Pontus: A Memory-Efficient and High-Accuracy Approach for

Weihe Li
The University of Edinburgh
Edinburgh, United Kingdom
weihe.li@ed.ac.uk

Alec F. Diallo
The University of Edinburgh
Edinburgh, United Kingdom
alec.frenn@ed.ac.uk

Zukai Li
The University of Edinburgh
Edinburgh, United Kingdom
$2505721@ed.ac.uk

Marco Fiore
IMDEA Networks Institute
Madrid, Spain
marco.fiore@imdea.org

Persistence-Based Item Lookup in High-Velocity Data Streams

Beyza Butiin

IMDEA Networks Institute &
Universidad Carlos III de Madrid

Madrid, Spain

beyza.butun@imdea.org

Paul Patras

The University of Edinburgh
Edinburgh, United Kingdom

paul.patras@ed.ac.uk

ABSTRACT

In today’s web-scale, data-driven environments, real-time detection
of persistent items that consistently recur over time is essential for
maintaining system integrity, reliability, and security. Persistent
items often signal critical anomalies, such as stealthy DDoS and
botnet attacks in web infrastructures. Although various methods
exist for identifying such items as well as for determining their fre-
quency, they require recording every item for processing, which is
impractical at very high data rates achieved by modern data streams.
In this paper, we introduce Pontus, a novel approach that uses an
approximate data structure (sketch) specifically designed for the
efficient and accurate detection of persistent items. Our method not
only achieves fast and precise lookup but is also flexible, allowing
for minor modifications to accommodate other types of persistence-
based item detection tasks, such as detecting persistent items with
low frequency. We rigorously validate our approach through for-
mal methods, offering detailed proofs of time/space complexity
and error bounds to demonstrate its theoretical soundness. Our
extensive trace-driven evaluations across various persistence-based
tasks further demonstrate Pontus’s effectiveness in significantly
improving detection accuracy and enhancing processing speed
compared to existing approaches. We implement Pontus in an ex-
perimental platform with industry-grade Intel Tofino switches and
demonstrate the practical feasibility of our approach in a real-world
memory-constrained environment.

CCS CONCEPTS

« Information systems — Data stream mining,.

KEYWORDS

Data stream processing, persistent item lookup, probabilistic data
structure, Tofino programmable switch

@ This work is licensed under a Creative Commons Attribution
o International 4.0 License.

WWW 25, April 28-May 2, 2025, Sydney, NSW, Australia
© 2025 Association for Computing Machinery.

ACM ISBN 979-8-4007-1274-6/25/04...$15.00
https://doi.org/10.1145/3696410.3714670

ACM Reference Format:

Weihe Li, Zukai Li, Beyza Biitiin, Alec F. Diallo, Marco Fiore, and Paul
Patras. 2025. Pontus: A Memory-Efficient and High-Accuracy Approach
for Persistence-Based Item Lookup in High-Velocity Data Streams. In Pro-
ceedings of the ACM Web Conference 2025 (WWW °25), April 28-May 2,
2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3696410.3714670

1 INTRODUCTION

Recognizing persistent items is vital across a range of web-scale
applications, such as analyzing user behavior in e-commerce plat-
forms [12], preventing fraud in online financial transactions [5], and
detecting anomalies in network traffic [20, 24]. For example, certain
web-based network threats utilize stealthy techniques by distribut-
ing malicious packets at a controlled rate over an extended period,
rather than overwhelming targets in a short burst. This tactic is
specifically designed to evade detection by traditional web security
monitoring methods [26]. In a different context, persistent items
in server log files or monitoring data can reveal recurring faults or
performance bottlenecks in distributed web systems [35]. Identi-
fying and analyzing these persistent anomalies allows engineers
to address systemic issues that may not surface during standard
testing, but which consistently degrade the performance of web ser-
vices. Similarly, persistent user actions on web applications—such
as frequently used features or repeatedly accessed content—can
inform developers in optimizing UI/UX designs [21, 49], enhancing
user satisfaction and engagement on a broad scale.

Beyond detecting persistent items, it is also important to iden-
tify variations, such as items that are both persistent and frequent
[13, 32], or persistent and infrequent [19]. For example, persis-
tent and frequent requests in web services may indicate critical
resources or endpoints. Identifying these patterns can help optimize
load balancing and server provisioning to handle peak traffic more
effectively [22]. In enterprise networks, web services like Fast Re-
verse Proxy (FRP) [38] expose local servers behind firewalls [7] to
external traffic. FRP connections, while consistent, often generate
low packet volumes, making them persistent yet infrequent [19],
which can be key to enhancing security and network performance.

Challenges: Detecting persistence-based items in real-time
poses significant challenges due to three primary factors. (i) The
sheer volume and high speed of data streams make it impractical to

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696410.3714670
https://doi.org/10.1145/3696410.3714670
https://doi.org/10.1145/3696410.3714670

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

track all items for analysis and lookup [46]. (ii) Many modern com-
puting systems used for web-scale data mining have tight memory
budgets and require highly compact processing methods. These
systems rely on on-chip CPU caches for high-speed processing, but
are constrained by the limited capacity of the fastest L1 cache [32].
Similarly, programmable network hardware that is posed to perme-
ate future-generation communication infrastructures is extremely
resource-constrained [4, 39]. (iii) The item distribution is typically
highly skewed [51], meaning that most items are non-persistent
and only a small portion is persistent.

Limitations of Prior Art: To overcome these obstacles, approx-
imate data structures, commonly referred to as sketches, have been
adapted to data stream processing in high-speed environments [14,
17, 27, 29, 40-42, 45, 47, 50]. Several sketch-based schemes tar-
get persistence-based item lookup [13, 19, 30-33, 49]. However,
as expounded in Section 7, these methods face the following key
limitations. (i) Many employ coarse item replacement strategies,
such as the direct swap strategy [49], which often lead to persistent
items being prematurely evicted from buckets due to frequent col-
lisions with non-persistent items, especially under tight memory
constraints where hash collisions are more severe. (ii) Some meth-
ods track multiple features per item to better protect persistent
items, but this compromises memory efficiency [31-33]. (iii) Other
approaches involve complex update operations, such as matrix
multiplication, reducing processing speed and limiting their abil-
ity to handle high-speed data streams [16]. (iv) Most methods are
overly dependent on multiple tuning parameters, making them less
practical for real-world deployment [13].

Our Solution: In this paper, we introduce Pontus, a novel prob-
abilistic method designed for the accurate and efficient lookup of
persistent items. Pontus introduces several key novelties in sketch
design for persistence-based item lookup: (i) it employs new flags
to avoid double-counting items and excessive decay of persistence
values due to severe hash collisions; (ii) it implements a probability-
decay eviction strategy prioritizing the removal of non-persistent
items that tend to dominate real-world data distributions [8, 47, 51];
(iii) it handles persistent item lookup tasks in scenarios with long
item keys by introducing a fingerprint-based variant that utilizes a
counter merge technique to enhance memory efficiency [46].

We rigorously model and analyze Pontus, offering theoretical
guarantees on error bounds, time complexity, and space complexity,
enabling us to quantify its performance and reliability.

