sider a more realistic situation, performing black-box attacks
against different deep learning-based detectors in decision-
based and query-limited settings [14]. By learning and ap-
proximating the distribution of benign/anomalous samples,
these methods can evade NIDS with high success rate.

Teuffenbach et al. extend existing adversarial example
crafting algorithms by accounting for domain-specific con-
straints and demonstrate effectiveness in subverting DL-
based NIDS [32]. Piplai et al. introduce a Generative Ad-
versarial Network (GAN) based solution to train a traffic
classifier and then compromise the trained model with
adversarial attacks [33]. Five adversarial attack types are
staged against deep learning models in [34] and their ro-
bustness is studied following adversarial training, which is
one defense approach further considered in [35] as well as
in this work.

2.3 Defending from Adversarial Samples
There exist a range of strategies for defending deep learning
models from adversarial examples. Commonly used meth-
ods include Network Distillation [36], Adversarial Train-
ing [37], Adversarial Detecting [38], Input Reconstruction
[39], Classifier Robustifying [40], Network Verification [41],
and an ensemble of them [11], [42], which work either
reactively or proactively. Network distillation methods em-
ploy a student neural network to learn knowledge from
a more complex teacher network. With this approach, the
student network generalizes better and becomes more ro-
bust to adversarial samples. Adversarial training retrains
the neural networks by augmenting the original training set
with adversarial samples, such that they can better defend

against those inputs with subtle feature perturbations. Input
reconstruction reduces the effectiveness of the perturbations
by recovering the original input. Classifier robustifying
employs various approaches (e.g., model ensembling) to
improve the robustness of the original classifier. Network
verification uses an additional classifier to identify adver-
sarial samples.

While such approaches can be effective in the computer
vision and natural language processing domains, (i) work
by Carlini et al. demonstrates defense mechanisms against
adversarial examples in imaging can be defeated by con-
structing new loss functions [43], while (ii) none of these are
aimed at defending against adversarial samples in NIDS,
which is the problem we tackle in this paper.

3 THREAT MODEL

We focus on scenarios where attackers generate adversarial
samples by adding small perturbations to the input given to
NIDS, thereby aiming to cause misclassification and evade
detection of their malicious traffic. As in [44], we denote by
x the input to a classifier (i.e., features extracted from flows),
an adversarial sample as xadv = x + σx, and the targeted
class as yadv. The objective of the adversarial attacks can be
formulated as finding xadv such that ||xadv − x||∞ < ε and
xadv is classified as yadv. Here, σx is the perturbation added
to the input and ε limits the perturbation scale.

3.1 Adversarial Settings

Typical attacks against machine learning models can be
categorized into three classes: (i) white-box attacks, (ii) grey-
box attacks, and (iii) black-box attacks. White-box attacks
assume the malicious actors have access to both the target
model’s structure and training data, whereas grey-box at-
tacks involve prior knowledge of the training data and only
a rough understanding of the target model’s structure. Such
hypotheses apply in cases where system designers seek to
improve the robustness of their NIDS, but less commonly
to scenarios with external adversaries. At best, malicious
actors could conduct white-box attacks against own models
and subsequently seek to transfer these attacks onto victim
NIDS. More often, potential hackers are forced to treat a
NIDS as a black-box, since the details of a victim system’s
inner workings remain hidden and the only way in which
the NIDS behavior can be learned is through a sequence of
queries and the feedback received. This is also the primary
practical threat model that we consider in this work, while
the defense mechanisms we propose can also fend off ad-
versarial samples adapted from white-box methods, as we
reveal.

In general, an attacker may send a traffic flow towards
the target network, which will be first examined by a NID
model. This is known as a query process. Subsequently,
the attacker will receive implicit/explicit feedback from the
model, e.g., an ACK packet, which reflects whether the traf-
fic flow was classified as anomalous. Based on the feedback,
the attacker can adjust and apply subtle perturbations to
the malicious traffic flows, thereby producing adversarial
samples that eventually may compromise the effectiveness
of the NIDS, which will end up classifying malicious traffic

4

Neural-network based

NID (black-box)

Attacker

Validation tests

Adversarial

traffic flow

Victim network

ACK

(feedback)

Query

Perturbation

Bypass

Block

Fig. 2. An illustration of the attack process against machine learning-
based NID models.

as benign. On the other hand, the attacker may not have
confidence about the exact decision class decided by the
NIDS, but whether the traffic was deemed malicious or
benign (decision-based attacks). We illustrate this attack
process against NID models in Fig. 2.

3.2 Domain Constraints
Unlike adversarial attacks against image classifiers, adver-
sarial samples against NIDS must respect certain domain
constrains [14], such that the functionality and intactness
of the samples is preserved when introducing perturba-
tions σx. This means that (i) only a subset of features are
amendable; and (ii) the features of adversarial samples do
not violate the properties inherent to the original samples.
To meet these requirements, here we confine consideration
to 22 time-based features, to which we add perturbations,
as also suggested in [14]. These include (a) Forward Inter
Arrival Time – the time between two packets sent in the
forward direction (mean, min, max, std); (b) Backward Inter
Arrival Time – the time between two packets sent in reverse
direction (mean, min, max, std); (c) Active-Idle Time – the
amount of time a flow was idle before becoming active, and
vice-versa (mean, min, max, std), (d) Average number of
bytes and packets sent in forward and backward directions
in the initial window or/and sub-flows. By this approach,
traffic flows in the original dataset do not change their
semantics and thus their labels remain unchanged. It is
conceivable that an attacker may also attempt to mimic the
time features of benign flows and conceal malicious content
within payloads (e.g., SQL injection, cross-site scripting,
etc.). In such cases, our TIKI-TAKA framework can also ac-
commodate payload-based features extracted, e.g., through
word embedding or Text-CNNs [45]. Features outside the

TABLE 1
Statistics of the CSE-CIC-IDS2018 dataset employed.

Flow Type No. Instances Ratio
Benign 14,097,779 83.6861%

Bot 286,191 1.6989%
DoS attack-SlowHTTPTest 139,890 0.8304%

DoS attack-Hulk 461,912 2.7420%
Brute Force-XSS 230 0.0014%

SQL Injection 87 0.0005%
Infiltration 161,934 0.9613%

DoS attack-GoldenEye 41,508 0.2464%
DoS attack-Slowloris 10,990 0.0652%

Brute Force-Web 611 0.0036%
FTP-Brute Force 193,360 1.1478%
SSH-Brute Force 187,589 1.1136%

DDoS attack-LOIC-UDP 1,730 0.0103%
DDoS attack-HOIC 686,012 4.0723%

DDoS attack-LOIC-HTTP 576,191 3.4203%
All of the above attacks 2,748,235 16.3139%

Total 16,846,014 100%

subset that may change flow semantics remain unchanged
during the attack, which is inline with recent research
confirming that adversarial samples can be constructed
effectively by perturbing only a small subset of the input
features [46].

In addition, we expect that (i) the Mean Absolute Per-
centage Error (MAPE) for each feature k does not exceed
20%, i.e., 100 · |(x(k)− x(k)adv)/x

(k)| ≤ 20%; (ii) the perturbed
features preserve the mean property (e.g., the mean forward
inter arrival time) plus/minus std features do not exceed
their corresponding max and min features; (iii) the sign
of each perturbed sample remains the same as that of the
original; and (iv) if the std feature is zero, the corresponding
mean, max, min and std features remain unchanged in the
adversarial sample. Samples that violate these constrains are
to be regarded as unsuccessful trials, since they alter the
originally intended functionality of the flows. In crafting
adversarial attacks for our study, we will also perform
validation tests based on these constraints.

4 DATASET

We conduct all experiments (i.e., NID, black-box adversar-
ial attacks, and attacks against NIDS augmented with the
proposed defenses) using the publicly available CSE-CIC-
IDS2018 dataset [16]. This encompasses 14 types of network
intrusion traffic flows along with benign traffic. The attacks
can be categorized into seven classes, namely Brute Force,
Heartbleed, Botnet, Denial of Service (DoS), Distributed
Denial of Service (DDoS), Web attacks, and infiltration.
Table 1 summarizes the prevalence of each type of traffic.
The infrastructure employed includes 50 machines, which
attempt to intrude a victim network consisting of 420 end
hosts and 30 servers.

A total of 80 features of the traffic flows are extracted to
perform intrusion detection and we filter 65 of them for the
purpose of our work. The features selected can be grouped
into 8 classes, specifically (a) Forward Inter Arrival Time –
the time between two packets sent in the forward direction
(mean, min, max, std); (b) Backward Inter Arrival Time
– the time between two packets sent in reverse direction
(mean, min, max, std); (c) Flow Inter Arrival Time – the time
between two packets sent in either direction (mean, min,
max, std); (d) Active-Idle Time – the amount of time a flow
was idle before becoming active (mean, min, max, std) and
the amount of time a flow was active before becoming idle
(mean, min, max, std); (e) Flags based features – the number
of times the URG, PSH flags are set, both in the forward
and backward direction; (f) Flow characteristics – bytes per
second, packets per second, flow length (mean, min, max,
std) and ratio between number of bytes sent downlink and
uplink; (g) Packet count with flags FIN, SYN, RST, PUSH,
ACK, URG, CWE and ECE; (h) Average number of bytes and
packets sent in forward/backward directions in the initial
window, bulk rate, and sub flows count. Our framework is
readily extensible to other types of features, e.g., extracted
from payloads [45].

We train all deep learning models, implement and de-
fend against the adversarial attacks using the selected fea-
tures, instead of parsing raw traffic packets flows, which
reduces privacy concerns.

5

5 TRAINING INTRUSION DETECTORS

Training accurate deep network intrusion detectors is the
initial important step of our study, as TIKI-TAKA builds
on the pre-trained NID models. To this end, we employ
three well-known deep learning architectures, namely Mul-
tilayer Perceptron (MLP) [19], Convolutional Neural Net-
work (CNN) [21], and CNN with Long Short-Term Memory
(LSTM) layers, i.e., C-LSTM [23]. These models are fre-
quently used for NID purposes and have achieved notable
performance. We illustrate the model architectures in Fig. 3.

The MLP is the most simple deep learning architecture,
which employs multiple stacks of fully-connected layers for
features extraction. It is particularly suitable for handling
traffic flows that have mixture type features and ranges.
In our study, we construct an MLP with 3 hidden layers.
Each layer has 200 units, except for the last hidden layer,
which has 400 units. CNNs have good spatial perception
abilities and have demonstrated remarkable precision in
NID tasks [21]. In this work, we design a CNN with 10 one-
dimensional CNN layers, each equipped with 108 filters,
with filter size 5. Lastly, we replicate the C-LSTM employed
in [23], with our C-LSTM operating on the features that
characterize the traffic, instead of operating on raw flows.
The C-LSTM combines CNN and LSTM structures to extract
spatial and temporal features separately. Data will be first
processed by a CNN with 5 hidden layers, then passed to
a 2-layer LSTM for final predictions. Each LSTM layer has
160 units. We perform NID, black-box adversarial attacks,
and then defend against them based on these models, as we
detail next.

We consider NID in two different scenarios, namely
(i) one-to-all detection and (ii) one-to-one detection. The
one-to-all scenario groups all types of attacks into a single
‘anomaly’ class, which leads to a supervised binary classi-
fication problem. In contrast, one-to-one detectors separate
each network attack (14 in total) into individual classes, and
perform multi-class classification. In our study, the same
neural network architectures are employed for both scenar-
ios, except for changes in the final layers, as their number
directly depends on the number of classes considered for
identification. We train and validate all models using 80%
of the dataset and test on 20% of it, as customary. All
models are trained via minimizing the cross-entropy loss
function through the Adam optimizer [47]. Super-sampling
is employed to handle class imbalance between benign and
malicious traffic, inherent to the dataset. In particular, we
randomly choose samples from the minority class (anoma-

Input

layer

Dense

layers

Output

layer

...

Dense

layers

Output

layer

1D CNN

layers

Output

layer

1D CNN

layers

LSTM

layers

Dense

layers

MLP CNN C-LSTM

Fig. 3. Architectures of the deep learning-based Network Intrusion De-
tection (NID) models used in this study.

lous), which we duplicate in order to ensure the numbers
of benign and anomalous samples are equalized prior to
training [48].

All models are trained and evaluated on a parallel
computing cluster equipped with one or multiple Nvidia
TITAN X, Tesla M40 or/and Tesla P100 GPUs. The neural
models are implemented in Python using the TensorFlow
[49] and TensorLayer [50] packages.

