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1  Introduction
The sixth generation (6G) wireless system will extend the capabilities of the fifth genera-
tion (5G) system to provide services with improved capacity, lower latency and higher 
spectral efficiency. The 6G system will incorporate artificial intelligence (AI)/machine 
learning (ML) technologies to establish intelligent networks with automation in network 
management. Currently, most wireless systems operate at sub-6 GHz frequency bands, 
whereas the millimetre-wave (mmWave) spectrum spans from 30 to 300 GHz which 
can provide greater bandwidths to develop 5G networks [1]. However, mmWave sig-
nals suffer from severe path loss and are vulnerable to blockages [2]. To minimise these 
propagation losses, mmWave networks will employ large-scale antenna arrays to con-
centrate the transmit power into narrow beams such that the received signal power for 
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the desired user is maximised while the interference from other users is minimised [3]. 
To maintain connectivity, the beams at both the transmitter and the receiver are trained 
periodically, where a large amount of signalling overhead results. Conventional beam 
training techniques can be classified into two categories: exhaustive beam search and 
hierarchical beam search. Exhaustive beam search can find the best beam pair(s) at the 
expense of a long training time. Hierarchical beam search, on the other hand, can signifi-
cantly reduce the beam training delay but leads to a higher probability of incorrect beam 
selection [4]. Therefore, there exists a trade-off between the beam training overhead and 
the achievable data rate [5]. In the future 6G systems, the beam training technique can 
benefit from the application of AI/ML to meet the data rate requirement with the beam 
training overhead minimised.

1.1 � Related work

1.1.1 � Conventional beam training techniques

Accurate beam alignment requires the knowledge of optimal signal pointing directions, 
i.e. the angle of arrival/departure (AoA/AoD), which can be estimated using algorithms 
such as the MUSIC (MUltiple SIgnal Classification) algorithm [6]. The work in [7] relies 
on a pair of AoA and AoD estimators to avoid a full scan of the entire beam search space 
when tracking a fast-changing environment. But, [7] does not evaluate the beam train-
ing performance under blockage effects. The research in [8] considers human blockage 
effects and proposes a beam tracking mechanism which can rapidly establish a wire-
less link by estimating the direction of significant paths in the mmWave channel. Alter-
natively, the optimal beam directions can be identified in a testing process by sending 
training signals via candidate beam pairs in different directions [9]. In [2, 10, 11], hier-
archical beam search is investigated, which starts with testing wide beams whose results 
will be used to identify narrower beams for more accurate beam alignment. In [12, 13], 
sub-6 GHz bands are used to extract spatial channel characteristics so that the beam 
training overhead at mmWave bands can be reduced. In [14, 15], mmWave beam man-
agement for vehicular communications is investigated, where the location of the vehicle 
obtained via the Global Positioning System (GPS) is associated with a beam database 
that is established using offline beam training data. To accommodate real-time changes 
in a wireless channel, the beam database will need frequent updating.

1.1.2 � Machine learning‑based beam training techniques

Recently, machine learning (ML) algorithms have drawn lots of attention in wire-
less communication as an alternative approach to optimise the design of communica-
tion networks and replace iterative signal processing algorithms [16]. In [17], the beam 
training problem is treated as a classification problem, where a support vector machine 
(SVM) classifier is trained to select beams. This classifier may become outdated in 
a mobile scenario because it is trained with large amounts of training data obtained 
offline. Deep learning (DL), as a sub-field of ML, has been shown to achieve remarkable 
performance for communication problems such as channel estimation [18] and hybrid 
precoding [19]. DL is capable of extracting useful features from data through a multi-
layer structure known as a deep neural network (DNN). In [20], the DNN acts as a func-
tion approximator to relate a given channel realisation to a beam pair through suitable 
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training. In [21], the concept of hierarchical beam search is considered with the use of 
DL, where the DNN is trained to estimate narrow-beam qualities based on wide-beam 
measurements to reduce the signalling overhead. Either in [20] or [21], the DNN acts as 
a beam classifier whose training will require large amounts of labelled training data that 
needs intensive human labour to collect.

Reinforcement learning (RL), as one category of ML, does not rely on labelled datasets 
and is capable of learning from trial and error during the interaction with the environ-
ment [22]. In [23], multi-armed bandit (MAB), as a simple RL algorithm, is applied to 
choose a set of beams based on past experiences. MAB does not leverage the state of 
the environment, so its ability to adapt the beam selection to the changes in the environ-
ment is very limited. As pointed out in [24], the contextual information on the environ-
ment, such as a receiver’s direction of arrival, is important for the assignment of beam 
resources in a dynamic scenario. In [25], the state of the environment is described by 
the location of a mobile user, where the best beam at each location is updated in a state-
action table. But, many real-world problems are complex and can have continuous state 
or action spaces that cannot be represented accurately in table form. With the applica-
tion of DNN, deep reinforcement learning (DRL) extends the ability of traditional RL 
algorithms to provide more intelligent beam training algorithms. In [26], DRL is used 
to jointly assign the best base station and beam resources to the targeted user based on 
its uplink received power. In [27], DRL can identify the best beam pair for data trans-
mission directly by learning from the environment. To reduce the algorithm complexity, 
[28] considers to use DRL to choose candidate beams for beam training. However, the 
size of the action space in [27] and the size of the state vector in [28] both scale with the 
number of antenna elements, which can increase the training time for the DNN when 
a mmWave system is considered. In [29], DRL is used to switch to a backup beam list 
when blockages are detected in a mmWave network. However, the backup beam lists are 
created using offline training data, which may not accurately reflect the real-time chan-
nel conditions.

1.2 � Motivations and contributions

Based on our work in [30], we observe that the wireless channels of a user that moves 
within a local area are spatially consistent. This means that they have similar channel 
properties in space, such as correlated AoAs/AoDs, which can be utilised to reduce the 
number of beam combinations to be tested for data transmission. This spatial consist-
ency property can be violated if there are dynamic scattering objects or random blockers 
in the channel, where more beams should be trained to maintain the connection with 
good data rates. In summary, the spatial correlation between consecutive channel reali-
sations, associated with environmental changes, can largely affect the amount of beam 
training overhead for mobile mmWave channels.

In this paper, we propose a novel beam training algorithm via DRL for mmWave 
channels with receiver mobility, where the base station (BS) can process histori-
cal channel measurements and automatically control the amount of beam training 
overhead according to the state of the environment. The channel measurements are 
obtained from an online learning process. Two performance metrics are evaluated, 
respectively, which are energy efficiency (EE) and spectral efficiency (SE). The DRL 
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model includes both network configurations for EE and SE, either of which can be 
switched on based on user parameters. Using DRL, the proposed beam training algo-
rithm can estimate the maximum EE or SE subject to a controlled amount of beam 
training overhead. The DRL-based beam training approach was initially developed in 
our previous work in [31], where only one RF chain is used for analog beamforming 
and SE is the main performance metric evaluated. In this paper, we enhance the beam 
training approach by enabling spatial multiplexing and incorporate EE as one per-
formance metric for system power control. The main contributions of this paper are 
summarised as follows:

•	 A novel DRL-based beam training algorithm is proposed, where the DNN learns 
from historical beam measurements to switch between different beam training 
techniques in order to maximise the expected long-term reward. A flexible reward 
model is proposed to control the balance between performance and the beam 
training overhead so that the DRL model can be trained to meet the power or data 
rate requirement of different applications.

•	 An EE/SE maximisation beam training strategy is proposed, which can maxim-
ise the EE or SE for data transmission by controlling the number of activated 
RF chains. The EE/SE maximisation strategy is included in the DRL-based beam 
training algorithm.

The proposed DRL-based beam training algorithm is evaluated under different lev-
els of random blockages, where separate DRL models are trained to learn long-term 
and short-term beam training policies, respectively. Simulation results show that with 
significant levels of blockages, a long-term beam training policy can maintain higher 
data rates by monitoring the average performance over multiple packet transmissions.