We also implement a prototype of Pontus in C++ and evaluate its
performance across diverse datasets and tasks, including persistent
item lookup, persistence estimation, and the detection of both per-
sistent and frequent, as well as persistent and infrequent, items. Our
results demonstrate Pontus’s robustness and superiority over previ-
ous sketch-based designs. For persistent item lookup, Pontus attains
the highest detection accuracy even compared with the leading
competitors, P-Sketch [31] and Stable-Sketch [33]. In persistence
estimation, it reduces estimation errors by up to 484.2% relative
to existing methods. When detecting persistent and (in)frequent
items, Pontus achieves the best F1 score of approximately 0.9, even
with a constrained memory budget of 64KB. Moreover, thanks to
its streamlined update process, Pontus delivers the fastest update
speeds, outperforming benchmark schemes across various tasks.

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

Finally, we deploy Pontus on a hardware Tofino switch using
the P4 language [9], where it achieves a recall of 0.95 for persistent
item lookup with 16,384 entries by consuming only 8.2% of the total
available switch resources on average and entailing an average
packet processing latency of 409ns. This demonstrates Pontus’s
applicability to practical resource-constrained systems.

2 PROBLEM DEFINITION

Data Stream: We consider a data stream U = {eq, ez, ...,en}
composed of various items, where each item is represented as a
key-value pair. The key serves as the item identifier, and value is
the corresponding value associated with that item. For instance, in
network monitoring, the key often represents a flow identifier, such
as a source-destination address pair [43], while the value could be
its count information, such as frequency or persistence.

Sketch: Sketches are probabilistic summary data structures
that track values in a fixed number of entries known as buckets.
Classic examples of sketches include the Count-Min Sketch [15],
Count Sketch [10], and CU Sketch [18], among others. A Count-Min
Sketch is represented by a two-dimensional array of buckets with
w columns and d rows. Initially, each counter in the buckets array
is set to zero. Additionally, d pairwise-independent hash functions
hi, ..., hg are chosen, with each hash function corresponding to
arow. When an item (e;, v;) arrives, indicating that item e; is up-
dated by a quantity of v;, v; is added to the counter in a bucket
in each row; the specific bucket is determined by applying the
corresponding hash function h; to e;. Formally, Vz,1 < z < d,
B(z, hz(ei)) < B(z hz(ei)) + v;. During the query process, the
count of item e; is estimated as S:ei = min, [B(z, h;(e;))].

Persistence: In data streams, persistence is defined across M
non-overlapping, consecutive time windows. The window size can
be adapted based on data volume or timestamps. For example, in
network traffic analysis, one can define each window by a fixed
number of packets, such as N = 1000 packets per window, meaning
that every 1000 received packets constitute one window, while the
data volume in each window can vary. The persistence P, of an
item e; increments by 1 if e; appears at least once in a window,
regardless of how many times it occurs within that window.

Persistent Item Lookup: An item e¢; is said to be a-persistent
if its persistence P, satisfies Pe, > aM, where a € (0, 1] is a user-
defined threshold. This means that e; must appear in at least a
fraction « of the total number of time windows M by the measure-
ment point to be classified as persistent.

Persistence Estimation: The task of persistence estimation
involves accurately determining the value of P, for each unique
item e; in the data stream U.

Persistent and Frequent Item Detection: For each e; € U, let
Se; denote the total number of occurrences (frequency) of e; in the
data stream. Given a frequency threshold § € (0, 1], an item e; is
considered f-frequent if its frequency S, satisfies Se; > fS, where
S = Xe;eU Se; is the total number of occurrences (frequency sum)
across all items in the stream. The set of items that are both frequent
and persistent is then ff ={e;e U| S > pSand P, > aM}.

Persistent and Infrequent Item Detection: Given an addi-
tional frequency threshold x € (0, 1), considerably lower than f,
we define the set of persistent but infrequent items as follows:
Iy ={ej € U|Se; < xS and P, > aM}.

A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

3 DESIGN
3.1 Principles

State-of-the-art methods for persistent item lookup, such as P-
Sketch [31], Stable-Sketch [33], and Tight-Sketch [32], use a dual-
dimensional feature approach to better protect potential persistent
items, which is detailed in Section 7. While this improves detection
accuracy, it reduces memory efficiency, resulting in fewer avail-
able buckets. This problem is exacerbated in memory-constrained
environments, where hash collisions become more frequent.

Pontus improves the state of the art above by enhancing both
memory efficiency and detection accuracy. Given the skewed nature
of real-world data distributions [33], we employ a probability-decay
eviction strategy to prioritize the retention of potentially persistent
items. Our design incorporates two flags (requiring only 2 bits)
and is based on three key principles: (i) Since the persistence of an
item increases by only 1 per time window, we introduce an arrival
flag F to track whether the recorded item has arrived during the
current window. (i) Unlike item frequency, which can grow rapidly,
item persistence increases more slowly, making persistent items
more vulnerable to eviction in cases of frequent hash collisions
from a large number of incoming items. To prevent this, we limit
bucket access to allow persistence decay only once per window.
The collision decay flag R indicates whether a hash collision
has occurred in the bucket during the current window. If a decay
has already occurred, further decay from other items is ignored to
avoid excessive reduction in the tracked item’s persistence. (iii) If
the persistence of a tracked item has been reduced due to a hash
collision, its persistence is increased by 2, rather than 1, when the
item arrives in the same window. Notably, our method requires
only one additional flag R compared to existing approaches [49],
yet it delivers superior detection performance, as demonstrated
in Section 5. Additionally, Pontus’s efficient design facilitates its
practical deployment on resource-constrained hardware, as proven
in Section 6 with a P4-programmable Tofino switch.

3.2 Data Structure

Here, we illustrate the data structure of Pontus using persistent
item lookup as an example. We will elucidate how our scheme can
be extended to handle other persistence-based tasks in Section 3.5.

As shown in Figure 1, our probabilistic data structure consists of
d rows and w columns. Each bucket, denoted as B(i, j) for1 < i < d
and 1 < j < w, contains four fields: K; j stores the key of the
current candidate persistent item hashed to the bucket, P; ; tracks
the persistence count of the item, F; j is the arrival flag, and R; ;
represents the collision decay flag. Since each flag occupies only one
bit, both flags can be packed into a single 8-bit machine word for
efficient deployment. Our method utilizes d pairwise-independent
hash functions, denoted as hj, ..., hg, where each h; (1 < i < d)
maps the key of each incoming item to one of the w buckets in the
i-th row. Notably, the size of this data structure is fixed and can be
pre-allocated in memory for efficient operation.

3.3 Basic Operation

Pontus hinges upon two fundamental operations: (i) Update, involv-
ing the insertion of each incoming item into the probabilistic data
structure; and (ii) Query, enabling the retrieval of the estimated
persistence of a given item.

w columns

d rows

[ein] — [ke[Pu]Ai]ri]

Figure 1: Data structure of Pontus.