5.1 One-to-all NID Performance

We quantify the performance of the NIDS using four met-
rics, namely accuracy, precision, recall, and F1 score, as
shown in Table 2. These metrics are frequently employed
for evaluating binary classifiers.

TABLE 2
The detection performance of MLP, CNN, and C-LSTM in the one-to-all

scenario.
Accuracy Precision Recall F1 score

MLP 0.987 0.968 0.954 0.961
CNN 0.987 0.968 0.953 0.960

C-LSTM 0.987 0.967 0.952 0.960

Observe that all models achieve high detection perfor-
mance, as all F1 scores are above 0.960. In addition, the
three models considered perform similarly, since the differ-
ence between the F1 scores attained by each never exceeds
0.01. This matches the performance of state-of-the-art deep
learning-based NID solutions, thus the models we use can
be considered to be ‘reliable’.

5.2 One-to-one NID Performance

One-to-one NIDS aim at classifying each traffic flow into 14
types of anomalies and benign. We employ the same neural
networks and this time resort to normalized confusion ma-
trices to assess their performance, as shown in Fig. 4. The
diagonal elements represent ratios of points for which the
predicted label is equal to the true label, while off-diagonal
elements indicate misclassification ratios [51]. Therefore, the
elements of each row sum to 1. The higher the diagonal
values in a confusion matrix, the higher the performance,
indicating many correct predictions.

Observe that all NID models achieve high detection
accuracy for most types of anomalies, as diagonal values
are close to 1. However, taking a closer look at the Brute
Force-XSS, SQL Injection, Infiltration, and Brute Force-Web
attacks, it appears the NID models tend to misclassify
them as ‘benign’. In addition, all DNNs face difficulties
in dealing with DoS attack-SlowHTTPTest and FTP-Brute
Force, as they mix them roughly 50/50. Further, the C-
LSTM misclassifies almost all DDoS attack-HOIC traffic as
DDoS attack-LOIC-HTTP. This is perhaps less critical, since
both attacks belong to DDoS category. Overall, the MLP,
CNN, and C-LSTM attain 98.4%, 98.3%, and respectively
98.3% classification accuracy, which matches fairly closely
the performance observed in the one-to-all scenario.

In what follows, we demonstrate that although the NID
solutions considered seem reliable in terms of detection
accuracy, they can be easily compromised through a se-

6

0.0

0.2

0.4

0.6

0.8

1.0

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

Be
nig

n
Bo

t

Do
S a

tta
ck

-S
low

HT
TP

Te
st

Do
S a

tta
ck

-H
ulk

Br
ut

e F
or

ce
-X

SS

SQ
L I

nje
cti

on

Inf
iltr

at
ion

Do
S a

tta
ck

-G
old

en
Ey

e

Do
S a

tta
ck

-S
low

lor
is

Br
ut

e F
or

ce
-W

eb

FT
P-B

ru
te

 Fo
rce

SS
H-

Br
ut

e F
or

ce

DD
oS

 at
ta

ck
-LO

IC
-U

DP

DD
oS

 at
ta

ck
-H

OI
C

DD
oS

 at
ta

ck
-LO

IC
-H

TT
P

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.010.99 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.46 0 0 0 0 0 0 0 0.54 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.470.12 0 0 0.41 0 0 0 0 0 0 0 0 0 0
0.58 0 0 0 0 0.29 0 0 0 0.08 0 0 0 0 0.04
0.97 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.21 0 0 0 0 0 0 0 0.79 0 0 0 0 0 0
0.510.05 0 0 0 0 0 0 0 0.43 0 0 0 0 0.01

0 0 0.09 0 0 0 0 0 0 0 0.91 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0.02
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

MLP

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.020.98 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.47 0 0 0 0 0 0 0 0.53 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.410.12 0 0 0.43 0 0 0 0 0 0 0 0 0 0.04
0.58 0 0 0 0 0.08 0 0 0 0.12 0 0 0 0 0.21
0.91 0 0 0 0 0 0.09 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.21 0 0 0 0 0 0 0 0.79 0 0 0 0 0 0
0.450.04 0 0 0.01 0 0 0 0 0.43 0 0 0 0 0.07

0 0 0.1 0 0 0 0 0 0 0 0.9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0.01 0 0 0 0 0 0 0 0 0 0 0 0.92 0 0.07
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CNN

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.050.95 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.47 0 0 0 0 0 0 0 0.53 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.490.12 0 0 0.39 0 0 0 0 0 0 0 0 0 0
0.88 0 0 0 0 0 0 0 0 0.08 0 0 0 0 0.04
0.97 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0

0 0 0 0.01 0 0 0 0.99 0 0 0 0 0 0 0
0.22 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0
0.520.05 0 0 0 0 0 0 0 0.42 0 0 0 0 0.01

0 0 0.1 0 0 0 0 0 0 0 0.9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99

C-LSTM

Fig. 4. Confusion matrices of the MLP, CNN, and C-LSTM models for the one-to-one NID.

quence of perturbations and queries,3 without requiring
knowledge about the underlying models.

6 ADVERSARIAL ATTACKS AGAINST NIDS
We consider five state-of-the-art black-box attack ap-
proaches, which we use to generate adversarial samples
and compromise the pretrained deep anomaly detectors dis-
cussed in Sec. 5. These include (i) Natural Evolution Strate-
gies (NES) [44], (ii) BOUNDARY Attack [52], (iii) POINTWISE
Attack [53], (iv) HOPSKIPJUMPATTACK [54], and (v) OPT-
ATTACK [55], all of which were originally designed to com-
promise image classifiers. We quantify their performance
in terms of different metrics and examine closely the role
of different features in the adversarial sample generation
process, as well as the decision mechanics of each model.

6.1 Black-box Adversarial Attack Methods

We first summarize the operation of each of the adversar-
ial attack techniques we use against NIDS. We note that
a plethora of adversarial attack techniques have emerged
recently, especially against classifiers in the computer vision
and natural language processing (NLP) domains [56], [57],
[58]. In our work, we select five representative techniques
that have demonstrated state-of-the art performance. Recall
that our focus is black-box attacks, which are most realistic
in real-world NID scenarios.

NES [44] are black-box gradient estimation methods for
machine learning models. Estimated gradients can be used
for projected gradient descent (as used in white-box attacks)
to construct adversarial examples. This approach does not
require a surrogate network, thus it is more query-efficient
and reliable when crafting adversarial examples. Notably,

3. Arguably previously unseen types of malicious traffic could go
undetected by neural models that exhibit remarkable performance, as
those consider herein. We note however that our focus is not to verify
the ability of such models to detect new types of threats, but rather to
show their susceptibility to manipulations of behaviors already learned,
and how this can be remedied.

NES work well in decision-based settings, which makes
them suitable for attacks against NID models.

BOUNDARY Attack [52] is a method that follows the de-
cision boundary between adversarial and non-adversarial
samples via rejection sampling. At each step, it employs
constrained i.i.d. samples following a Gaussian distribution,
starting from a large perturbation and successively reducing
this until successful. This attack is highly flexible and can
accommodate a set of adversarial criteria.

POINTWISE Attack [53] is a simple decision-based attack
method that greedily minimizes the L0-norm between raw
and adversarial samples. In image applications, it first intro-
duces salt-and-pepper noise until misclassification, and then
repeatedly iterates over each perturbed pixel, resetting it to
the initial value if the perturbed image remains adversarial.
We implement a similar approach to attack the NID mod-
els, but substitute the salt-and-pepper noise with additive
Gaussian noise, to better suit network traffic.

HOPSKIPJUMPATTACK [54] is a hyperparameter-free,
query-efficient attack method, which consists of three main
steps: (i) estimation of the gradient direction, (ii) step-
size search via geometric progression, and (iii) boundary
search via a binary search approach. It is applicable to
more complex settings, such as non-differentiable models
or discrete input transformations, and achieves competitive
performance against several defense mechanisms.

OPT-ATTACK [55] projects the decision-based attack into a
continuous optimization problem and solves it via random-
ized zeroth-order gradient update. In particular, a Random
Gradient-Free (RGF) method is employed to find appropri-
ate perturbations and converge to stationary points. Since
OPT-ATTACK does not rely on gradients, it can attack other
non-differentiable classifiers besides neural networks, e.g.,
Gradient Boosting Decision Trees.

We employ a modified version of the mean absolute
percentage error to quantify the deviation between each

7

TABLE 3
Statistics of the dataset used to generate adversarial samples.

Attack Type Number of
Instances Ratio [%]

Bot 5,217 10.434
DoS attack-SlowHTTPTest 5,217 10.434
DoS attack-Hulk 5,217 10.434
Brute Force-XSS 51 0.102
SQL Injection 24 0.048
Infiltration 5,217 10.434
DoS attack-GoldenEye 5,217 10.434
DoS attack-Slowloris 2,475 4.950
Brute Force-Web 117 0.234
FTP-Brute Force 5,217 10.434
SSH-Brute Force 5,217 10.434
DDoS attack-LOIC-UDP 383 0.766
DDoS attack-HOIC 5,217 10.434
DDoS attack-LOIC-HTTP 5,214 10.428
Total 50,000 100.000

unmodified sample x and its adversarial version xadv, i.e.,

MAPE(x, xadv) =
100%

N

N∑
k=1

∣∣∣∣∣x(k) − x
(k)
adv

x(k)

∣∣∣∣∣ , (1)

where N is the total number of perturbed features in x and
x(k), x(k)adv are the kth features of the original and adversarial
samples respectively. Smaller MAPE indicates higher simi-
larity between the raw input x and adversarial sample xadv.

We randomly select 50,000 malicious traffic flows from
the test set, to craft adversarial samples. We summarize the
statistics of these samples in Table 3.

We quantify the performance of each attack approach
using four performance metrics, namely Attack Success
Rate (ASR), average benign confidence, MAPE, and average
number of queries. The ASR is widely used to assess the
effectiveness of adversarial attacks against DNNs [24] and
is measured by the ratio between the number successful
adversarial samples and the total attack attempts (in our
case 50,000). An attack attempt is successful if and only if
the underlying algorithm converges, and the adversarial

0
20
40
60
80

AS
R

[%
]

35
.7

34
.1

35
.7

35
.6

27
.7

21
.9

20
.7

20
.1

20
.1

16
.135

.2

23
.6 35

.7

35
.0

6.3

30
.93

26
.13 30
.5

30
.23

16
.7

MLP
CNN

C-LSTM
Average

0
25
50
75

100

Co
nf

id
en

ce
 [%

]

79
.3

57
.7

57
.5

57
.5 72

.6

74
.5

62
.5

62
.5

62
.5 70
.7

70
.0

60
.6

57
.2

57
.3

92
.9

74
.6

60
.27

59
.07

59
.1 78

.73

0

2

4

6

M
AP

E
[%

]

0.4
4 1.4

8 1.9
4

1.9
1 2.7

2

0.3
6

4.1
8

4.3
2

4.1
5

3.0
8

0.5
2

3.8
8

3.3
9

3.1
7 3.8

6

0.4
4

3.1
8

3.2
2

3.0
8

3.2
2

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

1e2
1e3
1e4
1e5
1e6
1e7

Qu
er

ie
s

36
0

95
05 56

82
4

31
17

7 16
94

49

30
0

66
62 48

67
1

27
09

4

71
92

0

41
2

12
32

1

56
78

6

31
10

9

43
34

7

35
7

94
96 54

09
3

29
79

3

94
90

5

Fig. 5. ASRs, Confidence, MAPE, and number of queries of all attack
approaches against the 3 NID models considered, and their average
values in the one-to-all scenario.

samples meet the constraints discussed in Sec. 3.2. The
average benign confidence denotes the probability that the
model predicts an adversarial sample xadv as benign. In par-
ticular, the last layer of the classifiers comes with a softmax
function, whose output represents a probability distribution
over predicted output classes, which is our interest. Higher
confidence implies that the model is more confident about
the decision made over a sample. MAPE is defined in Eq. (1)
and is computed over 22 features that allow perturbations.
Recall that lower MAPE represent higher similarity between
the raw and adversarial samples. The number of queries
indicates how many attempts an attacker should perform
in order to generate a successful adversarial sample. This
can be used to measure the efficiency of an attack approach.
Higher number of queries might trigger the NIDS, making
the attack easier to be detected. Note that the MAPE, benign
confidence, and number of queries are averaged over the
successful attack attempts for each attack approach and
NID model. All attacks are conducted using the original
implementations and Python Foolbox [59].