Notations: A , A , a and a represent a set, a matrix, a vector and a scalar, respectively. 
The transpose and complex conjugate transpose of A are AT and AH , respectively; |A| 
is the determinant of A ; [A]n denotes the n-th column vector in A ; IN  is the N × N  
identity matrix; CN (a, b) denotes a complex Gaussian distribution with mean a and 
variance b; E[·] denotes the expectation; C , R and Z+ denote the sets of complex num-
bers, real numbers and integer numbers, respectively;A ∈ C

N×M denotes the N ×M 
matrix with complex entries.

2 � System model and performance metrics
The 3rd Generation Partnership Project (3GPP) TR 38.901 channel model is used to 
model multiple-input-and-multiple-output (MIMO) channels at mmWave frequency 
bands [32]. The 3GPP channel model is a geometry-based stochastic channel model 
but crucially can model the effects of receiver mobility. The spatial consistency Pro-
cedure A in [32] is implemented to generate realistic channel impulse response sam-
ples when the receiver moves. In this work, we assume non-line-of-sight (NLOS) 
transmission with L spatial clusters in the channel. In the 3GPP channel model, each 
cluster consists of M non-resolvable multipath components. We denote the channel 
matrix for the l-th cluster at time t as Hl(t) . The (u, v)-th entry in Hl(t) is given by [32]
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where Pl is the power of the l-th cluster, the vectors [FRX
u,θ (·), FRX

u,φ (·)]T and 
[FTX

v,θ (·), FTX
v,φ (·)]T represent the receive and transmit antenna patterns, respectively, κl,m 

is the cross-polarisation power ratio for the m-th multipath component in the l-th clus-
ter, the initial random phases �αβ

l,m are given for all possible polarisation combinations 
αβ = {θθ , θφ,φθ ,φφ} of the channel, the receive and transmit array response vectors 
are given by ej

2π
�0

rTRX,l,mdRXu  and ej
2π
�0

rTTX,l,mdTXv  , respectively, and the last term ej
2π
�0

rTRX,l,mvt 
accounts for the Doppler shift given the velocity v . For detailed information on the 3GPP 
TR 38.901 channel model, please refer to [32]. In this work, we consider an orthogonal 
frequency-division multiplexing (OFDM) system with N subcarriers, where the length of 
the cyclic prefix (CP) should be longer than the channel impulse response. The channel 
matrix at subcarrier k is obtained via the Discrete Fourier Transform (DFT) as

2.1 � Blockage model

To model the blockage effects at mmWave frequency bands, we adopt a simple proba-
bilistic blockage model, as shown in Fig. 1, which is adapted from the Markov chain 
blockage model in [33]. The signal blockage event at time t is modelled by a Bernoulli 
distribution as XB(t) ∼ Bernoulli(̺) , where XB(t) represents the current blockage 
state that takes the discrete value of 1 (blocked) or 0 (unblocked) and ̺ is the state 
transition probability also called the blockage probability. We assume that the block-
age is caused by a single human blocker which is independently applied to each spa-
tial cluster. The power of any blocked cluster is attenuated by G = 20 dB [33]. At time 
t, the channel matrix for the l-th cluster, after the blockage model is applied, can be 
expressed as

(1)

hu,v,l(t) =
Pl

M

M

m=1

FRX
u,θ θl,m,ZoA,φl,m,AoA

FRX
u,φ θl,m,ZoA,φl,m,AoA

T

·
ej�

θθ
l,m κ−1

l,me
j�

θφ

l,m

κ−1
l,me

j�
φθ

l,m ej�
φφ

l,m

· FTX
v,θ θl,m,ZoD,φl,m,AoD

FTX
v,φ θl,m,ZoD,φl,m,AoD

· ej
2π
�0

rTRX,l,mdRXu · ej
2π
�0

rTTX,l,mdTXv · ej
2π
�0

rTRX,l,mvt
,

(2)H(k , t) =
L−1
∑

l=0

Hl(t)e
−j 2π lN k , k = 1, 2, . . . ,N .

Fig. 1  The Markov chain-based blockage model XB(t)
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where Al ∈
{

1, 1
10G/10

}

 is the power attenuation factor which is sampled from a uniform 

distribution on a per-cluster basis.

2.2 � Signal model

Consider a single-user mmWave MIMO system for the downlink shown in Fig. 2. The BS 
with NTX antennas communicates NS data streams to the user equipment (UE) with NRX 
antennas. The BS and the UE are assumed to be equipped with NTX

RF  and NRX
RF  RF chains, 

respectively, such that NS ≤ NTX
RF ≤ NTX and NS ≤ NRX

RF ≤ NRX . For simplicity, we con-
sider NTX

RF  and NRX
RF  to be the number of activated RF chains at each end of the link and set 

NS = NTX
RF = NRX

RF = NRF . At the BS, the RF chains are controlled by digital switches S1 
and S2 , while at the UE, the RF operations are controlled by switches S3 and S4 . We con-
sider Butler matrix-based beamforming networks to achieve precoding in the RF domain in 
pre-defined directions for both BS and UE [34]. The beamforming networks F  and W are 
represented by DFT matrices whose column vectors are analog beamformers of constant 
modulus and controlled phases. Each RF chain at the BS or UE is connected to one of the 
NTX or NRX input ports of the DFT matrix via switches S2 or S3 such that every beam-
former in F  or W can be selected. The analog beamformers in F  and W are frequency-
independent, i.e. same for all subcarriers [35]. We assume that the transmitter does not 
know the channel, so it allocates the transmit power uniformly among streams and also 
subcarriers, where FBB(k) = INS . This work focuses on the beam selection and EE/SE maxi-
misation, where the detailed processing at the receiver is not specified. To simplify the cal-
culation, we assume that a maximum likelihood detector is used at the UE, which leads to 
WBB(k) = INS . The proposed beam training algorithm can be extended to account for the 
effects of any practical precoding and detection scheme.

At the BS, the transmitted symbol vector s(k , t) ∈ C
NS×1 is weighted by an NTX × NS pre-

coder F , where each weight vector [F]n ∈ C
NTX×1 is selected from F  with n = 1, 2, . . . ,NS . 

At the UE, an NRX × NS combiner W is used to combine NRX received signals via RF paths 
to maximise the received signal power. Each weight vector in W is chosen from W . At time 
t, the combined signal at subcarrier k is given by

where y(k , t) is the NS × 1 received symbol vector, ρ(t) is the received power, s(k , t) is 
the transmitted symbol vector such that E[s(k , t)sH(k , t))] = 1

NS
INS , and n(k , t) is the 

(3)H
B
l (t) =

{√
Al .H l(t), XB(t) = 1
H l(t), XB(t) = 0

(4)y(k , t) =
√

ρ(t)WHH(k , t)Fs(k , t)+WHn(k , t),

Fig. 2  The fully connected hybrid beamforming architecture for a MIMO-OFDM system
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NRX × 1 Gaussian noise vector whose entries are distributed as CN (0, σ 2
n ) . We use DFT-

based codebooks FNTX×P and WNRX×Q at the BS and the UE, respectively. For a uniform 
rectangular array (URA) with W and H antenna elements in the horizontal and verti-
cal dimensions, respectively, the beamformer can be obtained via the Kronecker prod-
uct of the weight vectors in both dimensions [36]. For instance, the precoding vector 
fp ∈ FNTX×P with p = 1, 2, . . . ,P can be generated as

where ⊗ represents the Kronecker product, b = 1, 2, . . . ,W  and s = 1, 2, . . . ,H are the 
indices of weight vectors in the azimuth and elevation dimensions, respectively, and 
NTX = WH . As a result of the Kronecker product, the unitary beam index p is encoded 
as p = (b− 1)H + s . The combining vector wq ∈ WNRX×Q with q = 1, 2, . . . ,Q can be 
generated in a similar fashion. Specifically, we set P = NTX and Q = NRX . In this paper, 
we refer to a MIMO channel by its antenna configurations as an NRX × NTX MIMO 
channel.

2.3 � Performance metrics

The proposed beam training algorithm is to achieve one of the following two objectives:

•	 DRL-EE The DNN is trained to select the best beam training method to maximise 
the long-term expected reward, where the reward function is a weighted sum of 
the EE in bit/Joule and the beam training overhead.