3.3.1 Update. Algorithm 1 outlines the update process of Pontus
for each time window. Initially, the key field and counter field in all
buckets are set to Null and 0 (Line 1). At the start of each window,
all flags in each bucket are reset to True (Line 2). Subsequently,
three scenarios may occur:

(i) Upon the arrival of an item e;, the algorithm uses the hash func-
tions hy, hy, . . ., hy iteratively to locate an appropriate bucket B(i, j).
If the hashed bucket is empty, denoted by K jndex == NULL, item
e; is inserted into the bucket, and its persistence counter P; jndex
is initialized to 1. The flag F; jpqex of the bucket is set to False to
indicate that the item has been added in current time slot. Similarly,
the flag R; index is set to False, indicating that the bucket cannot be
decayed by other items within the current time window (Lines 3-6).
Then the hash operations cease (Line 7). Unlike methods such as
[15, 43], which track an incoming item across all rows, we track
each item in only one row. This optimizes memory usage by freeing
up more buckets to track other items.

(ii) If the hashed bucket contains e; and its corresponding flag
Fjindex is True, indicating that the item has not arrived within
the current time window, the increase of the persistence counter
Pj index follows two scenarios: (1) If e; arrives late in the current
time window and its counter has been reduced by another item that
hashed into the same bucket (as indicated by R; jngex being False),
the persistence counter for e; will be increased by 2 to compensate
for underestimation errors (Lines 8-10). (2) Otherwise, the counter
will be increased by 1 (Lines 11-12). Then, the flag F; jdey is updated
to False to signify that the item has arrived, and R; jnqex is set to
False, signaling that the bucket is inaccessible to other items within
this time window (Line 13). The hash operations halt (Line 14).

(iii) In cases of hash collisions across all rows, our method selects

the bucket with the smallest persistence counter to resolve the colli-
sion (Lines 15-16). Probabilistic decay is triggered when a randomly
generated value is less than the reciprocal of the persistence counter
plus one. If the persistence counter successfully decrements by 1,
the flag RminRow, minIndex is set to False (Lines 17-20), ensuring that
other items hashing into this bucket cannot perform additional de-
cay operations. If the persistence counter reaches zero, the bucket
is updated with the new item: the key is replaced, the persistence
counter is reset to 1, and the flag is set to False (Lines 21-24). If the
counter does not reach zero, the new item is discarded (Line 25).
This approach favors items with higher persistence, reducing their
chances of being replaced.
3.3.2 Query. To identify persistent items, the algorithm checks
the condition 3i € {1,2,...,d},3j € {1,2,...,w} such that P; ; >
aM for each item e;. If this condition is met for any item e;, then
that item is identified and reported as a persistent item.

3.4 Running Examples

To exemplify the update process, we provide running examples in
Figure 2, using a sketch with two rows and three columns each.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Algorithm 1: Update Process in Each Time Window

Input: an item e;, hash functions hy, h, . . ., hg, min, « +oo

1 One-Time Initialization (Before the First Window): Initialize
persistence counters P; j to 0 and item keys K; ; to NULL for all
buckets B(i, j).

2 Per-Window Reinitialization: Reset flags F; j and R; ; to True
for all buckets B(i, j) at the start of each time window.

3 fori=1tod do

4 index « h;(e;.key)

// Case 1: Empty bucket

5 | if K jndex == NULL then

6 Ki,indexs Pi,inde)o Fi index» Ri,index «— ei~k€Y, 1, False, False
7 return
// Case 2: Item already tracked in the bucket

8 else if K; ingex == ej.key and F; jngex == True then

// Persistence decayed by another item
9 if R; index == False then
10 ‘ P;index < Pijindex +2 // Reduced
11 else
12 L P;index < Pijindex +1// Not reduced
13 F; index> Rijindex < False, False
14 return

// Track bucket with minimum persistence

15 else if P; jp4ex < min, then
16 L miny, minRow, minlndex « P; jngex. i, index

// Case 3: Probabilistic replacement
17 if RpinRow,minindex == True then

18 if random(0,1) < W then

19 PminRow,minIndex — PminRow,minIndex -1
20 RminRow,minIndex « False

21 if PminRDW,minIndex == 0 then

22 KminRow,minIndex — ei~key

23 P, minRow,minlndex ¢~ 1

24 FminRow,minIndex <« False

25 return

@ When item e arrives, it uses the hash function hy to find a
bucket in the first row. Since the bucket is empty, e is inserted, and
hashing stops. The bucket’s status updates to (ej, 1, F, F), indicating
no further increase in the persistence of e; during the current time
window, and preventing other items hashed into this bucket from
performing probabilistic decay operations.

@ [tem e4 arrives and also utilizes k1 to locate a bucket in the first
row. It finds a match, ending the hash operations. A check shows
that the flag F is False, indicating that e4 has already been logged
in the current time window, thus e4’s status remains unchanged.

® Item eq arrives and uses hash function h; to find a matching
bucket. The flag F is True, indicating es has not arrived in the cur-
rent time window. However, the flag R is False, i.e., another item has
hashed into this bucket and decayed the persistence counter. Upon
e s arrival, its persistence counter increases by 2 to ensure accuracy.
The bucket’s status updates from (eg, 3, T, F) to (es, 5, F, F).

® When item eg arrives, it uses hash functions h; and h; itera-
tively to locate an available bucket, yet both buckets are occupied.
Since e7 has lower persistence and its R flag is set to True (i.e., the

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

bucket has not been decayed by other items in the current time
window), eg attempts to decay its counter. The decay probability
is ﬁ, If the decay is unsuccessful, the bucket status remains un-
changed. If successful, it changes from (e7,4,T,T) to (e7,3, T, F). If
e7’s counter decays to 0, eg can evict and replace ey in the bucket.

EHEE e [ElF[FF

After ~__ After

O (e) [Jo[T1 [&[slT) [al7[FF
©
e[3[T[F] [ez[4]T[T] \ [eo[6[FIF]
~— \\

R
After Aﬂerv

i —
les[S[FIF] [ez][4]T[T]
Unsuccessfully decay

Successfully decay

Figure 2: Running examples of Pontus’s update process.

3.5 Adaptation to Other Lookup Tasks

3.5.1 Persistence Estimation. For persistence estimation, we em-
ploy the same update procedure as used in persistent item lookup.
During the query process, we hash all items in the data stream. If a
match is found in the sketch, we report the corresponding value
as the estimated persistence. However, if no match is found, the
smallest value among the hashed buckets in all rows is chosen to
mitigate overestimation errors.

3.5.2 Persistent and Frequent Item Lookup. To achieve lookups
that combine persistence and frequency, we introduce an additional
counter V; ; to each bucket to track the frequency of each recorded
item. When a new item arrives, the update process for persistence
follows the same steps as described in Section 3.3. The item first
attempts to locate an empty or matching bucket. If successful, the
item’s frequency is incremented by 1. In the case of hash collisions
across all rows, the item seeks to decrement the frequency and per-
sistence values of the bucket with the smallest sum of frequency and
persistence, guided by the probability 1/(V; j + P; j + 1). This prob-
ability ensures that items with high persistence and frequency are
more likely to remain in their respective buckets. Since frequency
is always equal to or greater than persistence, if the persistence
value reaches 0, the newly arrived item replaces the tracked item,
resetting both the frequency and persistence counters to 1. The
query process is similar to that of persistent item lookup, requiring
a scan of all buckets to identify items where both the persistence
and frequency exceed their respective thresholds.