6.2 Attack Performance in One-to-all Scenario
We show the performance of all attack approaches in the
one-to-all detection scenarios in Fig. 5. Observe that the
BOUNDARY, POINTWISE, and HOPSKIPJUMPATTACK obtain
similar performance in terms of success rates for all NID
models. Worryingly, these approaches can generate adver-
sarial samples with a 30% success rate on average, which
makes them a serious threat to deep NIDS. In particular, the
POINTWISE attack achieves the highest benign confidence,
lowest MAPE, and requires the fewest number of queries.
This implies that the POINTWISE attack is highly efficient in
generating adversarial samples, and more difficult to defend
against. Though less efficient and effective, the NES attack
generates adversarial samples with high benign confidence,
therefore it appears the best in evading the NID models.
On the other hand, the performance of the OPT-ATTACK
appears moderate, as it does not stand out in terms of any
metric. Turning attention to the horizon of NID models,
CNN appears to be the most robust model against black-box
attacks in the one-to-all scenario, as it exhibits the lowest
ASR (19.78%) among the three. In addition, attackers are
required to make larger changes to the raw samples, in
order to subvert the CNN, as the average MAPE appears
the highest compared to the MLP and C-LSTM. The benign
confidence and number of queries are however similar
between models.

We delve deeper into the attack performance, by show-
ing the ASR over each type of malicious traffic in Fig. 6.
Observe that it is almost impossible for adversarial samples
generated for the DoS attack-Hulk and DDoS attack-LOIC-
UDP to bypass the NIDs model, as their ASR is close to
0%. On the contrary, adversarial samples for Brute Force-
XSS, SQL Injection, Infiltration, Brute Force-Web, and DDoS
attack-HOIC appear more likely to evade the NID mod-
els. Notably, the robustness and vulnerability to a specific
type of attack may vary between models. For example, no
adversarial samples of the DoS attack-SlowHTTPTest can
bypass CNN, while its ASR with MLP is mostly over 90%.
This offers useful insights to network service providers to
defend against specific types of attacks.

8

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.2

77
.8

0.0

23
.5 41

.7 57
.5

0.0 1.3

49
.6 53
.5

0.0 0.0

73
.9

0.10.2 0.0 0.0

23
.5 50

.0 58
.0

0.0 1.4

50
.4

0.0 0.0 0.0

74
.4

0.50.4 0.0 0.0

23
.5 41

.7 57
.7

0.0 1.4

47
.9

0.0 0.0 0.0 0.0 0.2

NES
MLP
CNN
C-LSTM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

40
.2

99
.0

0.0

23
.5 45

.8 56
.0

1.1 2.1

47
.0 68

.1

0.0 0.3

68
.2

6.30.7 0.0 0.1

23
.5

62
.5

55
.6

10
.8

2.7

47
.9

0.0

48
.7

0.0

68
.2

12
.3

40
.9 53

.7

0.1

23
.5

58
.3

56
.1

2.8 8.6

52
.1

51
.6

46
.3

0.0

68
.2

10
.3

Boundary attack

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

40
.2

99
.0

0.0

23
.5 50

.0 56
.1

1.3 2.5

47
.0 68

.1

0.0 0.3

68
.2

6.30.7 0.0 0.0

19
.6

58
.3

55
.9

19
.9

2.7

52
.1

0.0

50
.1

0.0

68
.2

12
.5

41
.2 53

.2

0.1

23
.5

58
.3

56
.3

3.9 2.7

53
.0

51
.5

50
.1

0.0

68
.2

10
.2

Pointwise

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

40
.3

99
.0

0.0

23
.5 45

.8 56
.0

1.0 2.3

47
.0 68

.1

0.0 0.3

68
.6

6.30.7 0.0 0.1

23
.5

58
.3

55
.6

13
.2

2.7

48
.7

0.0

47
.0

0.0

68
.2

12
.4

41
.0 53

.8

0.2

23
.5 50

.0 56
.0

3.2

19
.4

50
.4

51
.7

46
.9

0.0

68
.2

10
.3

HopSkipJumpAttack

Bot

DoS attack-

SlowHTTPTest
DoS attack

-Hulk Brute Force

-XSS SQL Injection
Infiltra

tion

DoS attack-

GoldenEye
DoS attack-

Slowloris Brute Force

 -Web
FTP-Brute Force

SSH-Brute Force

DDoS attack

-LOIC-UDP
DDoS attack

-HOIC DDoS attack

-LOIC-HTTP

Attack Type

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

40
.1

91
.5

0.0

23
.5 50

.0 56
.0

0.7 1.9

47
.0 61

.3

0.0 0.3

68
.2

6.20.7 0.0 0.1

19
.6

58
.3

55
.6

12
.1

3.2

48
.7

0.0

46
.1

0.0

68
.2

12
.4

0.0

40
.3

0.0

23
.5 50

.0 55
.8

2.2 2.8

50
.4

48
.5

46
.8

0.0

19
.6

9.9

Opt-Attack

Fig. 6. ASRs over each type of malicious traffic against all NID models in the one-to-all scenario.

0
20
40
60
80

AS
R

[%
]

30
.6

30
.1

27
.2

21
.8

16
.334

.8

31
.6

29
.8

25
.3

19
.3

16
.5

13
.1

14
.2

10
.1 16
.227

.3

24
.9

23
.7

19
.1

17
.2

MLP
CNN

C-LSTM
Average

0
25
50
75

100

Co
nf

id
en

ce
 [%

]

82
.7

59
.5

60
.7

63
.9

93
.3

72
.9

53
.7

54
.0

55
.6

85
.4

75
.1

65
.6 72
.9 76
.8

75
.4

76
.9

59
.6

62
.5

65
.4 84

.7

0

2

4

6

M
AP

E
[%

]

0.3

2.8
9 3.5

6

3.7

2.9

0.2
9

2.4
8 3.5

2

2.9
2 4.3

5

0.1
7 1.2

6

1.1
3

0.8
8

2.8
4

0.2
6

2.2
1 2.7

3

2.5

3.3
6

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

1e2
1e3
1e4
1e5
1e6
1e7

Qu
er

ie
s

28
4

71
94 47

99
0

22
88

9

66
82

2

28
7

74
26 51

47
2

26
67

9

94
41

8

14
6

28
44 27

21
9

11
52

9 10
06

69

23
9

58
21 42

22
7

20
36

5

87
30

3

Fig. 7. ASRs, Confidence, MAPE, and number of queries of all attack ap-
proaches against the three NID models considered, and their averages,
in the one-to-one scenario.

6.3 Attack Performance in One-to-one Scenario

We illustrate the statistics of each attack against the different
NID models considered, in Fig. 7. Observe that, except
for the NES where the performance is similar among the
different NID models, the ASR varies among models for all
the other attack methods (unlike in the one-to-all scenario
discussed in the previous subsection). This is because the

models work with large number of classes, which makes it
difficult to craft adversarial samples to match the targeted
‘benign’ label. The POINTWISE method obtains the highest
ASR, lowest MAPE, and lower average number of queries.
This suggests that this approach is effective and efficient in
one-to-one settings. The C-LSTM appears to be the most
robust model against adversarial samples, as all attack
methods attain the lowest ASR values against this NID
model. Although achieving the highest benign confidence
with adversarial samples, NES obtain the lowest ASR on
average. In general, they also require more queries to craft
an adversarial sample.

In Fig. 8, we show the ASR for each type of malicious
traffic flow considered, in the same one-to-one scenario.
Analyzing these results jointly with Figure 4, observe that
anomalies with low detection rate (i.e., Brute Force-XSS,
SQL Injection, Infiltration, Brute Force-Web) are easier to be
disguised by attackers. This is because the models already
have vague decision boundaries for these flow types, thus
are easier to be gamed. Attackers obtain the lowest ASR
when crafting adversarial samples based on DoS attacks-
Hulk, -GoldenEye, -Slowloris, and DDoS attack-LOIC-UDP,
as the NID models exhibit high detection rates over these
anomalies. Overall, most of attacks achieve similar ASR
performance as they obtain in the one-to-all scenario.

6.4 Adversarial Samples Analysis
6.4.1 Cross-Transferability
We define the transfer ratio εm2

m1
= Km2

m1
/Km1

between mod-
els m1 and m2, to evaluate the transferability of adversarial

9

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

2.3 0.0 0.0

23
.5

54
.2 76

.8

0.1 3.4

52
.1

0.0 0.1 0.0

73
.1

0.11.9 0.0 0.0

25
.5

75
.0

68
.8

8.6 2.6

56
.4

0.0

26
.3

0.5

75
.7

0.55.4 0.0 0.2

25
.5

66
.7 76

.4

0.0 2.3

50
.4

0.0 0.0 0.3

69
.5

0.7

NES
MLP
CNN
C-LSTM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

28
.7

3.3 0.2

23
.5 50

.0 74
.3

10
.5

1.7

46
.2

0.9

45
.4

0.0

29
.8

13
.417
.7

48
.4

0.0

23
.5

62
.5 66
.6

13
.8

2.5

43
.6

18
.4 26
.0

0.5

36
.9

12
.3

5.0 0.0 0.4

19
.6

62
.5

60
.7

2.8 2.5

55
.6

0.0 0.1 0.3

24
.1

0.9

Boundary attack

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

42
.4

17
.4

0.2

23
.5

58
.3 74

.9

19
.8

2.8

53
.8

12
.0

50
.2

0.0

68
.2

5.2

33
.4 53

.3

0.0

25
.5

75
.0

66
.7

22
.0

2.6

53
.0

21
.6

50
.0

0.5

68
.2

15
.2

5.0 0.0 0.4

21
.6

75
.0

74
.0

6.6 2.6

70
.1

0.0 0.1 0.3

68
.2

0.9

Pointwise

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

34
.1

13
.1

0.3

23
.5

58
.3 74

.3

8.8 2.2

46
.2

7.5

46
.3

0.0

60
.9

12
.920
.7

52
.6

0.0

27
.5

62
.5 66
.6

15
.0

2.5

39
.3

21
.4 46

.2

0.5

47
.9

12
.7

5.0 0.0 0.4

21
.6

62
.5 73

.9

4.6 2.4

57
.3

0.0 0.1 0.3

48
.2

0.9

HopSkipJumpAttack

Bot

DoS attack-

SlowHTTPTest
DoS attack

-Hulk Brute Force

-XSS SQL Injection
Infiltra

tion

DoS attack-

GoldenEye
DoS attack-

Slowloris Brute Force

 -Web
FTP-Brute Force

SSH-Brute Force

DDoS attack

-LOIC-UDP
DDoS attack

-HOIC DDoS attack

-LOIC-HTTP

Attack Type

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

42
.3

17
.4

0.2

23
.5

58
.3 74

.5

11
.3

1.5

49
.6

12
.0

46
.5

0.0

68
.2

13
.932

.8 53
.3

0.1

23
.5

75
.0

66
.6

13
.7

2.6

51
.3

21
.6 28
.5

0.5

68
.2

15
.1

5.0 0.0 0.2

21
.6

75
.0

45
.9

2.0 2.4

56
.4

0.0 0.1 0.3

68
.2

0.9

Opt-Attack

Fig. 8. ASR with different types of attacks against all NID models considered in the one-to-one scenario.

0.0

0.2

0.4

0.6

0.8

1.0

MLP CNN C-LSTM

M
LP

CN
N

C-
LS

TM

1 0.22 0.29

0.7 1 0.47

0.46 0.49 1

One-to-all CT

MLP CNN C-LSTM

1 0.77 0.4

0.43 1 0.3

0.9 0.89 1

One-to-one CT

Fig. 9. The cross-transferability (CT) matrix across all NID models.

samples across different NID models. Here, Km1
denote the

number of successful adversarial samples crafted for model
m1, while Km2

m1
denotes the number of samples among

Km1
that can bypass m2 as well. We show the transfer

ratios across models as Cross-Transferability (CT) matrices
in Fig. 9. An element in the ith row and jth column represents
the value of εmj

mi (e.g., the value on the first row of the second
column indicates that 22% of adversarial samples crafted for
MLP can bypass CNN.) Note that εmm = 1 holds for all m.

Observe that a large proportion adversarial samples are
transferable across NID models for both detection scenar-
ios. This has been also confirmed with adversarial attacks
against image classifiers [60], and implies that, even with
completely different structures, NID models suffer from
similar weaknesses, which attackers can exploit. For exam-
ple, assume a network service provider (NSP) employs the
C-LSTM model to perform one-to-one NID. To compromise
the system, attackers manage to craft K successful adver-
sarial malicious traffic flows. After being detected, the NSP
changes the NID model to MLP. Nevertheless, 90% of the
old adversarial traffic can still bypass the new NID system
due to the high cross-transferability.