•	 DRL-SE The DNN is trained to select the best beam training method to maximise 
the long-term expected reward, where the reward function is a weighted sum of 
the SE in bit/s/Hz and the beam training overhead.

The performance metrics SE and EE are defined as follows, respectively.

2.3.1 � Spectral efficiency (SE)

The SE is computed when averaged over N subcarriers, which is given by

The dimensions of beamforming matrices F and W are NTX × NRF(t) and NRX × NRF(t) , 
respectively, with 1 ≤ NRF(t) ≤ min(NTX,NRX) . The variable NRF(t) represents the 
number of RF chains activated at time t, which can change over time to target the maxi-
mum achievable EE or SE.

(5)
fp = 1√

NTX

[

e−j2π0 b
W , e−j2π1 b

W , . . . , e−j2π(W−1) b
W

]T

⊗
[

e−j2π0 s
H , e−j2π1 s

H , . . . , e−j2π(H−1) s
H

]T
,

(6)

R(t) = 1

N

N
∑

k=1

log2

∣

∣

∣

∣

INS +
ρ(t)

σ 2
nNS

WHH(k , t)F

·FHHH(k , t)W
∣

∣

∣
bit/s/Hz,

F ∈ FNTX×NTX ,W ∈ WNRX×NRX .
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2.3.2 � Energy efficiency (EE)

The EE measures the number of bits delivered per unit of energy, which is given by

where B is the channel bandwidth in hertz (Hz) and P(t) is the total power consump-
tion in Watt (W). We adopt the power consumption model used in [37], where the total 
power is computed as

where µ is the amplifier efficiency with 0 < µ ≤ 1 , PRF and PPS are the 
power required per RF chain and per phase shifter, respectively, and 
Pconstant � NTXPTX + NRXPRX + 2Pcommon accounts for the fixed power consumption, 
where PTX and PRX are the power for each transmit and receive antenna, respectively, 
and Pcommon is the common power required at both ends of the link for running the sys-
tem. The parameters for the power consumption model can be found in Table 1. The EE 
and SE evaluations are considered to account for the data transmission phase.

3 � Methods
In this section, we first introduce the DRL-based beam training framework and its algo-
rithm. Then, the EE/SE maximisation beam training strategy that is used in the DRL 
algorithm is developed. Finally, we provide three alternative beam training approaches 
for performance comparison.

3.1 � Deep reinforcement learning‑based beam training algorithm

In this subsection, we first introduce the general framework of the DRL-based beam 
training algorithm. Then, the DRL learning environment is described, where the beam 
tracking process is modelled as a RL process. Finally, the detailed DRL algorithm is 
given.

3.1.1 � DRL‑based beam training framework

In Fig. 3, the block diagram of the complete DRL-based beam training framework is 
presented. In order to improve performance while suppressing the beam training 
overhead, a EE/SE maximisation beam training strategy is designed in the DRL algo-
rithm. Firstly, the DRL block selects a beam training method from multiple candidate 

(7)E(t) = B× R(t)

P(t)
bit/Joule,

(8)
P(t) =ρ(t)

µ
+ NRF(t)(PRF + NTXPPS)

+ NRF(t)(PRF + NRXPPS)+ Pconstant,

Table 1  Parameters for the power consumption model [38]

Parameters Values

Common power Pcommon 10 W

Power per RF chain PRF 100 mW

Power per transmit or receive antenna PTX or PRX 100 mW

Power per phase shifter PPS 100 mW
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beam training methods based on historical channel measurements. Then, the selected 
beam training method is implemented as the first step in the EE/SE maximisation 
strategy. Based on the beam training results, the estimated number of RF chains to 
achieve the maximum EE or SE 

(

denoted asNEE,⋆
RF or N SE,⋆

RF

)

 , as given by N̂EE
RF  or N̂ SE

RF , 

can be obtained. Next, multiple beam pairs corresponding to NEE,⋆
RF  or N SE,⋆

RF  RF chains 
can be selected to create beamforming matrices F and W for data transmission. 
Finally, the beam measurements obtained in the EE/SE maximisation strategy is fed 
back to the DRL block in order to select the suitable beam training method for the 
next time step. The candidate beam training methods used in the DRL block will be 
introduced in Sect. 3.2.1.

The DRL block can switch between DRL-EE and DRL-SE configurations based on 
the current system status, including parameters such as the downlink queue state for 
the UE or its battery state. For instance, when the UE’s packet queue is backlogged, 
the mode of DRL-SE is switched on to communicate more data using spatial multi-
plexing. Alternatively, if the battery state of the UE is low, e.g. below 50%, DRL-EE 
is activated to save energy for the UE. The UE will report its parameters back to the 
BS when requested. This paper will not discuss further the switching mechanism but 
will instead focus in more detail on the performance of both DRL-EE and DRL-SE 
schemes to demonstrate their effectiveness.

3.1.2 � RL learning framework

In RL, an agent will take a certain action given the current state of the environment. A 
reward is received immediately from the environment in response to the action [22]. 
The proposed DRL-based algorithm is implemented at the BS, which is treated as the 
agent, since it monitors the link quality and selects the best beam training method 
accordingly. Figure 4 presents the RL process implemented in the DRL block for the 
proposed beam training algorithm. The key components of a RL framework, i.e. the 
environment, state, action and reward, are defined as follows.

Fig. 3  The block diagram of the proposed DRL-based beam training framework
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3.1.3 � Environment

The simulation environment is demonstrated in Fig. 5, where the UE is randomly placed 
in the cell and moves in a random direction at a constant speed. We assume that packet 
transmission takes place periodically at every �τ = 0.1 s, as indicated by the black dots 
(transmission steps) over the UE’s trajectory in Fig. 5. To exploit the spatial consistency 
of the mobile channel, the proposed DRL beam training algorithm is only implemented 
at time intervals of random multiples of �τ , as labelled by the green crosses (beam train-
ing steps) in Fig. 5. The sampling period between adjacent “green crosses” is assumed 
to be no more than 1 s. For communication in-between “green crosses”, the same beam 
pairs used previously are considered for data transmission. At the beginning of the tra-
jectory, the UE is assumed to be connected to the BS for the first time, where exhaus-
tive beam search is activated to scan all NTXNRX beam combinations to obtain x initial 
strongest beam pairs for tracking. For the path followed by the UE, prior to selecting the 
beam training method using DRL, the current channel condition is estimated using x 
tracked beam pairs that are known to both BS and UE. This result is called a “pre-assess-
ment”, which will be used in the selection of beam training method.

3.1.4 � State

The current state of the environment is represented by features extracted from the beam 
measurements of past T time steps. In this work, we treat a time step as a beam training 
step. To be specific, the state consists of four components:

Fig. 4  The RL process in the DRL block for the proposed beam training algorithm

Fig. 5  An illustration of the simulation environment
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•	 The EE or SE values ut ∈ R
T+1 , depending on which performance metric is con-

sidered. The EE or SE can reflect the joint impact of the channel condition, the 
number of RF chains used and the selected beam training method. For EE, the 
vector ut is given by ut = [Et−T ,Et−T+1, . . . ,Et−1, Ēt ]T , where the first T entries 
are the EE achieved at the past T time steps, and the last entry Ēt is the EE tested 
via the pre-assessment at the current time step t. For SE, the vector ut is given by 
ut = [Rt−T ,Rt−T+1, . . . ,Rt−1, R̄t ]T , which contains the corresponding (T + 1) SE 
values.

•	 The number of RF chains nt ∈ R
T+1 , which provides additional informa-

tion on the resulting EE or SE in the vector ut . The vector nt is given by 
nt = [N ⋆

RF,t−T,N
⋆
RF,t−T+1, . . . ,N

⋆
RF,t−1, N̄

⋆
RF,t]T , where N ⋆

RF,t is equivalent to either 
NEE,⋆
RF  or N SE,⋆

RF  depending on which mode is switched on. The last element N̄ ⋆
RF,t is 

set to N̄ ⋆
RF,t = x , which always represents the number of tracked beam pairs that are 

used to perform the pre-assessment at the current time step t.
•	 The indices of selected beam training methods at ∈ R

T+1 , i.e. the indices of selected 
actions, which label the chosen beam training method to its achieved EE or SE value 
in the vector ut . The vector at is given by at = [at−T , at−T+1, . . . , at−1, āt ]T , where 
āt is a constant value representing the operation of performing the pre-assessment at 
time t. The actions and their indices are introduced in the next subsection.