3.5.3 Persistent and Infrequent Item Lookup. To formalize this task,
we introduce an objective function Q;; = P;; — ¢V; j, where ¢
represents a weight parameter (e.g., 0.2). In this formulation, a
potential persistent item with higher frequency receives a lower
reward. Consequently, persistent and infrequent items tend to have
larger objective values. During the update process, if a bucket is
successfully located, the procedure remains the same as described
previously. In the event of hash collisions across all rows, the item
selects the bucket with the smallest Q value and decreases both the
persistence and frequency counters by 1, based on the probability
1/(Q + 1). When the persistence counter is reduced to 0, the newly
arrived item replaces the tracked item, and both the frequency and
persistence counters are set to 1. The query process involves exam-
ining all buckets to identify items with persistence exceeding the
persistence threshold and frequency below the frequency threshold.

A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 1: Collision rate with varying fingerprint lengths.

" g bits) 8 16 20 25 32

0.5M 0.4748 0.0905 2.2x 1073 4.9x107* 57x107° 3.7x 1078
M 0.6643 0.1667 4.4x 1073 9.8x107* 1.2x107* 3.7x 1078
2M 0.8592 0.2946 8.8x 1073 2.0x 1073 23x107% 3.7x1078
3M 0.9459 0.4117 1.3x 1072 29x 1073 3.4x107% 1.4x107°
aM 0.9777 05153 1.8 x 1072 3.9%x 1073 4.6x107* 3.0x107°

3.6 A Variant for Higher Memory Efficiency

In scenarios where item keys are long and fast memory is limited,
we propose a memory-efficient variant of Pontus, as follows.

3.6.1 Fingerprint-Based Key Compression. To ensure good invert-
ibility, which means returning all persistence-based items solely
from the sketch data structure without redundant hash operations,
Pontus selects tracking the item key by default. However, this strat-
egy may result in increased memory consumption, especially in
scenarios with longer keys like 5-tuples in network data. To mit-
igate this issue, the proposed variant employs a hash function to
generate a concise sequence of bits from the key, known as the
fingerprint [46], which conserves memory and thus increases the
number of available buckets for item storage. The utilization of
fingerprints, however, introduces the risk of fingerprint collisions,
where multiple items share the same fingerprint.

Formally, let n be the number of items and w the number of buck-
ets in a row in the sketch data structure. Each bucket is equipped
with an 9-bit fingerprint generated by a hash function applied to
the item keys. The probability of a fingerprint collision can be ex-
pressed as follows: Pr{fingerprint collision} =1 — (1 — 279)%.
Table 1 shows the fingerprint collision rates for various numbers of
items and fingerprint lengths. Each row corresponds to a specific
number of buckets, w = 750, which reflects the configuration of
Pontus under a tight memory constraint of 16KB. As the fingerprint
length & increases, the probability of collision decreases rapidly.
When the fingerprint length reaches 20 bits, the collision probability
becomes negligible even with larger item counts n.

3.6.2 Field Consolidation. We take persistent item lookup as an ex-
ample. In the default version of Pontus, we construct each field sep-
arately. However, this scheme can lead to memory under-utilization
on widely-used x86 systems, where the memory allocation of each
field is aligned to the machine word size, such as 8-bit, 16-bit, or
32-bit. For example, suppose we need to store four fields: a 19-bit
fingerprint (¢1 = 19), two 1-bit flags (p2—3 = 2), and a persistence
value up to 2000 (¢4 = 11 bits). The total space required would
be Zizl @x = 32 bits. Yet, if we allocate each field separately, the
memory usage would be much higher - 32 bits for the fingerprint,
8 bits for each flag, and 16 bits for the persistence value.

To improve memory utilization, we can consolidate these fields
into a single machine word, provided that the total number of bits
required for all fields does not exceed the word size, typically 32 or
64 bits. Formally, let ¢, be the length (in bits) of the i-th field, where
x=1,2,...,{,and { is the total number of fields. If the following

condition is satisfied: Zizl ¢; < @, where ® is the machine word
size, then we can proceed to consolidate the fields into a single unit.
By adopting this approach whenever possible, we can effectively
utilize the available memory resources and avoid wastage caused
by the fixed-size memory allocation for individual fields.

3.6.3 Trade-off. Although this variant enhances memory efficiency
and improves lookup accuracy under limited memory conditions,
the incorporation of fingerprint-based compression and counter
consolidation operations slow down processing speed, an essential
metric in data stream mining. This creates a trade-off: users priori-
tizing processing speed may prefer the basic method, while those
valuing accuracy over speed may adopt the variant. We will delve
into this trade-off in detail in the Section 5.4.

4 THEORETICAL ANALYSIS

We present a comprehensive theoretical analysis of Pontus, fo-
cusing on its application to persistent item lookup. This includes
formal proofs of performance guarantees—covering space, update,
and query complexity—and error bounds for both the default and
memory-efficient variants. Empirical tests further validate these
error bounds. Due to space constraints, the results and detailed
proofs are provided in Appendix A.

5 TRACE-DRIVEN EVALUATION
5.1 Setup

To evaluate the performance of Pontus, we conduct evaluations on
a laptop equipped with an Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
processor and 16GB of DRAM memory, running Ubuntu 20.04 LTS.

Implementation. We implement Pontus and the compared
benchmarks in C++. For all datasets, we use source-destination
addresses as item keys, with each pair consisting of 8 bytes. We
employ MurmurHash [6] for hashing incoming items. The number
of rows d for Pontus is set to 2 [50], while the number of buckets
w in each row is determined based on the specified memory size.
For the variant of Pontus, we set the fingerprint length to 18 bits,
ensuring a sufficiently low fingerprint collision rate.

Parameter Settings. For persistent item lookup, we adjust the
window size uniformly across each trace to divide the data into 1,500
windows (M = 1500) and set the persistence threshold « to 0.4. In
the case of persistent and frequent item lookup, we use a frequency
threshold 8 of 5 x 10™* [33]. For persistent and infrequent item
lookup, we adjust the frequency threshold k to ensure frequencies
remain below 2000. It’s important to note that these parameter
settings are not fixed; we also explore variations in threshold values
to confirm the robustness of Pontus in Section 5.3.

Baselines. For persistent item lookup, we evaluate the perfor-
mance of Pontus against several benchmarks: On-Off Sketch [49],
Pyramid-based On-Off Sketch [34], P-Sketch [31], Stable-Sketch
[33], Tight-Sketch [32], WavingSketch [30], and Small Space (SS)
[28]. Detailed descriptions of these methods are provided in Section
7. In the experiments with On-Off Sketch and WavingSketch, we
set the number of slots to 16, following [32]. The parameters for SS
are configured according to [48], while for P-Sketch, Stable-Sketch
and Tight-Sketch, the number of rows is set to 2 [31].