6.4.2 Feature-wise MAPE
We delve deeper into the adversarial samples generated,
by showing in Fig. 10 the average MAPE of each per-
turbed feature on all successful attack samples, across all
NID models and attack approaches. Observe that for both
detection scenarios, the Active/Idle Time (i.e., the time a
flow was idle before becoming active and amount of time a
flow was active before becoming active) are less affected, as
the related features remain almost unchanged in the attack
process. In contrast, those features that characterize the
average number of bytes and packets sent in the forward
and backward directions in the initial window or/and sub
flows, are perturbed more significantly. This indicates that
these features are the most influential in the decision of
NID models, and therefore more likely to be exploited by
potential attackers.

6.4.3 t-SNE Visualization
We also investigate the inner workings of each NID model,
by visualizing the output embedding of their hidden layers,
so as to understand better how a neural network ‘thinks’ of
the benign, malicious, and adversarial samples. To this end,
we adopt the t-distributed Stochastic Neighbor Embedding
(t-SNE) [61] to reduce the dimension of the last hidden
layer of each model to 2. In Fig. 11, we plot the t-SNE em-
bedding (x, y axes) of the hidden representations of 10,000
benign samples (blue), 10,000 adversarial samples (green)
generated by each attack method, and their corresponding
anomalous samples used to craft them (pink), along with
their benign confidence (z axis). Note that a sample will be
considered benign iff the benign confidence is greater than
0.5 (above the decision plane). Typically, the t-SNE approach

10

Fwd IAT

Mean Fwd IAT

Std Fwd IAT

Max Fwd IAT

Min Bwd IAT

Mean Bwd IAT

Std Bwd IAT

Max Bwd IAT

Min Activ
e

Mean Activ
e

Std Activ
e

Max Activ
e

Min Idle
Mean Idle

Std Idle
Max Idle

Min Init Fwd

Win BytsInit Bwd

Win BytsSubflow

Fwd PktsSubflow

Fwd BytsSubflow

Bwd PktsSubflow

Bwd Byts

Feature

0

3

6

9

12

15

M
AP

E
[%

]

2.1
9

1.9
7

2.1
5

2.1
7

1.6
7

1.5
8

1.5
7

1.8
3

0.0
1

0.0
1

0.0
1

0.0
1

0.0
3

0.0
2

0.0
2

0.0
2

8.5
2

6.5

11
.49

1.8
6

6.5
2

2.2
13.0 2.6
8

2.9
8

3.0
4

1.8
3

2.0
5

1.9
9

2.6

0.0
1

0.0
1

0.0
1

0.0
1

0.0
3

0.0
3

0.0
3

0.0
2

4.9
5 6.5

1 8.7

2.5
2 3.6

8

3.1

One-to-all
One-to-one

Fig. 10. The MAPE between original and adversarial samples of each feature that allows perturbations.

Fig. 11. Two-dimensional (x, y axes) t-SNE embedding of the representations in the last hidden layer, along with the benign confidence (z axis) of
each NID model. Data generated using 10,000 benign samples (blue), 10,000 adversarial samples (green) produced by all attack methods, and
their corresponding original malicious samples (pink).

organizes data points that have higher similarity into nearby
embeddings [62]. It can therefore reflect how the model
‘thinks’ of the data samples, as similar data representations
will be clustered together.

Observe that anomalous samples can be clearly distin-
guished from benign samples by their t-SNE embeddings
for all NID models. The purpose of adversarial attacks is
to cause misclassification by bringing malicious samples
across the decision boundary. This is reflected in Fig. 11,
as the t-SNE embedding of adversarial samples are moved
closer to the benign embedding cluster, while they remain
anomalies in nature. This successfully confuses the NID
models, making the adversarial samples indistinguishable.
In addition, adversarial samples with higher benign confi-
dence are closer to the benign embedding cluster. This is
especially clear in the t-SNE embedding produced by CNN.

7 DEFENDING AGAINST ADVERSARIAL ATTACKS

Defense mechanisms against adversarial attacks should im-
prove the robustness of deep learning models to adver-
sarial samples, such that they become less likely to be
compromised and the ASR of different attacks is reduced.
In general, countermeasures for adversarial examples can
be categorized into two types [11]: (i) Reactive – detecting
adversarial examples after DNNs have been trained; and
(ii) Proactive – improving the robustness of DNN models
against adversarial examples. In this paper, we propose
three different defense mechanisms, and combine them to
counteract the adversarial samples generated by the black-
box attack methods discussed in the previous section. These
defense mechanisms include:

1) Model Voting Ensembling (Proactive): Ensembling
pretrained MLP, CNN, and C-LSTM using a voting
mechanism, to construct stronger models that are less
susceptible to misclassification of adversarial samples;

2) Ensemble Adversarial Training (Proactive): Augment-
ing the training dataset with adversarial samples, and

retraining the NID models, thereby reinforcing their
capabilities against adversarial samples;

3) Adversarial Query Detection (Reactive): Detecting the
query process in the black-box attack process, to black-
list the attacker’s IP address before they may succeed.

In what follows, we detail the proposed defense mecha-
nisms, and demonstrate their effectiveness.

7.1 Model Voting Ensembling
The experiments we reported in Sec. 6 suggest that an
attacker can successfully compromise a NID model with
up to 35% ASR. However, only a small set of adversarial
samples can bypass all three NID models simultaneously.
This motivates us to construct a new ensembling model
[63], [64] by combining all of these structures, to strengthen
the barrier against potential attacks. Specifically, for each
input traffic flow, we gather the decisions of all NID models
individually, and make the classification using a voting
process. A flow will be classified as ‘benign’ if all models
reach consensus, i.e., all of them classify it as ‘benign’. Oth-
erwise, the traffic flow will be regarded as an ‘anomaly’. We
recognize several advantages of using such model voting
ensembling as means of defense:

1) In order to construct a successful adversarial sample,
attackers need to defeat all NID models simultaneously,
which is much harder than compromising a single one;

2) The voting mechanism makes the entire model non-
differentiable, thus attack approaches that rely on
model gradient estimation (e.g., NES) will be ob-
structed;

3) The voting mechanism is easy to implement, as it does
not require to re-train the original NID models.

The proposed model voting ensembling method is a
proactive approach, as it improves the robustness of the
pretrained models against adversarial samples. We show the
NID performance of the ensembling model for the one-to-
all scenario in Table 4 and the confusion matrix for the one-

11

Be
ni

gn Bo
t

DA
-S

lo
wH

TT
PT

es
t

DA
-H

ul
k

BF
 -X

SS
SQ

L
In

je
ct

io
n

In
fil

tra
tio

n
DA

-G
ol

de
nE

ye
DA

-S
lo

wl
or

is
BF

-W
eb

FT
P-

BF
SS

H-
BF

DD
A-

LO
IC

-U
DP

DD
A-

HO
IC

DD
A-

LO
IC

-H
TT

P

Benign
Bot

DA-SlowHTTPTest
DA-Hulk
BF -XSS

SQL Injection
Infiltration

DA-GoldenEye
DA-Slowloris

BF-Web
FTP-BF
SSH-BF

DDA-LOIC-UDP
DDA-HOIC

DDA-LOIC-HTTP

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.010.99 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.47 0 0 0 0 0 0 0 0.53 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.410.12 0 0 0.43 0 0 0 0 0 0 0 0 0 0.04
0.38 0 0 0 0 0.29 0 0 0 0.12 0 0 0 0 0.21
0.88 0 0 0 0 0 0.11 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.21 0 0 0 0 0 0 0 0.79 0 0 0 0 0 0
0.450.05 0 0 0.01 0 0 0 0 0.43 0 0 0 0 0.06

0 0 0.1 0 0 0 0 0 0 0 0.9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.93 0 0.07
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12. The confusion matrix of the ensembling model in the one-to-one
detection scenario.

0
10
20
30

AS
R

[%
]

13
.9

9.7 12
.1

8.0 11
.215

.0

14
.4

13
.0

10
.0 14

.7

Ensemble One-to-all Ensemble One-to-one

0

2

4

6

M
AP

E
[%

]

0.2 0.7 1.3 0.7

3.8

0.2 0.9 1.2 0.9

3.0

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

1e2
1e3
1e4
1e5
1e6

Nu
m

be
r o

f
Qu

er
ie

s

20
7 45

72 34
98

6

99
24 41

68
2

15
8 22

60 31
25

4

11
32

4 12
80

40

Fig. 13. ASRs, MAPE, and number of queries statistics of all attack
approaches against ensembling models in one-to-all/-one scenarios.

to-one scenario in Fig. 12. Revisiting Table 2 and Figure 4,
observe that the ensembling model obtains very close
performance compared to its individual components in
both detection scenarios, while achieving lower false neg-
ative rates, since it requires consensus to make the ‘benign’
classification decision.

TABLE 4
One-to-all NID performance of ensembling model.

Model Accuracy Precision Recall F1 score
Ensembling 0.987 0.964 0.954 0.959

We re-run the same five black-box attacks considered
previously over the same set of 50,000 malicious samples
and show statistics of their performance in Fig. 13. Note
that the benign confidence measure is abandoned, since the
outputs of ensembling models are no longer probabilities.
Jointly analyzing these results with Fig. 7 and Fig. 5, observe
that the ASR of each attack approach against the ensembling
model has dropped relatively to when attacking each of the
model’s component (i.e., MLP, CNN, and LSTM). In the best
case, the BOUNDARY approach obtains 20.1% ASR in attack-
ing the CNN-based NIDS in the one-to-all scenario, while its
success rate is merely 8.0% when attacking the ensembling
model. Regarding the one-to-one scenario, the reduction
in ASR is also substantial. On average, the ensembling
models lead to 17.12% and 9.02% drop of ASR for one-to-

all and one-to-one scenarios respectively. This indicates that
the voting ensembling mechanism is an effective defense
approach. Turning attention to MAPE, observe that ad-
versarial samples crafted against ensembling models yield
low MAPE, which suggests that this defense mechanism
applies hidden and tighter constraints to the adversarial
samples, to prevent them from deviating excessively from
the raw input samples, which in turn improves detection.

We also show in Figs 14 and 15 the ASR on a ma-
licious traffic type basis, when crafting adversarial sam-
ples against the ensembling model, for both scenarios.
Observe that the voting ensembling mechanism success-
fully defends 9 type of adversarial samples, i.e., Bot,
DoS attack-SlowHTTPTest, DoS attack-Hulk, DoS attack-
GoldenEye, DoS attack-Slowloris, FTP-BruteForce, SSH-
Bruteforce, DDoS attack-LOIC-UDP and DDoS attack-LOIC-
HTTP, as their ASR is virtually 0%. For attacks such as
botnet this is critical, since any success could have catas-
trophic effects, which our ensembling technique thwarts.
For other types of malicious traffic, the ASR also drops
by varying degrees, but not as significant, which calls for
further defenses, as we show next.

7.2 Ensemble Adversarial Training (EAT)
As discussed in Sec. 3, white-box strategies are not com-
monly accessible to external adversaries seeking to com-
promise NIDS, as the training data, model structures and
parameters are opaque. However, recent literature confirms
that adversarial samples are adaptable across different at-
tack methods and victim models [37], [65], [66]. Therefore,
from the defenders’ points of view, adversarial samples
generated using white-box attacks can be exploited to im-
prove the robustness of NID models, so as to defend against
potential adversarial samples. Therefore, we employ the
Ensemble Adversarial Training (EAT) as an additional de-
fense approach [37], which augments the training data with
adversarial examples generated by white-box attacks crafted
on other static pre-trained NID models. Subsequently, the
original NID models are reinforced by re-training on the
augmented dataset. We expect that, with the proposed re-
training, the NID models learn to classify adversarial sam-
ples better and thus become more resilient to attacks. The
principle behid EAT is illustrated in Fig. 16.