•	 The spacings between adjacent beam training steps dt ∈ R
T+1 , which imply the 

spatial correlation between channels at different locations. The vector dt is given by 
dt = [dt−T , dt−T+1, . . . , dt−1, dt ]T , where dt is the distance in metres from the sam-
ple taken at time t to the previous one taken at time (t − 1) . In practice, the acquisi-
tion of dt requires the use of a UE’s GPS. Alternatively, this feature can be replaced 
with temporal sampling intervals between adjacent beam training steps. The vector 
dt can also be treated as equivalent to implementing the beam training algorithm at 
uniform time intervals with the UE moving at a varying speed over time. s

Finally, the state vector is given by a real-valued stacked vector as

where the vectors ut and dt contain continuous values, whereas the elements in vectors 
nt and at are discrete values.

3.1.5 � Action

The action is to select a beam training method that will be implemented in Stage 1 of 
the EE/SE maximisation beam training strategy as described in Sect. 3.2. The action is 
designed based on the local beam training techniques that were proposed in our pre-
vious work in [30]. In [30], two beam training techniques are developed with different 
numbers of candidate beams to be tested for data transmission, which are called Local 
Search 1 and Local Search 2, respectively. The technical details of Local Search 1 and 
Local Search 2 are described in Sect. 3.2.1. For the DRL model, we consider that one of 
the following four beam training methods A–D can be selected: 

(9)st = [uTt ,nT
t , a

T
t ,d

T
t ]T,
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(A)	Use x tracked beam pairs for data transmission without any beam training.
(B)	 Implement Local Search 1 at both the BS and the UE.
(C)	Implement Local Search 2 at the BS and Local Search 1 at the UE.
(D)	Implement exhaustive beam search at both the BS and the UE.

The action space A is discrete and defined to be the set of the indices of four actions, 
which take values uniformly from increasing integers within the range [−3, 3] , i.e. 
A = {−3,−1, 1, 3} . The pre-assessment is in fact obtained by taking action A, so the 
constant āt in the vector at is always set to āt = −3.

3.1.6 � Reward

The agent is trained to learn a policy that maximises the long-term expected reward 
during the interaction with the environment [22]. In this work, we focus on mini-
mising the beam training overhead while achieving good EE or SE performance for 
a mobile UE. In other words, we aim at optimising the trade-off between the beam 
training overhead and the achievable EE or SE. The reward is defined to reflect 
such a balance, which will be maximised during the training process for the DNN. 
It is allowed to have small and acceptable performance degradation due to reduced 
beam training time in exchange for more transmission time. The beam training time 
will increase with more beams tested for data transmission. We assign a “penalty” 
to each beam training method (i.e. action) to represent its training overhead. The 
penalty for the i-th beam training method is denoted as Ui , which is a nonnegative 
value associated with the number of beam measurements required. The penalty val-
ues are obtained from simulations, which will be explained in Sect. 4.1. As a result, 
the reward function for the DRL-EE case is given by

where Ei(t) is the EE achieved using the i-th beam training method and α is called the 
trade-off factor which controls the balance between the achievable EE and the beam 
training overhead required. Similarly, for the case of DRL-SE, the reward function is 
given by

The reward in Eqs. (10) or (11) provides the flexibility of weighting the significance of 
the performance metric in the selection of beam training method. By tuning the value 
of α , the agent can be trained to achieve different levels of performance for different 
applications. Consider the SE metric for instance. For applications that require high 
transmission rates such as high-definition video streaming, a larger trade-off factor is 
preferable because a higher data rate is more important than the beam training delay. 
In other words, it is worthwhile to spend a longer training time in order to find the 
beams with the highest SNR. On the other hand, a smaller trade-off factor can be con-
sidered for applications where the data rate may be less significant, such as voice-only 
communication.

(10)rEEi (t) = αEi(t)− (1− α)Ui, 0 ≤ α ≤ 1, i = 1, 2, 3, 4,

(11)rSEi (t) = αRi(t)− (1− α)Ui, 0 ≤ α ≤ 1, i = 1, 2, 3, 4.
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3.1.7 � DRL‑based adaptive beam training algorithm

The goal of a RL agent is to learn a policy π which maps each state vector st to its action 
at according to the probability π(at |st) . An optimal policy π⋆ is to maximise the expected 
long-term reward which is assessed by the state-action value, also known as the Q-value 
[22]. The Q-value, for any given policy π , is given by

where rt is the reward in Eqs. (10) or (11). In RL, Q-learning is one of the most popular 
algorithms to learn an optimal policy, where the Q-value is updated as follows [22]:

where η is the learning rate, r is the immediate reward that is equal to Eqs. (10) or (11), γ 
is the discount factor which controls how much future rewards are considered when tak-
ing an action, and Q(s′, a′) is the resulting Q-value after the action a is taken for the state 
s . Typically, Q-learning updates the Q-value in a lookup table which guides the agent to 
find the best action in each state. However, tabular Q-learning only applies to discrete 
and finite state spaces. To handle continuous state spaces, i.e. the vectors ut and dt in 
Eq. (9), we use a DNN to estimate the Q-value for each state vector st and its action 
at . The architecture of the DNN is shown in Fig. 6, which consists of five input paths 
and one output path. Four of the input paths propagate four feature components in the 
state vector st , and the other path inputs the selected action at . The estimated Q-value 
is delivered as the output. We develop the beam training algorithm based on the deep 
Q-network (DQN) algorithm proposed in [39]. For more stable and reliable learning, a 
double-DQN structure is considered to predict the Q-value. One DNN, known as the 
critic network Q(s, a) , is to execute the action and compute the varying Q-value. The 
other DNN, known as the target network Q′(s, a) , is updated periodically using the 
parameters transferred from Q(s, a) [40]. The DRL-based adaptive beam training algo-
rithm is summarised in Algorithm 1. Each training episode contains a random trajectory 
of the UE, which consists of T ′ beam training steps/samples and ends at a terminal state 
when t = T ′.

(12)Qπ (s, a) = Eπ [rt | st = s, at = a],

(13)Q(s, a) ← Q(s, a)+ η

[

r + γ max
a′

Q(s′, a′)− Q(s, a)

]

,

Fig. 6  The architecture of the DNN in use
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3.2 � Energy efficiency and spectral efficiency maximisation beam training strategy

In this subsection, we first introduce the local beam training methods proposed in our 
previous work [30], which are used in the EE/SE maximisation scheme. Then, the EE/
SE maximisation-based beam training strategy is described in detail. Finally, the beam 
training overhead for each of actions A–D used in the DRL algorithm is discussed.

3.2.1 � Local beam training method

The spatial sparsity and clustered characteristics of mmWave channels have been thor-
oughly discussed in many papers such as [2] and [41], which demonstrate that only a 
few paths in the channel have high amplitudes. This implies that a full sweep of the 
entire beam space can be avoided to save time for data transmission. In [30], a local 
beam training method is proposed for mmWave systems with full-dimensional beam-
forming, which can significantly reduce the beam training time by searching only the 
adjacent beams to the one recently used. Specifically, two local beam training methods 
are introduced, which are Local Search 1 and Local Search 2. For demonstration, the 
beam training process is explained for the BS, while a similar process is implemented at 
the UE simultaneously. In Fig. 7a, b, the beam search regions in the transmit codebook 
FNTX×NTX for Local Search 1 and Local Search 2 are presented, respectively. The red box 
represents the best beam f⋆t−1 used at the previous time step (t − 1) , which is mapped to 
the third azimuth beam and the sixth elevation beam. The beam f⋆t−1 is tracked over time 
and used to provide candidate beams for training at the current time step t. For Local 
Search 1, we train the 3× 3 beams that are closest to f⋆t−1 in both azimuth and elevation 
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dimensions, i.e. f⋆t−1 plus those coloured in blue, as shown in Fig. 7a. For Local Search 
2 in Fig. 7b, the beam search region is expanded to include the 5× 5 beams that are ±2 
beams to f⋆t−1 in both dimensions, where the extra beams are highlighted in green. In 
this paper, we assume that both BS and UE use URAs to account for the effects of eleva-
tion beamforming, where the size of the URA is larger than 3-by-3.