Traces. We select three real-world traces for evaluation: two
from the CAIDA 2018 [1] and 2019 [2] datasets, and one from the
MAWT 2020 dataset [36]. Specifically, CAIDA 2018 consists of 22.3M
packets from 0.76M items, while CAIDA 2019 encompasses 29.5M
packets from 1.53M items. MAWI 2020 involves 44.5M packets from
2.75M items.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

—+— Pontus —&— On-Off —+—Pontus —&— On-Off —+—Pontus —&— On-Off —+—Pontus —&— On-Off —+—Pontus —&— On-Off —+—Pontus —&— On-Off
—4— pyramid On-Off —4— pyramid On-Off —4— pyramid On-Off —4— pyramid On-Off —4— pyramid On-Off —4— pyramid On-Off
1.0 —4—Waving =—#=—55 1.0 —4—Waving —@—5S 1.0 —4—Waving —@=—5S . 1.0 —.—Wavmg—.—ASS N . 1.0 —.—Wavmg—.—SS N . 1.0 —.—Wavms ——SS
= = = s s s
3 3 3]]]
0.5 0.5 0.5 <05 <05 <05
]
0. .__.__,./‘/. o 0. o. o o
16 32 64 128 25 16 32 64 128 25 16 32 64 128 25 16 32 64 128 25 16 32 64 128 25 16 32 64 128 256
Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB)
(a) Recall (C2018). (b) Recall (C2019). (c) Recall (M2020). (d) Precision (C2018). (e) Precision (C2019). (f) Precision (M2020).
40 40
—*— Pontus Oon-Off —*— Pontus Oon-Off —*— Pontus on-Off _ —*—Pontus On-Off _ —*—Pontus On-Off __ 40y —*—Pontus On-Off
—&—Pyramid On-Off —A— pyramid On-Off —A—pyramid On-Off z —A— pyramid On-Off z —A— pyramid On-Off z —A— pyramid On-Off
10| T Waving —e—ss 10| —#—Waving —e—ss 10| T Waving —e—ss 230) ——Waving —e—ss 230] —#—Waving —#—s5 S 30| ,—t=Waving —e—ss
o o o < ——— | 5 —_— | S a——*
8 8 8 g2 g2 £ 20
= a M & & &
Los Los Los 2 K 2
5 10{ A—A—t—t— 8 10| A—DA—A———t S10] ————
4 4 4
.—-.__"__,,/' > > *> =] O—t—
0.0 0.0 0.0 0 o o
16 32 64 128 25 16 32 64 128 25 16 32 64 128 256 16 32 64 128 256 16 32 64 138 2% 16 32 64 128 2%
Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB) Memory Size (KB)
(g) F1 score (C2018). (h) F1 score (C2019). (i) F1 score (M2020). (j) Speed (C2018). (k) Speed (C2019). (1) Speed (M2020).

Figure 3: Performance of different schemes for persistent item lookup (C indicates CAIDA, and M denotes MAWI).

Metrics. We evaluate Pontus’s performance on persistence-
based tasks using five key metrics: Recall, Precision, F1 score, Aver-
age Absolute Error (AAE), and update throughput. Recall measures
the fraction of true persistent items correctly identified, while Preci-
sion quantifies the proportion of identified persistent items that are
truly persistent. The F1 score, calculated as m%, pro-
vides a balanced measure of accuracy. For persistence estimation,
AAE computes the average magnitude of errors as % > |Pi = Pil,
where P; is the true persistence and P; is the estimated value. Update
throughput measures the processing speed in millions of operations
per second (Mops). Each experiment is tested five times, and the
average results are reported.

5.2 Performance Comparison

5.2.1 Persistent Item Lookup. For persistent item lookup, we evalu-
ate Pontus’s performance across various memory sizes: 16KB, 32KB,
64KB, 128KB, and 256KB. These memory sizes are consistent with
common configurations in recent sketch-based research [23, 33, 47].
Since P-Sketch, Stable-Sketch, and Tight-Sketch share a similar data
structure to Pontus, we compare them separately for clearer analysis.

Figures 3(a)-(f) show the recall and precision rates of various
methods across different datasets. Pontus consistently achieves
the highest recall and precision rates under all traces. On aver-
age, Pontus improves recall by 18.51%-686.85% for CAIDA 2018,
23.2%-607.29% for CAIDA 2019, and 58.62%-384.21% for MAWTI 2020
traces. Additionally, Pontus maintains a precision rate of 1 across
all memory budgets. This is because the probability decay mecha-
nism ensures one-sided underestimation errors, meaning that all
persistent items identified by Pontus are genuine.

As depicted in Figures 3(g)-(i), our method shows a significant
improvement in F1 score compared to the benchmarks. For example,
under the CAIDA 2018 trace, the average F1 score of Pontus is
15.11% to 724.17% higher than the baselines. The detection accuracy
of our method is even more pronounced under the MAWI 2020
trace. This is because the MAWI trace exhibits higher skewness,
indicating a smaller number of persistent items, thereby increasing
the detection difficulty. Despite this challenge, Pontus maintains
its superiority, resulting in an increase of 45.65% to 10415.54%. Our
method excels in its meticulous replacement of persistent items.
Given the prevalent highly skewed data distribution in practical

Table 2: F1 score for Pontus and benchmarks.

F1 Score Pontus Stable-Sketch P-Sketch Tight-Sketch
C2018 (16KB) 0.805 0.734 0.609 0.699
C2018 (32KB) 0.915 0.874 0.803 0.840
C2019 (16KB) 0.716 0.610 0.518 0.596
C2019 (32KB) 0.872 0.820 0.725 0.793

scenarios [8, 47], the crude item replacement of On-Off Sketch often
leads to many persistent items being mistakenly replaced by non-
persistent ones, especially under tight memory constraints where
hash collisions are more severe. While WavingSketch uses a Bloom
Filter [37] to eliminate duplicates, its application under constrained
memory settings results in increased data usage and significant false
positive errors. Similarly, in Small-Space, the sampling rate is low
under limited memory sizes, leading to reduced lookup accuracy.
Figures 3(j)-(l) illustrate the update speed of different methods.
As shown, our method achieves markedly faster update speeds.
For example, under the CAIDA 2019 trace, the update speed of our
method is 117.31%-320.26% higher than that of the baselines.
Deep Dive: We further evaluate the detection accuracy of Pontus
against Stable-Sketch, P-Sketch, and Tight-Sketch across different
traces and memory settings (16KB and 32KB). As shown in Table 2,
Pontus consistently achieves the highest F1 scores compared to the
other methods. Pontus’s key advantage lies in its efficient use of
memory, utilizing only one additional collision decay flag, while
the other methods require an additional 2-byte field to track dual-
dimensional features. Additionally, Pontus shows faster update
speeds, reaching around 25.2Mops, compared to 23.3Mops for P-
Sketch, 22.6Mops for Stable-Sketch, and 23.6Mops for Tight-Sketch.

5.2.2 Persistence Estimation. Figure 4 shows the error in persis-
tence estimation. Since P-Sketch, Stable-Sketch, and Tight-Sketch
do not offer a persistence estimation version, we exclude them from
the comparison. As demonstrated, Pontus significantly reduces
estimation errors. For AAE, Pontus reduces the average error by
283.56% and 196.16% compared to On-Off Sketch, and by 484.2%
and 396.27% compared to Pyramid On-Off Sketch, over the CAIDA
2018 and 2019 traces, respectively.