7.2.1 Reinforcing NID with White-box Adversarial Samples
We randomly select 250,000 malicious flows to generate
adversarial samples using three state-of-the-art white-box
attack approaches: Fast Gradient Sign Method [67], Iter-
ative Attack (I-FGSM) [68] and Momentum Iterative Fast
Gradient Sign Method (MI-FGSM) [69]. The FGSM-based
approaches perform one step gradient update along the
direction the gradient at each feature that allows pertur-
bations, and introduce noise following that direction. I-
FGSM extends the FGSM by running a finer optimization for
multiple iterations to generate a valid adversarial sample.
MI-FGSM introduces a momentum term into the iterative
process of I-FGSM, which helps stabilizing the update di-
rections and escaping from poor local maxima. This leads to
more transferable adversarial samples. We show statistics
of malicious traffic samples used for white-box attacks,
number of successful adversarial samples, and their ratios

12

Bot

DoS attack-

SlowHTTPTest
DoS attack

-Hulk Brute Force

-XSS SQL Injection
Infiltra

tion

DoS attack-

GoldenEye
DoS attack-

Slowloris Brute Force

 -Web
FTP-Brute Force

SSH-Brute Force

DDoS attack

-LOIC-UDP
DDoS attack

-HOIC DDoS attack

-LOIC-HTTP

Attack Type

0

25

50

75

100
At

ta
ck

 A
SR

. [
%

]

0.
8

0.
0

0.
0

23
.5

45
.8

68
.0

0.
0 1.
5

49
.6

0.
0

0.
0

0.
0

70
.0

0.
1

0.
5

0.
0

0.
0

17
.6

41
.7

65
.9

2.
7

1.
5

41
.9

0.
0

0.
0

0.
0

24
.4

0.
3

0.
8

0.
0

0.
0

21
.6

62
.5

66
.1

5.
5

2.
0

47
.9

0.
0

0.
1

0.
0

68
.2

0.
3

0.
7

0.
0

0.
0

19
.6

41
.7

66
.0

3.
7

2.
1

41
.0

0.
0

0.
0

0.
0

51
.6

0.
2

0.
8

0.
0

0.
0

21
.6

58
.3 65

.8

0.
7

1.
3

41
.0

0.
0

0.
0

0.
0

68
.2

0.
3

Ensemble One-to-one
NES
Boundary attack
Pointwise

HopSkipJumpAttack
Opt-Attack

Fig. 14. ASRs of each type of attack against the model voting ensemble technique in the one-to-one scenario.

Bot

DoS attacks-

SlowHTTPTest
DoS attacks

-Hulk Brute Force

-XSS SQL Injection
Infiltra

tion

DoS attacks-

GoldenEye
DoS attacks-

Slowloris Brute Force

 -Web
FTP-BruteForce

SSH-Bruteforce

DDOS attack

-LOIC-UDP
DDOS attack

-HOIC DDoS attacks

-LOIC-HTTP

Attack Type

0

25

50

75

100

At
ta

ck
 A

SR
. [

%
]

0.
1

0.
0

0.
0

21
.6 33

.3

56
.9

0.
0 1.
3

47
.0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
3

0.
0

0.
0 13

.7 29
.2

55
.4

0.
3 7.

8

33
.3

0.
0

0.
0

0.
0 11

.4

4.
7

0.
6

0.
0

0.
0

19
.6

50
.0 55
.6

0.
2 1.
8

45
.3

0.
0

0.
0

0.
0

68
.2

6.
0

0.
4

0.
0

0.
0

17
.6

37
.5 55

.5

0.
3

17
.5

39
.3

0.
0

0.
0

0.
0

44
.3

5.
8

0.
6

0.
0

0.
0

21
.6

45
.8 55

.4

0.
1 2.
3

45
.3

0.
0

0.
0

0.
0

19
.1

5.
9

Ensemble One-to-all
NES
Boundary attack
Pointwise

HopSkipJumpAttack
Opt-Attack

Fig. 15. ASRs of each type of attack against the model voting ensemble technique in the one-to-all scenario.

CNNMLP C-LSTM

NID Models

White-box Attackers

FGSM I-FGSM MI-FGSM

Attack

Adversarial

Samples

Raw

Training Set

Merge

Retraining

Fig. 16. An illustration of the EAT defense approach.

TABLE 5
Statistics of the malicious traffic flows used to generate adversarial

samples (shared set)/total number of adversarial samples successfully
generated by all methods for EAT, and the ratios of each attack with

respect to the total, using white-box attacks

Attack Type Number of
Instances Ratio [%]

Bot 26,601/426,755 10.640/12.356
DoS attack-SlowHTTPTest 26,601/317,338 10.640/9.188
DoS attack-Hulk 26,601/311,740 10.640/9.026
Brute Force-XSS 179/2,530 0.072/0.073
SQL Injection 63/1,083 0.025/0.031
Infiltration 26,601/473,116 10.640/13.698
DoS attack-GoldenEye 26,601/349,907 10.640/10.131
DoS attack-Slowloris 8,515/112,142 3.406/3.247
Brute Force-Web 494/8,430 0.198/0.244
FTP-Brute Force 26,601/287,768 10.640/8.332
SSH-Brute Force 26,601/404,402 10.640/11.708
DDoS attack-LOIC-UDP 1,347/2,423 0.539/0.070
DDoS attack-HOIC 26,601/401,923 10.640/11.637
DDoS attack-LOIC-HTTP 26,594/354,402 10.638/10.261
Total 250,000/3,453,959 100/100

between each type and their fraction of the totals, in Table 5.
Note that the adversarial sample numbers are summed
over all white-box attacks, all models, and both detection
scenarios.

Due to the information asymmetry between attackers and
defenders, the defenders do not have knowledge about
which features will be perturbed for attack purposes. We

0

50

100

AS
R

[%
]

78
.2 94

.5

94
.6

68
.8 84

.7

84
.7

75
.0

80
.4

77
.4

71
.2 97

.4

96
.8

51
.0

99
.2

97
.3

38
.8

45
.0

46
.468

.1 91
.4

89
.8

59
.6 75

.7

76
.0

MLP CNN C-LSTM Average

0
25
50
75

100

Co
nf

id
en

ce
 [%

]

55
.7

59
.0

55
.1

56
.9

53
.9

53
.8

55
.4

56
.5

54
.9

55
.4

53
.6

52
.058
.9 73

.2

68
.1

69
.9 79

.5

76
.4

56
.7 62
.9

59
.4

60
.7

62
.3

60
.7

0

2

4

M
AP

E
[%

]

2.
31

1.
97 2.
12 2.

67

2.
19 2.
262.

73

2.
45

2.
39

2.
41

2.
0 2.
06

3.
1

2.
4 2.

73 3.
45

2.
79 2.
93

2.
71

2.
27 2.
41 2.

85

2.
33 2.
42

One-to-all
FGSM

One-to-all
I-FGSM

One-to-all
MI-FGSM

One-to-one
FGSM

One-to-one
I-FGSM

One-to-one
MI-FGSM

Attack Type

1e0

1e1

1e2

1e3

Nu
m

be
r o

f
Qu

er
ie

s 18
4

16
5

16
6

17
4

16
1

15
3

16
9

16
7

16
1

13
7

15
9

15
1

16
6

18
8

18
3

17
5

13
1

13
4

17
3

17
3

17
0

16
2

15
0

14
6

Fig. 17. ASRs, Confidence, MAPE, and number of queries statistics of all
white-box attack approaches against the three NID models considered
in this study, and their average values for both NID scenarios.

therefore relax the feature constraints (see Sec. 3.2) for per-
turbations in the white-box setting. However, the constraints
over MAPE (≤ 20%) are retained, to restrict the scale of
the perturbations and ensure the semantics and labels of
the original flow samples do not change. Note that the
adversarial samples generated by white-box attacks are not
necessarily valid traffic flows, as they are only employed for
training purposes. We gather successful adversarial samples
generated by all white-box attack methods (i.e., FGSM, I-
FGSM, and MI-FGSM), crafted with all NID models (i.e.,
MLP, CNN, and C-LSTM) in both detection scenarios (i.e.,
one-to-all and one-to-one) and combine these with the orig-
inal training data, to build an augmented dataset for EAT.

We show the performance of each white-box attack in
Fig. 17. Observe that since the NID models are transparent,

13

TABLE 6
Performance of MLP, CNN, C-LSTM, and ensembling model after EAT

in the one-to-all scenario.
Model Accuracy Precision Recall F1 score
MLP 0.987 0.968 0.953 0.960
CNN 0.986 0.959 0.954 0.956

C-LSTM 0.985 0.953 0.955 0.954
Ensembling 0.983 0.943 0.956 0.949

TABLE 7
Ratio of adversarial samples that bypass each NID model after EAT.

Scenario MLP CNN C-LSTM Ensembling
One-to-all 40.04% 53.15% 48.43% 81.54%

One-to-one 42.45% 38.06% 38.26% 43.31%

and looser constraints are applied to adversarial samples,
the ASR for all white-box attacks is significantly higher than
their black-box counterparts. White-box attacks also require
fewer queries to generate adversarial samples. Fortunately,
attackers normally do not have access to the NID models.
The ASR when crafting each type of anomaly is shown in
Fig. 18 in the – this is close to 100% for most anomalies.

7.2.2 NID Performance of Post-EAT Models
In Table 6, we report the detection performance on the same
test set after EAT, for the one-to-all scenario. Compared
to NID models prior to the EAT (See Tables 2 and 4), the
detection performance of the newly trained models has
dropped slightly in terms of accuracy, precision, and F1
score. However, the recall rate of each model has improved.
This indicates that the models are prone to classifying some
ambiguous samples as anomalies, which results in higher
false positive and lower false negative rates. Similar phe-
nomena are also observed in the one-to-one scenario. The
accuracy for the MLP, CNN, C-LSTM, and the ensembling
model appears worse than what was achieved prior to EAT.
However, by taking a closer look at their confusion matrices
in Fig. 19, post-EAT models achieve high detection rates
on most anomalies they failed to detect previously (i.e.,
Brute Force-XSS, SQL Injection, and Brute Force-Web). This
suggests that EAT has improved the robustness of NID
models, making them more sensitive to anomalous traffic
that is difficult to classify.

7.2.3 Robustness to Old Adversarial Samples
In Table 7, we further show the ratio of adversarial samples
crafted from the models before EAT, which can compromise
the corresponding post-EAT models. Observe that EAT also
makes each model more resilient to old adversarial samples,
as those ratios are significantly below 100%. In particular,
only 38.06% of adversarial samples crafted from the old
C-LSTM can bypass the Ensemble Adversarial Trained C-
LSTM. This means that EAT enables each model to learn to
characterize adversarial samples generated using white-box
attacks, and therefore fixes some ‘bugs’ present in the old
setting.

This effect is confirmed by their t-SNE embedding. In
Fig. 20, we show the two-dimensional (x, y axis) t-SNE em-
bedding of the representations in the last hidden layer along
with the benign confidence (z axis) of each NID models
after the EAT, as similar to Fig. 11. Note that we employ
the same set of samples in Fig. 11 to generate the new

Fig. 20. Observe that after the EAT, some old adversarial
samples are rejected by the new models (purple), as they are
below the decision boundary. It appears that the EAT pushes
certain adversarial samples away from the benign clusters,
such that they become more separable. Even though some
adversarial samples still escape, their benign confidence
becomes lower compared to what was observed in Fig. 11.
These means that the new models are more suspicious of
these new data samples after the EAT. One can raise the
decision boundary to filter such samples.

7.2.4 The Effect of EAT
In Fig. 21, we show the ASR for each attack after EAT
(ASREAT, bars in the upper part of the plot), and the ASR
reduction compared to the case before EAT was applied
(ASR - ASREAT, bars in the lower part) for the one-to-all
scenario. In the figure, positive numbers below the x-axis
indicate that the ASREAT has dropped after EAT was em-
ployed. We observe that the ASR of each attack drops when
directed against most of the NID models, which means EAT
successfully improves their robustness.

On the other hand, we also observe that the ASREAT
of NES increases by 12.5% when crafting from LSTM in
the one-to-all scenario. This also weakens the ensembling
model, as the ASREAT increases accordingly. Nevertheless,
the EAT remains an effective defense approach, as it
reinforces each NID model and blocks black-box attack
attempts in most of the cases.

Similarly, in Fig. 22, we show the ASR for each attack
after EAT (ASREAT, bars in the upper part of the plot), and
the ASR reduction compared to the case before EAT was
applied (ASR - ASREAT, bars in the lower part) for the one-
to-one NID scenario. We observe that ASR of each attack
drops for most of the models. This means that EAT suc-
cessfully improves the robustness of each model, making
them more difficult to be compromised. On average, the
ASR drops to 6.70% and 5.78% for one-to-one and one-to-all
NID scenarios, respectively. This is particularly beneficial
to practically mitigating DoS and brute-force type attacks.
On the other hand, EAT is not a silver bullet for all the cases.
For example, the ASREAT of NES increases when crafting
from C-LSTM in the one-to-all scenario, as seen in Fig. 21.