3.2.2 � EE/SE maximisation beam training strategy

The key to the EE/SE maximisation strategy is to control the number of activated RF 
chains based on the current channel conditions. As the number of activated RF chains is 
increased from zero in a linear manner, the EE typically increases first due to the growth 
in the SE and beyond an optimum point decreases rapidly because of the increas-
ing amount of energy consumed by RF circuits [42]. On the other hand, the SE also 
increases as more RF chains are switched on, and beyond a certain number of RF chains 
it will again start reducing. This is caused by the equal power allocation scheme, where 
some of the transmit power is distributed to less significant paths [35]. Thus, for either 
EE or SE, there exists an optimal operating point (i.e. the optimal number of RF chains), 
at which the maximum EE or SE denoted as Emax or Rmax can be achieved. Inspired by 
the beamforming protocol introduced in IEEE 802.11ay [43], we propose a two-stage 
beam training strategy for EE/SE maximisation. Stage 1 obtains channel measurements 
via a single RF chain and provides candidate beam pairs for estimating Emax or Rmax . 
Stage 2 achieves Emax or Rmax by finding the optimal number of RF chains NEE,⋆

RF  or N SE,⋆
RF  

through a performance testing process. For clarity, the time index t is omitted in this 
section. 

(a)	 Stage 1 (Single-RF Chain Beam Scanning) To support multi-stream communication 
with spatial multiplexing, we consider to track x strongest beams at both the BS 
and the UE in order to capture significant reflected paths in the mmWave channel, 
where 1 ≤ x ≤ min(NTX,NRX) . In Stage 1, a single RF chain is activated at the BS 
(via switches S1 ) and also at the UE (via switches S4 ). The beam training method 
selected by the DRL block is implemented for each tracked beam pair (via switches 
S2 and S3 ) as indicated in Fig. 7, where the channel gain for each beam combination 

Fig. 7  Examples of candidate beams for Local Search 1 and Local Search 2, respectively. a Local Search 1. b 
Local Search 2
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(fn,wn) is evaluated and averaged over N subcarriers. As a result, the average chan-
nel gain after normalised by the received signal-to-noise ratio (SNR) is given by 

 where νk ,n = wH
n H(k)fn represents the effective channel at subcarrier k for the n-

th beam combination. All measured beam combinations are ranked in the descend-
ing order of the average channel gain νn . To avoid rank-deficient channels for spa-
tial multiplexing, the selected beams at both sides of the link must be different from 
one another. Hence, the beam combinations which have the same transmit beams 
or receive beams are removed from the set of candidate beam pairs, which leads to 
a candidate beam database whose size J is no larger than min(NTX,NRX) . Table 2 
provides an example of the candidate beam database for a 16× 64 MIMO chan-
nel, which can support up to J = 15 spatial streams. Based on the measurements in 
Table 2, an initial estimation can be made on Emax or Rmax without a channel esti-
mation process. This estimate can provide a reference operating point to test dif-
ferent beam pairs in Table 2 in order to find Emax or Rmax . With beamforming, the 
physical MIMO channel is decomposed by orthogonal DFT beams into the beam 
domain, where the channel gain for each beam pair νk ,n = wH

n H(k)fn can be treated 
as a beam-domain basis for the MIMO channel. Following a similar approach in 
[38] of simplifying the calculation of SE, we can approximate the SE using the beam 
measurements as 

 Given the available data in Table 2, the SE is further approximated as 

(14)νn = 1

N

N
∑

k=1

∣
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∣
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N
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,
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∣
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)

bit/s/Hz.

Table 2  An example of the candidate beam database for spatial multiplexing for a 16× 64 MIMO 
channel

The indices p and q are the beam indices in codebooks FNTX×NTX and WNRX×NRX , respectively

Beam pair no. n BS beam index p UE beam index q Average 
channel gain 
νn (dB)

1 18 4 14.39

2 6 1 9.66

3 17 7 8.43

4 62 5 4.83

... ... ... ...

15 16 10 − 36.34
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 By treating R̂ as a function of NRF , the number of RF chains required to achieve the 
maximum estimated SE is given by 

 Similarly, the number of RF chains required for the maximum estimated EE is 
given by 

 where P(NRF) is computed using Eq. (8).
(b)	 Stage 2 (Multi-RF Chain Performance Testing) Based on N̂ SE

RF in Eq. (17) or N̂EE
RF  in 

Eq. (18), the maximum SE or EE can be found by testing different beam pairs in 
Table 2 using training signals. Consider the EE metric as an example. Firstly, N̂EE

RF  
RF chains are activated at both the BS and the UE, and connected to the beam pairs 
in Table 2 from n = 1 to n = N̂EE

RF  . The resulting EE, denoted as E(N̂EE
RF ) , is evalu-

ated and stored in the database. Then, one more RF chain is activated and con-
nected to the n =

(

N̂EE
RF + 1

)

-th beam pair. The EE value is tested again using train-

ing signals. If the EE reduces, i.e. E(N̂EE
RF + 1) ≤ E(N̂EE

RF ) , it means that NEE,⋆
RF = N̂EE

RF  
and Emax = E(NEE,⋆

RF ) , where the beam training process will stop, as indicated by 
the red cross in Fig.  3. Otherwise, this training process is repeated until the EE 
starts reducing or all J beam pairs in Table 2 are used to estimate Emax . The same 
performance testing process can be implemented for the SE metric to obtain N SE,⋆

RF  
and Rmax = R(N SE,⋆

RF ).

Stage 2 is developed based on the assumptions that N̂EE
RF ≤ NEE,⋆

RF  and N̂ SE
RF ≤ N SE,⋆

RF  , 
which we have found holds true for over 90% of 50000 random channel realisations 
modelled by the 3GPP TR 38.901 channel model described in [32]. For the cases that do 
not satisfy the assumptions, Stage 2 is still applicable and finally sets NEE,⋆

RF = N̂EE
RF  and 

N SE,⋆
RF = N̂ SE

RF . The EE/SE maximisation beam training algorithm is summarised in Algo-
rithm 2, where N ⋆

RF is equivalent to either NEE,⋆
RF  or N SE,⋆

RF .

3.2.3 � Discussions on beam training overhead

In this paper, we evaluate the beam training overhead by the average number of beam 
measurements required for a single beam training step. The main proportion of the 
beam measurements required in the EE/SE maximisation strategy is dependent on 
which beam training method is selected in the DRL block to perform the single-RF 
chain beam scanning in Stage 1, as shown in Fig. 3. As described in Sect. 3.1.5, given 
that x beams are tracked over time, the number of beam measurements resulted by tak-
ing actions A–D is summarised in Table 3. On the other hand, Stage 2 only results in a 

(16)R̂ ≈
NRF
∑

n=1

log2

(

ρ

σ 2
nNRF

νn

)

bit/s/Hz.

(17)
N̂ SE
RF = argmax NRF

R̂(NRF),

s.t.NRF = 1, 2, . . . , J, 1 ≤ J ≤ min(NTX,NRX).

(18)
N̂EE
RF = argmax NRF

Ê(NRF) = argmax NRF

B× R̂(NRF)

P(NRF)
,

s.t.NRF = 1, 2, . . . , J, 1 ≤ J ≤ min(NTX,NRX),
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small number of measurements in the performance testing process, which depends on 
the estimated number of RF chains given in Eqs. (17) or (18). For instance, if N̂EE

RF = 6 
and NEE,⋆

RF = 8 , Stage 2 will need 6+ 7+ 8+ 9 = 30 MIMO measurements to find the 
maximum EE. As a result, if beam training method B is selected in the DRL block, the 
total number of beam measurements required for the EE/SE maximisation strategy is 
(((9× 9)x + x)+ 30) . Stage 2 can be considered as an optional step by the system 
designer, whose effects will be discussed with simulation results in Sect. 4.5.