Pontus’s superiority stems from two key aspects. Firstly, it accu-
rately tracks potential persistent items by monitoring item keys and
employing a collision decay flag to protect them from easy eviction

A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

3000 3500

~—Pontus On-Off ~—Pontus On-Off
2500- —4A— Pyramid On-Off 3000 Pyramid On-Off
2000 2500
w w 2000
<1500 <
< <1500
1000 1000.
500 500
0 0
16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)
(a) AAE (C2018). (b) AAE (C2019).

Figure 4: AAE for persistence estimation.

Table 3: Pontus on persistent and (in)frequent item lookup.

Memory Size (KB) 16 32 64 128 256
F1 score (frequent) 0.864 0.864 0.911 0.928 0.928
F1 score (infrequent) 0.571 0.787 0.89 0.936 0.966

Update speed (Mops, frequent) 26.076 26.472 25.4011 25.491 23.966
Update speed (Mops, infrequent) 25.464 25.247 24.108 23.143 22.644

by non-persistent ones, leading to precise estimation for items with
high persistence. Secondly, Pontus mitigates overestimation errors
for non-persistent items by using the smallest value among the
hashed buckets. This dual approach allows Pontus to maintain high
accuracy across both persistent and non-persistent items.

5.2.3 Other persistence-based Tasks. Table 3 presents the F1 score
and update speed of Pontus for persistent and (in)frequent item
lookup. For persistent and infrequent item detection, we configure
¢ in the objective function Q as 0.2. We employ the CAIDA 2018
trace for testing, and similar trends are observed across other traces.
Pontus demonstrates high detection accuracy and rapid update
speed. Specifically, with a memory size of 64KB (a typical size of L1
cache [32]), Pontus achieves accuracy scores around 0.9 for both
tasks. Furthermore, the update speed exceeds 25Mops, indicating
that Pontus is well-suited for high-speed data streams or networks,
such as those requiring processing speeds of 14.88Mops per item
in a 10Gbps network [43].

When comparing Pontus against the advanced Tight-Sketch [32],
focusing on persistent and frequent item lookup using the CAIDA
2018 trace, Pontus outperforms Tight-Sketch in terms of F1 score by
7.46% at 16KB and 3.47% at 32KB. Also, Pontus achieves faster up-
date speeds compared to Tight-Sketch, which is limited to 15.8Mops
(figures omitted due to the space limitation).

5.3 Multiple Cases

5.3.1 Performance across Different Parameters. We use persistent
item lookup on the CAIDA 2019 trace as an example, varying the
number of windows M to 1000 and 2000, and adjusting the persis-
tence threshold & to 0.3 and 0.5.

Pontus consistently achieves the highest detection accuracy
across all parameter settings, demonstrating its effectiveness and
robustness (see Appendix B for figures). For example, the average
F1 score of Pontus is 25.35%, 20.94%, 20.02%, and 13.62% higher
than the closest competing method, Pyramid-based On-Off Sketch,
for the (1000, 0.3), (1000, 0.5), (2000, 0.3), and (2000, 0.5) parameter
settings, respectively.

5.3.2 Effectiveness of Utilizing One More Flag. Pontus utilizes the
collision decay flag to improve performance in persistent item
lookup. Table 4 presents the AAE of our method with and without

Table 4: Comparative AAE for different memory sizes on
CAIDA 2018 and 2019 dataset.

AAE 16KB 32KB 64KB
Default Pontus (C2018)

26.5511 11.4344 4.0875

Pontus with only F; j (C2018) 47.6988 17.5055 5.074
Default Pontus (C2019) 39.2512 16.4859 6.8585
Pontus with only Fi j (C2019) 67.8754 25.8737 8.6751

the flag. Without the decay flag, other hashed items can prematurely
decay the persistence counter before the tracked item arrives in the
current time slot. In memory-constrained scenarios, the addition
of the collision decay flag significantly reduces estimation errors
across different traces. For instance, with 16KB of memory, the flag
reduces AAE by 79.65% and 72.93% on the CAIDA 2018 and 2019
traces, respectively.

5.4 Memory-Efficient Variant Performance

Due to space constraints, we provide a detailed comparison of the
variant and default versions of Pontus in the Appendix C.

6 TESTBED EVALUATION

We implement a prototype of Pontus into a real testbed with off-the-
shelf Intel Tofino programmable switches using the P4 language.
Programmable switches are highly constrained in terms of available
resources like number of stages and limited support for mathemati-
cal operations. Given these limitations, we implement Pontus with
the number of rows d set to 1, consistent with the configurations
used in [44, 50]. The total number of time windows is configured
to 1500.

We employ the Tofino Native Architecture (TNA) RegisterAction
extern function to track and update the total persistence value of
items, arrival flag F, and collision decay flag R. We allocate register
entries based on the number of buckets used in the experiments.
As a hash function to locate items into the registers, we use prede-
fined HashAlgorithm_t.CRC16 function. Mathematical operations
like division are challenging in programmable switches due to the
constraints of the hardware and the design of the P4 language. The
MathUnit extern provides a way to perform approximated division,
but it does not yield exact results and is constrained by factors such
as approximation methods and input ranges. To overcome this, we
calculated better approximated division results offline and fill the ta-
ble entries in the switch. For the case of probabilistic replacements,
we replace the item or decay its persistence counter if the condition

RAND(0,2%) < int(T PminRi:,minlndex) holds, where b is the bit size
of the total time windows. Whenever probabilistic replacement
conditions hold in the case of collision, we recirculate the packet to
replace the non-persistent item or decrease the persistence counter
since TNA does not allow accessing to the same register more than
once per packet. In our experiments with CAIDA 2018 trace, only
a small fraction (1.93%-2.36%) of the packets are recirculated in
different memory allocations due to the probabilistic replacement.
At the end of each window, a digest is sent to the controller to reset
the associated flags in the register, as the only way of resetting
multiple instances in a register array is to use control plane APIs.

Resource Usage and Latency: Pontus can detect persistent
items effectively at line-rate with a low resource footprint. We

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

evaluate the resource usage and latency of our solution by using
Intel P4 Insight analysis tool [25] which provides a detailed analysis
of compiled P4 programs. Table 5 shows the resource usage in
programmable Intel Tofino Switch. Overall, Pontus consumes 8.2%
of the total available switch resources in average which leaves
sufficient room in the switch to coexist with other legacy switching
functions. Most of the consumption comes from Gateways, used
for conditional statements and to implement if/else conditions,
and Logical Table IDs that organizes the program into individual
lookups to make the processing sequential. The SRAM is the main
storage of the switch, used for exact match tables, action data and
for stateful objects like registers. Even though we implement our
solution in the switch by employing registers, we consume only
4.3% of total available SRAM resources. The results also reveal
that Pontus entails an average packet processing latency of 409 ns,
incurring just an additional 117 ns of latency compared to simple
forwarding in the switch.
Table 5: Resource Usage of Pontus in Tofino Switch

Resource Usage Resource Usage
Hash Bit 5.7% Match Crossbars 4.6%
Gateways 16.7% Logical TableID 21.9%
VLIW Instruction 7.3% SRAM 4.3%
Total Average 8.2%
Accuracy Comparison Be-
tween Hardware and Software] Pontus (Tafino)

3 : 1.0 [:| Pontus (Software)
Versions: Figure 5 compares the

recall rate of capturing real per-
sistent items between the Tofino
hardware version and the soft- HH
ware version, using the CAIDA

2018 trace. Since our method only
produces underestimation errors,
all captured persistent items are
guaranteed to be real, resulting in
a precision of 1, so the precision
rate is omitted. The results show similar capture rates across various
register entry sizes, demonstrating the correctness and consistency
of our implementation.