7.3 Adversarial Query Detection
Recall that all black-box attack methods rely on continuous
queries to the victim model and feedback received. Based on
the feedback, the attackers learn to adjust the perturbations
added to the input, so as to compromise detection. The
scale of perturbations is usually small, so that they to do
not change the essence of the original input. Therefore, the
queries in the same attack round are typically with high
similarity. This inherent similarity between queries can be
harnessed to detect an attack. Therefore, we explore query
detection [70] as the final defense mechanism. Once queries
have been discovered, the NIDS can blacklist the attackers’
IP addresses, to prevent potential threats.

Specifically, for each IP address, we construct a buffer
with size B to store the features of the traffic flows origi-
nating from that address in a pre-defined period. To reduce
the dimension of the features saved and model the simi-
larity degree between flows, we employ a deep similarity

14

0
25
50
75

100
At

ta
ck

 A
SR

. [
%

]

60
.0

99
.0

95
.2

38
.0

90
.5 99

.2

59
.7

52
.6

77
.3 99

.4

99
.8

0.1

80
.1

23
.9

97
.5

10
0.0

5.8

82
.1 10

0.0

98
.8

64
.8 72

.9

10
0.0

10
0.0

50
.4

8.6

89
.7

71
.088

.7

14
.9

5.2

96
.1

85
.7 89
.2

32
.3 45

.3

94
.3

7.3

69
.0

0.7

89
.0

66
.9

One-to-all FGSM
MLP CNN C-LSTM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

99
.9

99
.0

96
.7

51
.4

98
.4

99
.2

92
.5 10
0.0

10
0.0

99
.4

10
0.0

0.1

81
.4 85
.698

.7

10
0.0

6.3

10
0.0

10
0.0

99
.5

67
.0

92
.7 10
0.0

10
0.0

51
.8

9.1

10
0.0

99
.2

99
.8

10
0.0

99
.7

10
0.0

10
0.0

99
.6

98
.2

10
0.0

10
0.0

10
0.0

10
0.0

12
.3

10
0.0

99
.7

One-to-all I-FGSM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

99
.9

99
.0

96
.6

51
.4

98
.4

99
.2

92
.4 10
0.0

98
.6

99
.4

10
0.0

0.1

81
.4 86
.798

.8

10
0.0

6.2

10
0.0

10
0.0

99
.5

67
.0

92
.6 10
0.0

10
0.0

50
.6

9.0

10
0.0

72
.3

97
.9

10
0.0

97
.9

99
.4

10
0.0

99
.2

91
.8 99
.6

10
0.0

10
0.0

95
.0

10
.8

10
0.0

97
.7

One-to-all MI-FGSM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

99
.7

16
.3

95
.2

39
.7

77
.8 10

0.0

38
.4 54

.6

93
.5

11
.2

95
.1

0.0

76
.4 95

.0

70
.0

54
.8

98
.9

10
0.0

96
.8

10
0.0

82
.0 89
.1 10

0.0

21
.1

99
.2

1.0

86
.0

26
.0

63
.7

0.1

23
.5

49
.2

90
.5 98
.4

35
.8

33
.0

76
.7

0.0

51
.5

0.2

38
.5

40
.8

One-to-one FGSM

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

99
.9

54
.8

98
.5

10
0.0

10
0.0

10
0.0

99
.8

57
.8

10
0.0

21
.8

10
0.0

1.2

10
0.0

99
.9

10
0.0

10
0.0

10
0.0

10
0.0

10
0.0

10
0.0

10
0.0

97
.6

10
0.0

10
0.0

10
0.0

62
.5

10
0.0

78
.6

64
.8

0.1

21
.6

52
.5

90
.5 98
.4

47
.3

36
.5

82
.2

0.0

78
.8

0.2

43
.6 54

.8

One-to-one I-FGSM

Bot

DoS attacks-

SlowHTTPTest
DoS attacks

-Hulk Brute Force

-XSS SQL Injection
Infiltra

tion

DoS attacks-

GoldenEye
DoS attacks-

Slowloris Brute Force

 -Web
FTP-BruteForce

SSH-Bruteforce

DDOS attack

-LOIC-UDP
DDOS attack

-HOIC DDoS attacks

-LOIC-HTTP

Attack Type

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

99
.9

54
.8

98
.5

10
0.0

10
0.0

10
0.0

99
.8

57
.8

10
0.0

21
.8

10
0.0

1.2

10
0.0

99
.9

10
0.0

10
0.0

10
0.0

10
0.0

10
0.0

10
0.0

94
.9

95
.9 10
0.0

10
0.0

10
0.0

62
.2

10
0.0

78
.6

64
.9

0.3

26
.0

53
.6

90
.5 98
.4

51
.6

38
.7

83
.8

0.3

79
.0

0.4

44
.9 56

.0

One-to-one MI-FGSM

Fig. 18. ASRs over each type of white-box attack against all models for both NID scenarios.

encoder (DSE) [71], encoding similar traffic flows in a lower-
dimensional space with shorter l2 distance. More precisely,
for each new flow x sent from a given IP address, we
compute the pairwise distance between the embedding of
this flow and others in the buffer, calculating the k nearest
neighbor average distance dkx. If dkx is lower than a threshold
τ , i.e., dkx < τ , this suggests that that IP address has
sent an excessive number of similar traffic flows, which
can be considered as queries in an ongoing attack. When
this happens, the IP address can be blacklisted and thus
the potential threat eliminated. We show the underlying
principle of the query detection mechanism in Fig. 23, which
bears O(1) complexity as it only depends on the buffer size.

After an attack is detected, the buffer associated to the
specific IP address can be cleared. In addition, when query
detection suggests a potentially malicious actor, their IP
address can be banned either immediately, or after subse-
quent queries, as suggested in [71]. This can minimize an

attacker’s knowledge of the time when their attack was de-
tected, therefore reducing the probability of compromising
the query detection mechanism.

7.3.1 Deep Similarity Encoder

The core component of the query detection-based defense
mechanism is the deep similarity encoder (DSE) [71], which
is a neural network that reduces the dimension of the input.
After embedding by a DSE, dissimilar flows will be far
from each other in the encoded space, while similar queries
will be close. Thus, queries and traffic flows become more
distinguishable.

For the DSE, we employ a CNN similar to that in Fig. 3,
only replacing the last layer with 3 units. This means that the
embedding of each traffic flow is a 3-dimensional vector. We
denote ei = DSE(xi) as the embedding of the input sample
xi. The DSE can be trained via minimizing the following

15

0.0

0.2

0.4

0.6

0.8

1.0

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

Be
nig

n
Bo

t

Do
S a

tta
ck

-S
low

HT
TP

Te
st

Do
S a

tta
ck

-H
ulk

Br
ut

e F
or

ce
-X

SS

SQ
L I

nje
cti

on

Inf
iltr

at
ion

Do
S a

tta
ck

-G
old

en
Ey

e

Do
S a

tta
ck

-S
low

lor
is

Br
ut

e F
or

ce
-W

eb

FT
P-B

ru
te

 Fo
rce

SS
H-

Br
ut

e F
or

ce

DD
oS

 at
ta

ck
-LO

IC
-U

DP

DD
oS

 at
ta

ck
-H

OI
C

DD
oS

 at
ta

ck
-LO

IC
-H

TT
P

0.99 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.54 0 0 0 0 0 0 0 0.46 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.120.08 0 0 0.430.02 0 0 0 0.35 0 0 0 0 0
0.04 0 0 0 0 0.54 0 0 0 0.38 0 0 0 0 0.04
0.79 0 0 0 0 0 0.21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0
0.270.04 0 0 0.01 0 0 0 0 0.67 0 0 0 0 0.01

0 0 0.15 0 0 0 0 0 0 0 0.85 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.96 0 0.04
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

MLP

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.51 0 0 0 0 0 0 0 0.49 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.080.12 0 0 0.430.06 0 0 0 0.31 0 0 0 0 0
0.12 0 0 0 0 0.58 0 0 0 0.25 0 0 0 0 0.04
0.78 0 0 0 0 0 0.22 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0
0.090.05 0 0 0 0.03 0 0 0 0.83 0 0 0 0 0.01

0 0 0.11 0 0 0 0 0 0 0 0.89 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0.02
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CNN

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

0.99 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.52 0 0 0 0 0 0 0 0.48 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.060.1 0 0 0.45 0 0 0 0 0.39 0 0 0 0 0
0.04 0 0 0 0 0.5 0 0 0 0.42 0 0 0 0 0.04
0.77 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0
0.270.05 0 0 0 0 0 0 0 0.67 0 0 0 0 0.01

0 0 0.12 0 0 0 0 0 0 0 0.88 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0.01
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

C-LSTM

Be
ni

gn Bo
t

Do
S

at
ta

ck
-S

lo
wH

TT
PT

es
t

Do
S

at
ta

ck
-H

ul
k

Br
ut

e
Fo

rc
e-

XS
S

SQ
L

In
je

ct
io

n
In

fil
tra

tio
n

Do
S

at
ta

ck
-G

ol
de

nE
ye

Do
S

at
ta

ck
-S

lo
wl

or
is

Br
ut

e
Fo

rc
e-

W
eb

FT
P-

Br
ut

e
Fo

rc
e

SS
H-

Br
ut

e
Fo

rc
e

DD
oS

 a
tta

ck
-L

OI
C-

UD
P

DD
oS

 a
tta

ck
-H

OI
C

DD
oS

 a
tta

ck
-L

OI
C-

HT
TP

0.99 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.52 0 0 0 0 0 0 0 0.48 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0.020.1 0 0 0.450.02 0 0 0 0.41 0 0 0 0 0
0.04 0 0 0 0 0.58 0 0 0 0.33 0 0 0 0 0.04
0.76 0 0 0 0 0 0.24 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0
0.070.05 0 0 0.01 0 0 0 0 0.86 0 0 0 0 0.01

0 0 0.12 0 0 0 0 0 0 0 0.88 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.98 0 0.02
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Ensembling

Fig. 19. Confusion matrices of MLP, CNN, C-LSTM, and ensembling model in one-to-one NID, after EAT.

Fig. 20. Two-dimensional (x, y axis) t-SNE embedding of the representations in the last hidden layer along with the benign confidence (z axis) of
each NID models after EAT. Data generated using 10,000 benign samples (blue), 10,000 adversarial samples produced by all attack methods that
successfully bypass the model (green) and are rejected by the model (purple), with their corresponding malicious samples they craft from (pink).

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

20
10
0

10
20
30
40

AS
R

- A
SR

EA
T /

 A
SR

EA
T [

%
]

23
.8

11
.9

23
.7

10
.4

23
.8

11
.9

23
.8

11
.8

19
.4

8.
3

13
.9

8.
0

13
.9

6.
8

13
.9

6.
2

13
.9

6.
2

13
.5

2.
7

20
.7

14
.5

18
.4

5.
2

20
.7

15
.0

20
.7

14
.3

18
.8

-1
2.

5

13
.4

0.
5

13
.3

0.
4

11
.7

0.
4

8.
1

0.
9

13
.3

-7
.1

17
.9

8.
7

17
.3

5.
7

17
.5

8.
4

16
.6

8.
3

16
.2

-2
.2

One-to-all
MLP CNN C-LSTM Ensembling Average

Fig. 21. ASR of each attack after EAT (bars above x axis), and ASR
reduction compared to when no defense is applied (bars below x axis)
in the one-to-all NID scenario.

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

20
10
0

10
20
30
40

AS
R

- A
SR

EA
T /

 A
SR

EA
T [

%
]

21
.0

9.
6

16
.3

13
.8

15
.8

11
.4

9.
5

12
.3

13
.2

3.
1

19
.5

15
.3

19
.4

12
.2

17
.0

12
.8

14
.2

11
.1

12
.6

6.
7

14
.9

1.
6

14
.2

-1
.1

6.
7

7.
5

9.
4

0.
7

13
.2

3.
0

13
.5

1.
5

12
.8

1.
6

5.
8

7.
2

8.
7

1.
3

12
.2

2.
5

17
.2

7.
0

15
.7

6.
6

11
.3

9.
7

10
.4

6.
4

12
.8

3.
8

One-to-one
MLP CNN C-LSTM Ensembling Average

Fig. 22. ASR of each attack after EAT (bars above x axis), and ASR
reduction compared to when no further defense is applied (bars below x
axis) for the one-to-one NID scenario.

Similarity Encoder

dx1

x2

e1

e2

e i

Embedding Buffer

k nearest

neighbors

x i

..
.

Traffic Flows

: Queries detected

Traffic

embedding

Fig. 23. An illustration of the query detection defense mechanism using
a deep similarity encoder.