3.3 � Alternative beam training strategies for benchmarking

This paper focuses on controlling the amount of beam training overhead required for dif-
ferent channel conditions while maintaining good performance of EE or SE. This objec-
tive is achieved by switching between different beam training methods based on the 
channel measurements. The compared algorithms also target the performance-overhead 
trade-off by controlling how frequently different beam training methods are selected. In 
this subsection, we provide three alternative beam training strategies to benchmark the 
performance of Algorithm 1.

Table 3  Maximum number of beam measurements (BM) required for beam training methods 
(actions) A–D with x beams tracked over time

Beam training methods Maximum no. of BM

A x

B (9× 9)x + x

C (25× 9)x + x

D NTXNRX + x
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3.3.1 � Multi‑armed Bandit‑based beam training strategy

Multi-armed bandit (MAB) problems are some of the simplest RL problems. The 
agent chooses from multiple actions (“bandits”) with each action providing an 
unknown reward. The goal is to maximise the expected cumulative reward, also 
known as the action value [22]. The action value Vt is updated as follows [22]:

where 0 < η′ ≤ 1 is the step-size parameter and rt is the immediate reward in Eqs. (10) 
or (11). One of the most popular MAB algorithms is the ǫ-greedy strategy, where a ran-
dom action is taken with probability ǫ and the action with the highest current action 
value is chosen with probability (1− ǫ) . In contrast to Eq. (13), MAB does not exploit 
the state of the environment when updating the action value Vt . The MAB-based algo-
rithm is implemented as a baseline to demonstrate the benefits of contextual informa-
tion on the action choices.

3.3.2 � Maximum reward beam training strategy

The Maximum Reward strategy selects the best beam training method in a brute-
force manner. At each time step, all beam training methods A–D are tested indi-
vidually for the current channel, and the one with the highest immediate reward is 
selected for beam training, i.e. iMR = argmax iri(t), i = 1, 2, 3, 4 , where ri(t) is the 
reward defined in Eqs. (10) or (11). In contrast to DRL, Maximum Reward focuses 
only on the immediate reward for the current channel condition, without consider-
ing the future rewards. Thus, Maximum Reward always finds the best beam training 
method with the highest immediate reward, at the cost of a huge amount of signalling 
overhead in practical use. This scheme is not practical in a real environment, but it is 
included in this paper as a baseline for comparison.

3.3.3 � Randomised beam training strategy

Finally, we implement a simple selective beam training strategy which randomly 
selects a beam training method from A to D. Every one of beam training methods 
A–D is selected with equal probability 25% . This randomised strategy is implemented 
to demonstrate that for different channel states, different beam training methods are 
needed correspondingly in order to achieve a good performance-overhead trade-off, 
and our proposed Algorithm 1 can find the most suitable beam training method that 
is beneficial from a long-term perspective for a mobile UE.

In summary, we notice that DRL learns from historical channel measurements and 
selects the beam training method by taking the future benefits into account, whereas 
Maximum Reward takes actions solely based on the current channel measurements. 
Both DRL and Maximum Reward provide deterministic beam training polices. On 
the other hand, neither MAB nor the randomised approach exploits channel meas-
urements or environmental states, and both provide policies that select the beam 
training method in a stochastic manner.

(19)Vt+1 = Vt + η′[rt − Vt ],
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4 � Results and discussions
In this section, the performance of the proposed DRL-based beam training algorithm 
is evaluated, where the trade-off factor α , defined in Eq. 10 and Eq. 11, is the key tun-
ing parameter for performance evaluation. The performance metrics introduced in 
Sect. 2.3, i.e. SE and EE, are evaluated, respectively. On the other hand, the training 
overhead of the proposed beam training algorithm is measured by the average num-
ber of beam measurements required for each beam training step. All simulations are 
implemented on MATLAB R2021b platform with 3.1 GHz Dual-Core Intel Core i5.

The 3GPP TR 38.901 channel model is used to model NLOS mmWave channels for 
a single mobile UE [32]. In each training episode, an independent trajectory with 
T ′ = 99 steps/samples is generated, which starts at a random location in the cell with 
a random direction. Each trajectory yields a random channel realisation. The UE is 
assumed to move within the cell at a constant speed v = 1 m/s, as shown in Fig. 5. The 
same total power constraint is applied to all beam training algorithms, and the SNR is 
defined to be ρ(t)

σ 2
n

 . The DNN is trained with SNR = 0 dB, 10 dB and 20 dB, and tested 

with random channel realisations where the SNR is allowed to be any value between 0 
dB and 20 dB. To stabilise the training of the DNN, the input data, i.e. the values in 
the state vector st in Eq. (9), are scaled to lie approximately within the range [−3, 3] . It 
is the scaled value of EE or SE that is used to compute the reward in Eqs. (10) or (11). 
To begin with, we consider that the state vector st contains T = 5 past measurements. 
Simulation parameters can be found in Table  4. All presented results are averaged 
over 500 Monte-Carlo simulations. For numerical results, we present the average 
value per sample point over the UE’s trajectory. The performance of the DRL-based 
algorithm (DRL) is evaluated for both cases of DRL-EE and DRL-SE, and compared 
with the MAB-based algorithm (MAB), the Maximum Reward approach (MR) and 
the randomised strategy (RAND).

Table 4  Simulation parameters

Parameters Values

BS antenna array 8-by-8 URA​

UE antenna array 4-by-4 URA​

Carrier frequency 30 GHz

No. of subcarriers N 64

No. of NLOS clusters L 20

No. of tracked beam pairs x 3

Channel bandwidth B 100 MHz

Noise variance σ 2
n

0.1

DRL learning rate η 0.001

DRL discount factor γ 0.9

No. of DRL training episodes 500–2000

MAB step-size η′ 0.5

DRL/MAB exploration factor ǫ 0.1

DRL mini-batch size 64

Length of DRL experience buffer D 100,000

UE velocity v 1 m/s
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4.1 � Preliminary experiments

The number of beams to track over time, i.e. the value of x, needs to be determined in 
advance. To minimise the total beam training overhead while maintaining adequate 
performance, we consider to use the simplest beam training method, i.e. method B in 
Sect. 3.1.5, for each tracked beam pair as shown in Fig. 7a. Given that mmWave channels 
are spatially sparse, the maximum number of beams to track is set to xmax = 5 [41]. For 
1 ≤ x ≤ 5 , the case of x = 3 is shown to provide over 95% of the maximum achievable 
EE and SE for 5000 random trajectories. Hence, we track x = 3 beams at both the BS and 
the UE in simulations.

To obtain the penalty values for beam training methods A–D in the calculation of 
the reward in Eqs. (10) or (11), each beam training method is implemented for 5000 
random trajectories with x = 3 beams tracked at both the BS and the UE. The aver-
age number of beam measurements required for each method is normalised by 
NTXNRX and scaled to lie within the value range [0, 1.25] . As a result, a penalty vector 
p1 = [0, 0.22, 0.55, 1.25] is obtained to represent the beam training overhead for meth-
ods A–D. To reduce the likelihood of selecting the exhaustive beam search, the penalty 
value for method D is increased from 1.25 to 1.55, which leads to a second penalty vec-
tor p2 = [0, 0.22, 0.55, 1.55].

4.2 � Effects of reward function

The reward in Eqs. (10) or (11) defined in Sect. 3.1.6 is controlled by a trade-off factor α 
which balances the trade-off between the beam training overhead and performance. The 
effects of the reward functions for DRL-EE and DRL-SE are investigated, respectively, 
where p1 is used for α ≤ 0.5 and p2 is used for α > 0.5.