7 RELATED WORK

Persistent Item Lookup: Conventional methods for persistent
item lookup, such as Small-Space (SS) [28], rely on sampling to
monitor item persistence while minimizing space usage. However,
these methods [11, 28] face significant challenges: they often cap-
ture numerous non-persistent items, leading to inefficient memory
use. Moreover, reducing sampling rates due to memory limitations
can increase lookup errors and compromise accuracy. To overcome
these inefficiencies, researchers have explored various sketch-based
approaches. On-Off Sketch [49] periodically increases item persis-
tence but struggles with misidentifying non-persistent items due
to its coarse-grained differentiation. Pyramid-based On-Off Sketch
[34] enhances counter memory efficiency but inherits the original
method’s limitations. WavingSketch [30] employs a Bloom Filter to
remove duplicates, but this leads to significant false positives and
measurement inaccuracies, especially in limited memory scenar-
ios where erroneous replacements occur. PIE [16] employs coding

Recall

0.

0

=3
)

1024 2048 409 8192 16384
Number of Buckets

Figure 5: Recall rate on
hardware and software
platforms.

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

to monitor persistent items, but its complex update process, such
as matrix multiplication for item encoding, hampers functionality
in memory-constrained environments. P-Sketch [31] and Stable-
Sketch [33] use arrival continuity and bucket stability as additional
features to better protect potential persistent items. Tight-Sketch
[32] incorporates item arrival strength as an extra attribute and
employs a two-stage update strategy. However, tracking these fea-
tures consumes more memory, reducing the number of available
buckets and increasing the likelihood of hash collisions.

Persistence Estimation: On-Off Sketch [49] estimates item
persistence by using a flag to eliminate duplicates within each time
window, but this leads to significant overestimation in memory-
constrained environments. Pyramid On-Off Sketch [34] improves
memory efficiency with a hierarchical counter structure, where
overflows are propagated to upper layers. However, this method still
faces two challenges under limited memory: (1) slower processing
due to complex updates and queries requiring multi-layer traversal,
and (2) severe overestimation when multiple counters sharing the
same parent overflow simultaneously.

Persistent and Frequent Item Lookup: LTC [13] utilizes a
complex data structure that incorporates a clock algorithm for
increasing item persistence and a long-tail restoration technique
to mitigate overestimation errors. However, this sophisticated ap-
proach leads to a slow update process, making it unsuitable for
high-speed data streams.

Persistent and Infrequent Item Lookup: PISketch [19] pro-
vides a method for identifying persistent and infrequent items.
However, its effectiveness is heavily dependent on complex pa-
rameter configurations. This reliance on precise parameter tuning
introduces a significant risk of suboptimal performance if the set-
tings are not accurately calibrated to the specific characteristics of
the data stream being analyzed.

8 CONCLUDING REMARKS

In this paper, we introduced Pontus, a new probabilistic method for
accurate and efficient detection of persistent items in high-velocity
data streams. Pontus uses two flags to eliminate duplicates within
a time window and mitigates underestimation errors. Additionally,
we employ a probabilistic eviction strategy to prevent persistent
items from being easily displaced by non-persistent ones, address-
ing the challenge of skewed data distributions. Pontus is further
extended to handle other persistence-based tasks, and we provide
formal proof of its theoretical soundness. Our extensive trace-driven
evaluations demonstrate Pontus’s effectiveness, showing signifi-
cant improvements in lookup accuracy and a substantial increase
in update speed. Finally, our implementation on the programmable
Tofino switch highlights its feasibility for practical deployment.
The authors have made their code publicly available at [3].

ACKNOWLEDGMENTS

This research was supported by the SNS JU and the European
Union’s Horizon Europe research and innovation program under
Grant Agreement No. 101139270 (ORIGAMI). Beyza Biitiin is a Co-
munidad de Madrid predoctoral fellow (PIPF-2022/COM-24867).
Weihe Li was partially supported by Cisco through the Cisco Uni-
versity Research Program Fund (Grant no. 2019-197006).

A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams

REFERENCES

(1]
(2]

[3

[10]

[11]

[12

[13]

[14]

[15]

[16]

[17

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

2018. Anonymized Internet Traces. https://catalog.caida.org/dataset/passive_
2018_pcap.

2019. Anonymized Internet Traces. https://catalog.caida.org/dataset/passive_
2019_pcap.

2025. Pontus Repository. https://github.com/Mobile-Intelligence-Lab/Pontus.git.
Aristide Tanyi-Jong Akem, Beyza Biitiin, Michele Gucciardo, Marco Fiore, et al.
2024. Jewel: Resource-efficient joint packet and flow level inference in pro-
grammable switches. In IEEE International Conference on Computer Communica-
tions.

Thushara Amarasinghe, Achala Aponso, and Naomi Krishnarajah. 2018. Critical
analysis of machine learning based approaches for fraud detection in financial
transactions. In Proceedings of the 2018 International Conference on Machine
Learning Technologies. 12-17.
Austin Appleby. 2008.
com/site/murmurhash (2008).
Steven M Bellovin and William R Cheswick. 1994. Network firewalls.
communications magazine 32, 9 (1994), 50-57.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In ACM IMC. 267-280.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2004. Finding frequent
items in data streams. Theoretical Computer Science 312, 1 (2004), 3-15. Automata,
Languages and Programming.

Lin Chen, Raphael C-W Phan, Zhili Chen, and Dan Huang. 2022. Persistent items
tracking in large data streams based on adaptive sampling. In IEEE INFOCOM
2022-IEEE Conference on Computer Communications. IEEE, 1948-1957.
Mu-Chen Chen, Ai-Lun Chiu, and Hsu-Hwa Chang. 2005. Mining changes in
customer behavior in retail marketing. Expert Systems with Applications 28, 4
(2005), 773-781

Shiyu Cheng, Dongsheng Yang, Tong Yang, Haowei Zhang, and Bin Cui. 2020.
LTC: a fast algorithm to accurately find significant items in data streams. IEEE
Transactions on Knowledge and Data Engineering 34, 9 (2020), 4342-4356.
Graham Cormode and Minos Garofalakis. 2007. Sketching probabilistic data
streams. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. 281-292.

Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. J. Algorithms 55, 1 (apr
2005), 58-75.