0.00 0.05 0.10 0.15 0.20
Distance

0
100
200
300
400
500
600
700

De
ns

ity

Similar Pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

0

5

10

15

20

Dissimilar Pairs

Fig. 24. Histograms of l2 distances of DSE embeddings between similar
flow pairs (left) and dissimilar flow pairs (right) generated using the
training set.

contrastive loss function:

L(xi , x̃i , xm , xn ; θ) = ||ei− ẽi||22+max(0, $2−||em−en||22).
(2)

Here, xi, x̃i are a pair of similar traffic flows, while xm, xn
are traffic flows that are dissimilar. θ is the trainable pa-
rameter set of the DSE, and $ is a constant penalty, which
regularizes the scale of ||em − en||22. We choose $ = 0.5 in
our experiments. The first term of the function ensures that
the l2 distances of the similar traffic flows are minimized,
while the second term guarantees that distances of dissimi-
lar traffic pairs are maximized but limited to $.

We train the DSE using the same training set sampled
from the CSE-CIC-IDS2018 dataset as used by other NID
models. For the purpose of training, we construct x̃i by
adding Gaussian noise σi ∼ N(0, α|xi|) to each sample xi,
i.e., x̃i = xi + σi. Here, α controls the standard deviation
of the Gaussian noise and we choose α = 0.15. xm, xn are
sampled from a training set distinct from xi. After training,
we use the full training set to randomly generate 13,153,902
pairs of similar and dissimilar flows. The distributions of the

16

30
20
10
0

10
20
30

 A
SR

EA
T -

 A
SR

de
t /

 A
SR

de
t [

%
]

6.1
13

.3

6.0
17

.7

6.0
17

.8

6.0
17

.8

0.0
23

.7

6.0
7.

5

5.8
8.

0

5.8
8.

1

5.8
8.

0

0.0
13

.9

6.3
12

.5

5.8
14

.8

5.8
14

.9

5.8
14

.8

0.0
18

.4

5.7
7.

5

5.7
2.

4

5.7
7.

7

5.7
6.

0

0.0
13

.3

6.0
10

.2

5.9
10

.8

5.9
12

.1

5.9
11

.6

0.0
17

.3

MLP CNN C-LSTM Ensembling Average

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

200

203

206

209

Av
e.

 D
et

ec
te

d
Qu

er
ie

s

20
1

20
6

20
1

20
1

20
1

20
1

20
7

20
1

20
1

20
1

20
1

20
8

20
1

20
1

20
1

20
1

20
8

20
1

20
1

20
1

20
1

20
7

20
1

20
1

20
1

Fig. 25. Performance statistics of the query detection defense in the
one-to-all scenario. Top: ASR of each attack after query detection (bars
above x axis) and ASR reduction compared to when the query detection
is removed (bars below x axis). Bottom: avg. number of queries when
the detector is triggered.

30
20
10
0

10
20
30

 A
SR

EA
T -

 A
SR

de
t /

 A
SR

de
t [

%
]

8.9
4.

3

6.1
3.

3

6.1
14

.9

6.1
9.

7

0.0
16

.3

7.3
5.

3

5.9
8.

3

5.9
13

.6

5.9
11

.1

0.0
19

.4

5.9
7.

3

5.9
3.

5

5.8
9.

1

5.9
0.

8

0.0
14

.2

5.8
6.

4

5.8
2.

9

5.7
7.

8

5.7
0.

1

0.0
12

.8

7.0
5.

8

5.9
4.

5

5.9
11

.4

5.9
5.

4

0.0
15

.7

MLP CNN C-LSTM Ensembling Average

Pointwise Opt-Attack HopSkipJumpAttack Boundary attack NES
Attack Type

200

203

206

209

Av
e.

 D
et

ec
te

d
Qu

er
ie

s

20
1

20
6

20
1

20
1

20
1

20
1

20
6

20
1

20
1

20
1

20
1

20
7

20
1

20
1

20
1

20
1

20
7

20
1

20
1

20
1

20
1

20
6

20
1

20
1

20
1

Fig. 26. Performance statistics of query detection defense in the one-
to-one scenario. Top: ASR of each attack after query detection (bars
above x axis) and ASR reduction compared to when the query detection
is removed (below x axis). Bottom: average number of queries when the
query detector is triggered.

l2 distances of their embedding by histograms are shown in
Fig. 24. Observe that most of of the l2 distances between
similar flows pairs are close to 0, while they have multiple
peaks away from 0 for dissimilar flows pairs which are far-
ther from the origin. This indicates that the DSE successfully
learns the similarity between traffic flows, and therefore can
operate effectively for the query detection purpose.

7.3.2 Hyper-parameters Selection
There are three important hyper-parameters to be config-
ured for query detection, namely (i) the detection thresh-
old τ ; (ii) the number of neighbors k used for detection;
and (iii) the size of the buffer B, which stores the traffic
flows sent from the same IP address. These parameters will
significantly affect the performance of the query detection.
First, we select τ = 0.00157, since 10% of dissimilar pairs
and 86.4% of similar pairs in the training set are below this
threshold. This provides an appropriate decision boundary
to discriminate normal traffic flows and attack queries. The
values of k and B affect the robustness of the detection
and also the computational and storage cost of the NIDS.
We select B = 500 and k = 200, as these numbers allow
efficient detection and yield 0 false positive rates when
operating with traffic streams simulated with the entire
training set.

7.3.3 Query Detection Defense Performance
In Fig. 25, we show the ASR of each attack after the query
detection (bars above the x-axis in the top sub-plot), the

Fig. 27. Traffic sample embeddings generated by the DES. Left: sample
embeddings of query process of HOPSKIPJUMPATTACK crafted from
MLP NID model. Right: samples of routine traffic flows emulated with
the training set.

ASR reduction compared to when query detection is not
employed (bars below the x-axis in the top sub-plot), and the
average number of queries (bottom) when the attack is de-
tected, for each attack method in the one-to-all scenario. Ob-
serve that the ASR has dropped significantly after the query
detection was employed. In particular, the ASR of NES stays
at 0 for all models and the detection rates therefore become
100%. Similarly, in Fig. 26 we show performance statistics
of the query detection defense mechanism in the one-to-one
NID scenario. Again, note the ASR of NES reaches 0 for all
models, and the detection rate becomes 100%.

On average, the query detection defense reduces the
ASR by 8.56% and 12.38% in the one-one-to one and one-
to-all scenario, respectively. Effectively, the majority of the
adversarial attack are detected during their query process.

Taking a closer look at the average number of detected
queries, we observe that NES, BOUNDARY, POINTWISE, and
HOPSKIPJUMPATTACK attack attempts are detected at their
201st query. Recall that the k neighborhood size selected for
query detection is 200, hence the detection alarm will only
be triggered when the buffer has more than 200 samples.
This means that the attack is detected immediately after the
buffer has k neighbor samples. Regarding the OPT-ATTACK
attack, this is detected always within 208 queries. This is
due to the initial phase of the attack, when it injects a few
benign traffic flows to learn the direction of perturbation
to be added to the adversarial samples. These samples are
normally dissimilar, which slightly increases the detection
time. Note that, despite the efficiency of the query detection
mechanism, a larger buffer size (B = 500) is still needed
for tolerance, as the attacks may fill the buffer with queries
(similar samples) and garbled traffic (dissimilar samples)
alternately, to compromise the defense.

7.4 Effectiveness of DSE for Query Detection

To evaluate the effectiveness of our Deep Similarity Encoder
(DSE), in Fig. 27 we show the DSE-embedding of the 35,215
queries of a shot of HOPSKIPJUMPATTACK crafted from
the MLP model, and the DSE-embedding of 35,215 benign
samples. These benign samples can be viewed as a stream
of routine traffic in real life. Observe that the embeddings
of the query set congregate in a fairly small region, and
are close to each other. In contrast, the embeddings of the
normal traffic appear more dispersed and separable. This
further proves that our DSE can effectively learn the
similarity between traffic samples.

17

0

1e6

2e6

3e6
Qu

er
ie

s

MLP

0

1e6

2e6

3e6
CNN

None EAT EAT +
Query detection

Defense

0

1e6

2e6

3e6

Qu
er

ie
s

C-LSTM

None EAT EAT +
Query detection

Defense

0

1e6

2e6

3e6
Ensembling

Fig. 28. Violin plots of the query distribution of all attacks in one-to-one
NID scenarios.

Overall, by combining the model voting ensembling,
EAT, and query detection mechanisms, our proposal can
successfully prevent five mainstream black-box adversar-
ial attacks from compromising deep learning-based NIDS.

7.5 Zooming in on Infiltration Traffic

To understand why infiltration traffic escapes detection, in
Fig. 28 we examine the distribution of the number of queries
of all successful attack attempts at each defense stage. We
observe that while EAT does not change the query distribu-
tion significantly, most of the adversarial attacks bypassing
the query detection only require 1 query. This means that
the original traffic is already misclassified. The confusion
matrices in Fig. 19 further confirm this, as the Infiltration
traffic yields high misclassification rate.

Note that we removed three features (i.e., flow duration,
total time between two packets sent in the forward and
backward direction) that may be affected by perturbations
during training and evaluation. The total time between two
packets sent in the backward direction is however essential
for identifying the infiltration traffic, according to our ex-
periments. Once this feature is added back, the detection
rate increases to over 97% and our defense mechanisms
operate well in this case. We leave this as future work, which
requires further study.

7.6 Effectiveness in Different Landscapes

To further demonstrate the effectiveness of our defense
mechanism, we re-stage the TIKI-TAKA flow (i.e., NID mod-
els training, 5 adversarial attacks, and 3 defense mechanism)
on a different dataset, namely CICIDS2017 [16]. The CI-
CIDS2017 dataset is the predecessor of the CSE-CIC-IDS2018
dataset [16] used so far in our experiments, where similar
benign/abnormal traffic flows were collected and similar
features were extracted.

We employ the aforementioned black-box attacks to craft
adversarial samples on 10,000 malicious traffic flows. After
applying all the defense mechanism proposed, we obtain
the ASR for each type of attack in the CICIDS2017 dataset
as shown in Fig. 29. Observe that except for Infiltration, the
ASR for all attacks is 0% for all models. We show the pre-
EAT and post-EAT NID performance of all models consid-
ered in Table 8. Observe that all NID models obtain excellent
performance, as they achieve over 98% F1 scores. After EAT,
their performance is further improved, which demonstrates
that the EAT can effectively improve the robustness of NID

TABLE 8
The performance of MLP, CNN, C-LSTM, and the ensembling model
pre-/post-EAT on the CICIDS2017 dataset in the one-to-all scenario.

Model Accuracy Precision Recall F1 score
MLP 0.993/0.996 0.966/0.987 0.997/0.994 0.981/0.991
CNN 0.997/0.998 0.988/0.993 0.997/0.996 0.992/0.994
C-LSTM 0.996/0.998 0.984/0.990 0.998/0.999 0.991/0.994
Ensemble 0.992/0.997 0.963/0.984 0.999/0.999 0.980/0.992

models. This complies with the performance obtained on the
CSE-CIC-IDS2018 dataset, demonstrating that our defense
methods can generalize well and are therefore reliable.

On the other hand, we observe that the defense perfor-
mance on this dataset is slightly superior to that on the
CSE-CIC-IDS2018 traffic. This is reflected by the detection
accuracy and the higher F1 scores of each NID models with
the CICIDS2017 data. The reason is that the traffic patterns
are less diverse in this latter dataset, thus it is easier for NID
models to learn.

8 CONCLUSIONS

In this paper, we introduced TIKI-TAKA, a framework for
defending against adversarial attacks on deep learning-
based NIDS. We trained three state-of-the-art deep learning
models (MLP, CNN, and C-LSTM) on publicly available
datasets, then employed 5 classes of decision-based adver-
sarial attacks to compromise the neural models. Experi-
ments show that despite having high detection rates, deep
learning-based NIDS are vulnerable to adversarial samples.
To strengthen NIDS against such threats, we proposed three
defense methods: model voting ensembling, ensembling
adversarial training, and query detection. To our knowl-
edge, these are the first defense mechanisms to be proposed
against adversarial attacks targeting NIDS. Their combined
use can reduce success rates of all attacks considered, bring-
ing detection close to 100% on most malicious traffic and
fending off particularly critical malicious traffic such as
botnet and DoS.

REFERENCES

[1] C. Zhang, X. Costa-Perez, and P. Patras, “Tiki-Taka: Attacking and
Defending Deep Learning-Based Intrusion Detection Systems,”
in Proc. ACM SIGSAC Conference on Cloud Computing Security
Workshop, ser. CCSW’20, 2020.