4.2.1 � DRL‑EE

Figure 8a presents the average EE achieved by different beam training policies for dif-
ferent trade-off factors α . DRL, MAB and MR share the same reward function, whose 
performance improves as α increases. The maximum achievable EE is about 73.2 Mbit/

Fig. 8  Performance for different beam training policies with different trade-off factors α for DRL-EE. a 
Average EE v.s. α . b PMF of actions v.s. α
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Joule which is obtained via exhaustive beam search (method D), while the lowest EE is 
about 48.6 Mbit/Joule which is achieved without any beam training (method A). With 
an increasing α , the importance of achieving a higher EE grows, whereas the beam 
training overhead reduces in its significance. Thus, as α increases, we obtain a higher 
EE with a larger number of beam measurements in training, as shown in Table 5(a). By 
having different values of α , the DRL approach can achieve 66.5%, 93.1%, 95.6%, 98.0% 
and 99.6% of the maximum achievable EE. Further, by switching between different beam 
training methods, DRL can provide superior performance when compared with con-
stantly selecting a fixed beam training method, and result in equal or even fewer beam 
measurements.

Figure  8b presents the probability mass function (PMF) of action selections for dif-
ferent beam training policies. As α increases, DRL, MAB and MR activate more expen-
sive beam training methods more frequently to achieve a higher EE. Both MAB and MR 
focus more on the current benefits from beam training, and thus they provide similar 
PMFs for action choices. On the other hand, DRL can learn from the history of beam 
training and select the beam training method that is beneficial to the long-term reward. 
When α = 0.1 , maximising the long-term reward is equivalent to minimising the beam 
training overhead, so DRL performs zero beam training (method A) at the cost of sig-
nificant performance degradation. When α = 0.9 , the long-term reward is maximised 
by improving the EE and thus, it is worthwhile to implement exhaustive beam search 
(method D) more often for higher EE. Given the same reward function, without the state 
of the environment, MAB will take a longer time than DRL to learn the reward maximi-
sation from past experiences.

The results on the number of RF chains in use for different beam training policies are 
presented in Table 6(a). For a 16× 64 MIMO channel, the average number of RF chains 

Table 5  The average number of beam measurements required for DRL-EE and DRL-SE, respectively, 
with different trade-off factors α

α 0.1 0.3 0.5 0.7 0.9

(a) DRL-EE

DRL 4 176 207 442 961

MAB 44 174 254 338 517

MR 1734 1735 1738 1745 1749

RAND 433

A 0

B 206

C 483

D 1051

(b) DRL-SE

DRL 3 106 217 393 1080

MAB 45 144 241 317 495

MR 1818 1804 1803 1811 1819

RAND 451

A 0

B 227

C 506

D 1077
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required for the maximum EE is no more than 8. From the perspective of energy pres-
ervation, to achieve the same level of EE (see Fig. 8a), both DRL and MAB require fewer 
RF chains than any fixed beam training method from A to D. This implies that the num-
ber of activated RF chains needs to adapt to the changes in the channel in order to save 
energy. In summary, we consider α = 0.5 as an optimal choice for DRL-EE, because it 
can achieve 95.6% of the maximum EE with fewer beam measurements than MAB and 
fewer RF chains than method B without degrading the EE performance.

4.2.2 � DRL‑SE

Figure 9a, b presents the average SE performance and the corresponding PMF of action 
selections, respectively, for different trade-off factors α . A similar trend can be observed 
that as α increases, DRL, MAB and MR will activate more expensive beam training 
methods more often to improve the SE. The value range for the achievable SE is from 
16.3 bit/s/Hz to 28.8 bit/s/Hz, where the DRL model can be controlled to achieve 56.5%, 
78.8%, 92.4%, 96.2% and 100% of the maximum SE, respectively. Table 5(b) lists the aver-
age number of beam measurements required for DRL-SE. To achieve a similar level of 
SE as any fixed beam training method from A to D (see Fig. 9a), DRL results in a smaller 
or comparable number of beam measurements.

The average number of RF chains required for DRL-SE is shown in Table 6(b). Com-
pared to DRL-EE, without the power constraint, more RF chains are used to achieve 
higher SE, especially for α ≥ 0.5 . In Table  6(b), when the SE is less weighted in the 
reward function ( α ≤ 0.3 ), DRL activates fewer RF chains than MAB. On the other 
hand, when the system requires higher transmission rates ( α ≥ 0.5 ), DRL employs more 
RF chains than MAB to achieve higher SE, as shown in Table 6(b). This implies that DRL 
learns the reward maximisation better than MAB by providing the RF chain information 

Table 6  The average number of RF chains required for DRL-EE and DRL-SE, respectively, with 
different trade-off factors α

α 0.1 0.3 0.5 0.7 0.9

(a) DRL-EE

DRL 3.0 6.5 6.6 6.8 7.0

MAB 3.3 5.9 6.7 6.9 7.1

MR 3.0 6.0 6.8 7.1 7.3

RAND 6.1

A 3.0

B 6.8

C 7.3

D 7.4

(b) DRL-SE

DRL 3.0 6.4 9.3 9.8 10.5

MAB 3.5 6.5 8.8 9.5 9.9

MR 3.0 6.6 8.9 9.4 10.1

RAND 8.3

A 3.0

B 9.4

C 10.1

D 10.5
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to the DNN. Finally, the DRL model with α = 0.5 is considered as the best DRL-SE setup. 
Because it can achieve 92.4% of the maximum SE which is higher than the MAB result, 
and require 10% fewer beam measurements than MAB.

4.3 � Impact of state vector size

In this subsection, we investigate how much past information is needed to learn the 
reward maximisation for DRL, and demonstrate a comparison of temporal complexity 
for different beam training algorithms. Each feature vector in the state st in Eq. (9) con-
tains T past measurements and a current measurement (i.e. the pre-assessment defined 
in Sect. 3.1.3). The DRL-EE model with α = 0.5 is considered, where separate DNNs are 
trained with T = 3 (DRL-3), T = 5 (DRL-5) and T = 7 (DRL-7), respectively.

Figure 10a demonstrates the average EE achieved by different beam training policies 
at different SNRs, where MAB, MR and three DRL models are shown to achieve very 
similar performance. The EE reaches a peak at SNR = 15 dB and starts decreasing as 

Fig. 9  Performance for different beam training policies with different trade-off factors α for DRL-SE. a 
Average SE v.s. α . b PMF of actions v.s. α

Fig. 10  Performance for different beam training policies at multiple SNRs for DRL-EE. a Average EE v.s. SNR. b 
Average number of BM v.s. SNR
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the SNR increases to 20 dB. From Table 7, we see that from SNR = 15 dB to 20 dB, the 
total power consumption in Eq. (8) is increased by 44%, whereas the SE only grows 
by 36%. Thus, at the SNR = 20 dB, the EE performance is limited by the high power 
consumption. In Fig. 10b, the average number of beam measurements is shown cor-
respondingly, where DRL-3 and DRL-5 require about 20% fewer measurements than 
MAB in the entire SNR range. The number of beam measurements required for either 
MR or RAND does not change with the varying SNR and is much higher than that for 
both DRL and MAB (see Table 5(a)), so neither of them is presented in Fig. 10b.

To visualise the action selections that result in the presented performance in 
Fig. 10a, b, we provide the distribution of action choices in Fig. 11 for all beam train-
ing policies, where the average reward (r) and the average number of beam meas-
urements (#BM) are labelled. All DRL models obtain higher rewards with fewer 
measurements than MAB, MR and RAND. Among DRL models, DRL-7 yields the 
lowest reward, which implies that including more past measurements in the state vec-
tor may complicate the learning process by providing redundant information to the 
DNN. DRL-5 achieves nearly the highest reward and results in the lowest beam train-
ing overhead. Therefore, we consider a DNN trained with T = 5 past measurements 
as an optimal model for DRL-EE. The number of past measurements T does not make 
a huge difference on the final EE result but it does affect the number of beam meas-
urements required.