[2] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 2, 2015.

[3] Q. Zhou and D. Pezaros, “Evaluation of machine learning clas-
sifiers for zero-day intrusion detection–an analysis on CIC-AWS-
2018 dataset,” arXiv preprint arXiv:1905.03685, 2019.

[4] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Comms Surveys & Tutorials,
2019.

[5] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Proc. EAI
Intl Conference on Bio-inspired Information and Communications Tech-
nologies, 2016, pp. 21–26.

[6] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelli-
gent intrusion detection system,” IEEE Access, vol. 7, 2019.

[7] M. Nasr et al., “Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized
and federated learning,” in IEEE S&P, 2019.

[8] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks
on deep neural networks,” in ACM CCS, 2019.

18

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NES
MLP
CNN

C-LSTM
Ensembling

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Boundary attack

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pointwise

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HopSkipJumpAttack

DDoS
PortScan Bot

Infiltra
tion

Web

Attack-Brute

Force
Web

Attack-XSS

Web Attack-SQL

Injection FTP-Patator

SSH-Patator
DoS

slowloris DoS

Slowhttptest DoS Hulk
DoS

GoldenEye

Attack Type

0
25
50
75

100

At
ta

ck
 A

SR
. [

%
]

0.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0

33
.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Opt-Attack

Fig. 29. ASRs over each type of attack after the EAT and query detection against all models in the one-to-all scenario on the IDS 2017 dataset.

[9] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal
brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in USENIX Security, 2019.

[10] K. T. Co, L. Muñoz González, S. de Maupeou, and E. C. Lupu,
“Procedural noise adversarial examples for black-box attacks on
deep convolutional networks,” in ACM CCS, 2019.

[11] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[12] O. Ibitoye, R. Abou-Khamis, A. Matrawy, and M. O. Shafiq, “The
threat of adversarial attacks on machine learning in network
security–a survey,” arXiv preprint arXiv:1911.02621, 2019.

[13] M. Usama, J. Qadir, A. Al-Fuqaha, and M. Hamdi, “The adversar-
ial machine learning conundrum: Can the insecurity of ml become
the Achilles’ heel of cognitive networks?” arXiv:1906.00679, 2019.

[14] A. Kuppa, S. Grzonkowski, M. R. Asghar, and N.-A. Le-Khac,
“Black box attacks on deep anomaly detectors,” in Proc. ACM
International Conference on Availability, Reliability and Security, 2019.

[15] Forbes, “Cyberwarfare will explode in 2020 (because it’s cheap,
easy and effective),” Jan 2020.

[16] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in ICISSP, 2018.

[17] D. Heaven, “Why deep-learning AIs are so easy to fool,” Nature,
vol. 574, pp. 163–166, 2019.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009.

[19] O. Faker and E. Dogdu, “Intrusion detection using big data and
deep learning techniques,” in Proc. ACM Southeast Conference, 2019.

[20] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying
convolutional neural network for network intrusion detection,” in
IEEE International Conference on Advances in Computing, Communi-
cations and Informatics, 2017.

[21] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng, and X. Wang, “PCCN:
Parallel cross convolutional neural network for abnormal network
traffic flows detection in multi-class imbalanced network traffic
flows,” IEEE Access, vol. 7, pp. 119 904–119 916, 2019.

[22] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for
intrusion detection using recurrent neural networks,” IEEE Access,
vol. 5, pp. 21 954–21 961, 2017.

[23] Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, “Network intru-
sion detection: Based on deep hierarchical network and original
flow data,” IEEE Access, vol. 7, pp. 37 004–37 016, 2019.

[24] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “NATTACK: Learning
the distributions of adversarial examples for an improved black-
box attack on deep neural networks,” in ICML, 2019.

[25] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger,
“Simple black-box adversarial attacks,” in ICML, 2019.

[26] S. Moon et al., “Parsimonious black-box adversarial attacks via
efficient combinatorial optimization,” in ICML, 2019.

[27] Z. Wang, “Deep learning-based intrusion detection with adver-
saries,” IEEE Access, vol. 6, pp. 38 367–38 384, 2018.

[28] K. Yang, J. Liu, C. Zhang, and Y. Fang, “Adversarial examples
against the deep learning based network intrusion detection sys-
tems,” in IEEE MILCOM, 2018.

[29] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE S&P, 2017.

[30] P.-Y. Chen et al., “Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training substitute
models,” in Proc. ACM WS Artificial Intelligence and Security, 2017.

[31] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in ICML, 2017.

[32] M. Teuffenbach, E. Piatkowska, and P. Smith, “Subverting network
intrusion detection: Crafting adversarial examples accounting for
domain-specific constraints,” in International Cross-Domain Confer-
ence for Machine Learning and Knowledge Extraction. Springer, 2020,
pp. 301–320.

[33] A. Piplai, S. S. L. Chukkapalli, and A. Joshi, “Nattack! adversarial
attacks to bypass a gan based classifier trained to detect network
intrusion,” in 2020 IEEE 6th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS). IEEE, 2020, pp. 49–54.

[34] R. A. Khamis and A. Matrawy, “Evaluation of adversarial training
on different types of neural networks in deep learning-based idss,”

19

in International Symposium on Networks, Computers and Communica-
tions (ISNCC), 2020, pp. 1–6.

[35] I. Debicha, T. Debatty, J.-M. Dricot, and W. Mees, “Adversarial
training for deep learning-based intrusion detection systems,”
arXiv preprint arXiv:2104.09852, 2021.

[36] N. Papernot et al., “Distillation as a defense to adversarial pertur-
bations against deep neural networks,” in IEEE S&P, 2016.

[37] F. Tramèr et al., “Ensemble adversarial training: Attacks and de-
fenses,” in ICLR, 2018.

[38] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and
rejecting adversarial examples robustly,” in IEEE ICCV, 2017.

[39] P. Samangouei et al., “Defense-GAN: Protecting classifiers against
adversarial attacks using generative models,” in ICML, 2018.

[40] M. Abbasi and C. Gagné, “Robustness to adversarial examples
through an ensemble of specialists,” in Workshop in ICLR, 2017.

[41] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural net-
works,” in Intl Conference on Computer Aided Verification, 2017.

[42] D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” in ACM CCS, 2017.

[43] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proc. ACM Work-
shop on Artificial Intelligence and Security, 2017.

[44] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversar-
ial attacks with limited queries and information,” in ICML, 2018.

[45] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “Tr-ids: Anomaly-
based intrusion detection through text-convolutional neural net-
work and random forest,” Security and Comm. Netw., 2018.

[46] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans Evolutionary Computation, 2019.

[47] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ICLR, 2015.

[48] H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and
applications. Wiley-IEEE Press, 2013.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “Tensor-
Flow: A system for large-scale machine learning,” in OSDI, 2016.

[50] H. Dong, A. Supratak, L. Mai, F. Liu, A. Oehmichen, S. Yu,
and Y. Guo, “TensorLayer: A versatile library for efficient deep
learning development,” in Proc. ACM Multimedia, 2017.

[51] D. M. Powers, “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” 2011.

[52] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning mod-
els,” in ICLR, 2018.

[53] L. Schott et al., “Towards the first adversarially robust neural
network model on MNIST,” in ICLR, 2019.

[54] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in IEEE S&P, 2020.

[55] M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, and C.-J. Hsieh,
“Query-efficient hard-label black-box attack: An optimization-
based approach,” in ICML, 2019.

[56] D. Chou and M. Jiang, “Data-driven network intrusion detec-
tion: A taxonomy of challenges and methods,” arXiv preprint
arXiv:2009.07352, 2020.

[57] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, vol. 6, pp.
14 410–14 430, 2018.

[58] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial
attacks on deep-learning models in natural language processing:
A survey,” vol. 11, no. 3, 2020.

[59] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A Python toolbox
to benchmark the robustness of machine learning models,” arXiv
preprint arXiv:1707.04131, 2017.

[60] C. Szegedy et al., “Intriguing properties of neural networks,” in
ICLR, 2014.

[61] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. Nov, 2008.

[62] C. Zhang, R. Li, W. Kim, D. Yoon, and P. Patras, “Driver behavior
recognition via interwoven deep convolutional neural nets with
multi-stream inputs,” IEEE Access, vol. 8, 2020.

[63] C. Zhang and P. Patras, “Long-term mobile traffic forecasting
using deep spatio-temporal neural networks,” in MobiHoc, 2018.

[64] C. Zhang, X. Ouyang, and P. Patras, “ZipNet-GAN: Inferring fine-
grained mobile traffic patterns via a generative adversarial neural
network,” in ACM CoNEXT, 2017.

[65] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning
with a strong adversary. 2015.”

[66] Y. Wu, D. Bamman, and S. Russell, “Adversarial training for
relation extraction,” in Proc. Empirical Methods in NLP, 2017.

[67] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” in ICLR, 2015.

[68] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” ICLR WS, 2017.

[69] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in IEEE CVPR, 2018.

[70] S. Chen, N. Carlini, and D. Wagner, “Stateful detection of black-
box adversarial attacks,” arXiv preprint arXiv:1907.05587, 2019.

[71] S. Bell and K. Bala, “Learning visual similarity for product design
with convolutional neural networks,” ACM Transactions on Graph-
ics (TOG), vol. 34, no. 4, p. 98, 2015.

Chaoyun Zhang is currently a senior researcher
at Tencent Lightspeed & Quantum Studios. He
obtained PhD and MSc degress from the Univer-
sity of Edinburgh, with a focus on machine learn-
ing and mobile networking. He also obtained a
BSc degree from the School of Electronic Infor-
mation and Communications at Huazhong Uni-
versity of Science and Technology, China. His
current research interests include the application
of game AI and data mining.

Xavier Costa-Pérez is ICREA Research Pro-
fessor, Scientific Director at the i2Cat Research
Center and Head of 5G Networks R&D at NEC
Laboratories Europe. His team generates re-
search results which are regularly published
at top scientific venues, produces innovations
which have received several awards for suc-
cessful technology transfers, participates in ma-
jor European Commission R&D collaborative
projects and contributes to standardization bod-
ies such as 3GPP, ETSI NFV, ETSI MEC and

IETF. He has served on the Organizing Committees of several con-
ferences, published papers of high impact and holds tenths of granted
patents. Xavier received his Ph.D. degree in Telecommunications from
the Polytechnic University of Catalonia (UPC) in Barcelona and was the
recipient of a national award for his Ph.D. thesis.

Paul Patras is an Associate Professor in the
School of Informatics at the University of Edin-
burgh, where he leads the Mobile Intelligence
Lab – a multi-disciplinary team that pursues re-
search at the intersection of network engineering
and artificial intelligence, to improve the analy-
sis, resilience, and management of next genera-
tion mobile systems. He is also a co-founder and
CEO of Net AI, a pioneering university spinout
specializing in AI-driven network analytics. He
has served on the organizing committee on sev-

eral conferences and workshops in his field, and advised the ITU-T
Focus Group on Machine Learning for Future Networks including 5G.
Paul holds M.Sc. and Ph.D. degrees from Universidad Carlos III de
Madrid (UC3M) and he was the recipient of a prestigious Chancellor’s
Fellowship awarded by the University of Edinburgh.

	Introduction
	Related Work
	Deep Learning-based NID
	Attacking Deep Learning-based NIDS
	Defending from Adversarial Samples

	Threat Model
	Adversarial Settings
	Domain Constraints

	Dataset
	Training Intrusion Detectors
	One-to-all NID Performance
	One-to-one NID Performance

	Adversarial Attacks against NIDS
	Black-box Adversarial Attack Methods
	Attack Performance in One-to-all Scenario
	Attack Performance in One-to-one Scenario
	Adversarial Samples Analysis
	Cross-Transferability
	Feature-wise MAPE
	t-SNE Visualization

	Defending Against Adversarial Attacks
	Model Voting Ensembling
	Ensemble Adversarial Training (EAT)
	Reinforcing NID with White-box Adversarial Samples
	NID Performance of Post-EAT Models
	Robustness to Old Adversarial Samples
	The Effect of EAT

	Adversarial Query Detection
	Deep Similarity Encoder
	Hyper-parameters Selection
	Query Detection Defense Performance

	Effectiveness of DSE for Query Detection
	Zooming in on Infiltration Traffic
	Effectiveness in Different Landscapes

	Conclusions
	References
	Biographies
	Chaoyun Zhang
	Xavier Costa-Pérez
	Paul Patras