The complexity of the beam training algorithm is evaluated by the average simula-
tion runtime that is needed to provide optimal beam pairs for one user trajectory, 
as given in Table 8, which is calculated by averaging over 500 Monte-Carlo simula-
tions. The current selection of beam training method depends on the historical beam 
training results in DRL, MAB and MR algorithms, and thus, the temporal complex-
ity refers to the time required to select the beam training method, i.e. the decision 

Table 7  The total power consumption and the average SE for DRL models at different SNRs

SNR (dB) 0 5 10 15 20

Total power consumption (Watt) 33.3 34.8 37.5 43.9 63.0

SE for DRL-3 (bit/s/Hz) 11.3 17.8 26.0 36.1 49.0

SE for DRL-5 (bit/s/Hz) 10.8 17.6 26.0 36.3 48.5

SE for DRL-7 (bit/s/Hz) 11.0 17.6 26.0 36.1 49.4

Table 8  Average runtime required to provide optimal beam pairs at T ′ = 99 sampled locations for 
different beam training algorithms

Beam training algorithms Time (s) Reward

DRL-3 7.12 − 0.17

DRL-5 7.11 − 0.17

DRL-7 7.22 − 0.18

MAB 7.07 − 0.20

RAND 7.39 − 0.60

MR 46.56 − 1.43
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time, and the time needed for beam training. Compared with MAB, DRL results in 
slightly more computing time from 0.04  s (DRL-5) to 0.15  s (DRL-7). Because DRL 
selects the beam training method via a DNN whose parameters are adjusted with the 
online beam training results, while MAB makes the decision based on simple calcu-
lations of the action value in Eq.  19. It should be noticed that both DRL and MAB 
models are trained to optimise the same reward function as defined in Eq. 10. DRL-5 
is shown to achieve the highest reward, which means that DRL-5 is able to provide 
better beam training solutions that are adaptive to channel changes, where the time 
difference of 0.04 s can be treated as negligible in practical use. Since RAND selects 
the beam training method in a random manner, the decision time is negligible. How-
ever, because RAND does not utilise any channel property or environmental informa-
tion, it leads to a worse beam training policy with a much lower reward. As for MR, it 
tests all candidate beam training methods before making the decision for future beam 
training, and thus it requires a very long computing time and results in the lowest 
reward, which makes it unsuitable for practical implementation.

4.4 � Effects of random blockages

In this subsection, we investigate the effects of random blockages on the DRL algo-
rithm by training separate DNNs with different discount factors γ . The blockage model 
in Sect.  2.1 is applied, where the blockage probability  ̺ is set to ̺ = 0.1 , ̺ = 0.3 and 
̺ = 0.5 , respectively. We consider the case of DRL-SE with α = 0.5 . Two discount fac-
tors are investigated: γ = 0.1 and γ = 0.9 . In RL, the larger the discount factor is, the 
more future rewards are considered when taking the action. The agent whose DNN is 
trained with γ = 0.1 is called the short-term agent, while the other one trained with 
γ = 0.9 is called the long-term agent.

Fig. 11  Distribution of action selections for different beam training policies for DRL-EE
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Figure  12a, b presents the average SE over the UE’s trajectory with ̺ = 0.1 and 
̺ = 0.5 , respectively. The first location always provides the highest SE because the 
exhaustive beam search is implemented to obtain reference beam pairs for track-
ing. In Fig.  12a, when 10% of sampled locations suffer from blockages, the short-
term agent provides slightly higher SE than the long-term agent at the SNR = 0 dB. 
When the channel condition is bad, to gain as much as possible from the current 
beam training step might be a good strategy because it is likely that the link qual-
ity will remain poor as the UE moves. As the SNR increases to 20 dB, the long-term 
agent outperforms the short-term agent with higher SE. This implies that when the 
channel is strong enough, the likelihood of achieving better performance over time 
becomes higher, where a long-term perspective can be more beneficial. On the other 
hand, with severe blockage effects as shown in Fig. 12b where 50% of sampled loca-
tions are subject to random blockages, the long-term agent scarifies its current per-
formance at the beginning of the trajectory in exchange for better performance in the 
future. By contrast, the short-term agent only cares about the current benefits with-
out considering the potential performance degradation in the future. Hence, its SE 
value reduces over time as the trajectory becomes longer. From Table 9, we see that 
when the blockage effects are considered, the long-term agent requires more beam 
training than the short-term agent. This suggests that more expensive beam training 
methods that test more beams are preferable to improve the transmission rate from a 

Fig. 12  Average SE per sampled location with different  ̺for DRL-SE. a ̺ = 0.1 . b ̺ = 0.5

Table 9  The average number of beam measurements required for the short-term agent ( γ = 0.1 ) 
and the long-term agent ( γ = 0.9 ) with different blockage probabilities ̺

SNR (dB) 0 10 20

γ 0.1 0.9 0.1 0.9 0.1 0.9

̺ = 0.1 70 49 214 224 233 267

̺ = 0.3 49 101 204 210 230 278

̺ = 0.5 18 203 183 236 226 283
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long-term perspective. In summary, with significant levels of blockages, the discount 
factor γ = 0.9 can work effectively and maintain good SE performance when the SNR 
is low.

4.5 � Discussions on stage 2 of EE/SE maximisation strategy

For the two-stage EE/SE maximisation beam training strategy in Algorithm 2, Stage 2 
can be considered as an optional step by the system designer, where the estimated num-
ber of RF chains N̂ SE

RF in Eq. (17) or N̂EE
RF  in Eq. (18) from Stage 1 can be used for data 

transmission without testing the performance using extra training signals. For instance, 
for the EE metric, Stage 1 can provide 96.2%, 96.5% and 97.8% of the EE from Stage 2 
when beam training methods B, C, and D are implemented in Stage 1, respectively. The 
benefit of performing Stage 2 depends on which beam training method is implemented 
in Stage 1. If method B is chosen, Stage 2 can improve the EE by 3.8% but results in 12.8% 
more beam measurements. If method C is selected, the EE can be improved by 3.6% via 
Stage 2 with 5.6% more beam measurements. Finally, if method D is implemented, Stage 
2 can provide an EE improvement of 3.4% with 2.6% more beam measurements. There-
fore, from the perspective of the performance-overhead trade-off, Stage 2 is more ben-
eficial for expensive beam training methods, e.g. exhaustive beam search (method D), 
but less so for simpler beam training methods, e.g. Local Search 1 (method B).

4.6 � Limitations of proposed beam training algorithm

In this subsection, the limitations of the proposed DRL-based beam training algorithm 
are discussed briefly, which can be considered for future work.

Firstly, for the system model, this paper assumes that the equal power allocation 
scheme is applied to multiple spatial streams. To enhance the performance of the beam 
training algorithm, more optimal power allocation schemes, such as the water-filling 
algorithm [44], can be considered. Secondly, for the mobility model, this work assumes 
that a single mobile receiver moves at a pedestrian speed, where the beam training 
solution is only provided for one trajectory at a time. To extend this work, a multi-user 
mobile system can be considered where the DRL can be exploited to offer beam training 
solutions to multiple receivers simultaneously. Finally, for the DRL model, the reward 
function is defined to control the balance between performance and the beam train-
ing overhead in a linear manner, which is derived based on the 3GPP statistical channel 
model [32]. The retraining of the model with real-time data will be needed for practical 
implementation.

5 � Conclusions
This paper proposes a novel beam training algorithm via DRL for mmWave channels con-
sidering user mobility effects. The proposed algorithm can switch between different beam 
training methods by learning from historical channel measurements, in order to achieve the 
desired trade-off between the average beam training overhead and the resulting EE or SE 
performance. Simulation results show that compared to the baseline approach, e.g. MAB, 
the proposed algorithm can achieve comparable EE performance with 20% fewer beam 
measurements, or provide a higher average SE while saving 10% on the required beam 
measurements. An EE/SE maximisation beam training strategy is developed and included 
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in the DRL algorithm, which can control the number of activated RF chains based on the 
current channel conditions. Finally, the proposed algorithm is evaluated under different 
levels of random blockages, where a larger discount factor ( γ = 0.9 ) is shown to achieve 
higher data rates when the blockage effects are significant. For future work, it is worthwhile 
to test the current beam training framework in a vehicular system and extend it to a multi-
user system by allocating beam resources to different users.
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