Haipeng Dai, Muhammad Shahzad, Alex X. Liu, and Yuankun Zhong. 2016.
Finding Persistent Items in Data Streams. Proc. VLDB Endow. 10, 4 (nov 2016),
289-300.

Alessandro Epasto, Mohammad Mahdian, Vahab Mirrokni, and Peilin Zhong. 2022.
Improved sliding window algorithms for clustering and coverage via bucketing-
based sketches. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 3005-3042.

Cristian Estan and George Varghese. 2003. New Directions in Traffic Measure-
ment and Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Trans.
Comput. Syst. 21, 3 (aug 2003), 270-313.

Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, Wenrui Liu, Tong Yang,
Hengrui Wang, Yifei Xu, Steve Uhlig, and Yaofeng Tu. 2022. Pisketch: finding
persistent and infrequent flows. In Proceedings of the ACM SIGCOMM Workshop
on Formal Foundations and Security of Programmable Network Infrastructures.
8-14.

Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and Dina
Papagiannaki. 2009. Exploiting temporal persistence to detect covert botnet
channels. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 326-345.

Sule Giindiiz and M Tamer Ozsu. 2003. A Web Page Prediction Model Based on
Click-Stream Tree Representation of User Behavior. In ACM KDD. 535-540.
Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo, Hong Xu,
Jiawei Huang, and Kai Chen. 2024. Load Balancing With Multi-Level Signals for
Lossless Datacenter Networks. IEEE/ACM Transactions on Networking (2024).
Jiawei Huang, Wenlu Zhang, Yijun Li, Lin Li, Zhaoyi Li, Jin Ye, and Jianxin Wang.
2022. ChainSketch: An Efficient and Accurate Sketch for Heavy Flow Detection.
IEEE/ACM Transactions on Networking (2022).

Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar. 2005.
Click fraud resistant methods for learning click-through rates. In Internet and
Network Economics: First International Workshop, WINE. Springer, 34-45.

Intel. [n.d.]. P4 Insight. https://www.intel.com/content/www/us/en/products/
details/network-io/intelligent-fabric- processors/p4-insight.html.

VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad. 2011. A review of
anomaly based intrusion detection systems. International Journal of Computer

MurmurHash. URL https://sites. google.

IEEE

[27

[28

[29]

[30

[31

(32

[33

[34

[35

(39]

[40

[41]

[43

(44

[45

'S
&

[47

(48

[49

[50

[51

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Applications 28,7 (2011), 26-35.

John Kallaugher and Eric Price. 2020. Separations and equivalences between
turnstile streaming and linear sketching. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing. 1223-1236.

Bibudh Lahiri, Jaideep Chandrashekar, and Srikanta Tirthapura. 2011. Space-
efficient tracking of persistent items in a massive data stream. In Proceedings of
the 5th ACM international conference on Distributed event-based system. 255-266.
Jakub Lemiesz. 2021. On the algebra of data sketches. Proceedings of the VLDB
Endowment 14, 9 (2021), 1655-1667.

Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong
Zhang. 2020. WavingSketch: An Unbiased and Generic Sketch for Finding Top-k
Items in Data Streams. In ACM KDD. 1574-1584.

Weihe Li and Paul Patras. 2023. P-Sketch: A Fast and Accurate Sketch for Persis-
tent Item Lookup. IEEE/ACM Transactions on Networking (2023), 1-16.

Weihe Li and Paul Patras. 2023. Tight-Sketch: A High-Performance Sketch for
Heavy Item-Oriented Data Stream Mining with Limited Memory Size. In Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23). 1328-1337.

Weihe Li and Paul Patras. 2024. Stable-Sketch: A Versatile Sketch for Accu-
rate, Fast, Web-Scale Data Stream Processing. In Proceedings of the ACM Web
Conference (Webconf ’24).

Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and
Shigang Chen. 2022. Pyramid Family: Generic Frameworks for Accurate and
Fast Flow Size Measurement. IEEE/ACM Transactions on Networking 30, 2 (2022),
586-600.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. 2020. Cross-failure bug detection in persistent memory pro-
grams. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 1187-1202.

MAWI. 2020. MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/
mawi/

Michael Mitzenmacher. 2001. Compressed bloom filters. In Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing. 144-150.
Antonio Nappa, Rana Faisal Munir, Irfan Khan Tanoli, Christian Kreibich, and
Juan Caballero. 2016. RevProbe: detecting silent reverse proxies in malicious
server infrastructures. In Proceedings of the 32nd Annual Conference on Computer
Security Applications. 101-112.

Dan R. K. Ports and Jacob Nelson. 2019. When Should The Network Be The
Computer? (HotOS ’19). Association for Computing Machinery, New York, NY,
USA, 209-215. https://doi.org/10.1145/3317550.3321439

Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented Sketch: Faster
and More Accurate Stream Processing. In SIGMOD. 1449-1463.

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008.
Sketching concurrent data structures. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 136—148.
Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioglu.
2005. Programming by sketching for bit-streaming programs. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and imple-
mentation. 281-294.

Lu Tang, Qun Huang, and Patrick P. C. Lee. 2019. MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams. In IEEE
INFOCOM. 2026-2034.

Lu Tang, Qun Huang, and Patrick P. C. Lee. 2020. A Fast and Compact Invertible
Sketch for Network-Wide Heavy Flow Detection. IEEE/ACM Transactions on
Networking 28, 5 (2020), 2350-2363.

David P Woodruff and Samson Zhou. 2022. Tight bounds for adversarially robust
streams and sliding windows via difference estimators. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 1183-1196.

Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. 2018.
HeavyGuardian: Separate and Guard Hot Items in Data Streams. In ACM KDD
(London, United Kingdom). 2584-2593.

Jin Ye, Lin Li, Wenlu Zhang, Guihao Chen, Yuanchao Shan, Yijun Li, Weihe Li,
and Jiawei Huang. 2022. UA-Sketch: An Accurate Approach to Detect Heavy
Flow based on Uninterrupted Arrival. In Proceedings of the 51st International
Conference on Parallel Processing. 1-11.

Yinda Zhang. 2020. On-Off Sketch Repository. https://github.com/Sketch-Data-
Stream/On- Off-Sketch.

Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin
Cui. 2020. On-off Sketch: A Fast and Accurate Sketch on Persistence. Proc. VLDB
Endow. 14, 2 (oct 2020), 128-140.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: High-performance
sketch-based measurement over arbitrary partial key query. In ACM SIGCOMM.
207-222.

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold Filter: A Meta-Framework for Faster and More Accurate Stream
Processing. In SIGMOD. 741-756.

https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://github.com/Mobile-Intelligence-Lab/Pontus.git
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://doi.org/10.1145/3317550.3321439
https://github.com/Sketch-Data-Stream/On-Off-Sketch
https://github.com/Sketch-Data-Stream/On-Off-Sketch

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

A THEORETICAL ANALYSIS
A.1 Complexity

THEOREM A.l1. Assuming that Pontus is configured with d =
log, % and w = %, where § (0 < & < 1) represents the error
probability and € (0 < € < 1) denotes the approximation param-
eter. This parameter indicates that the error in answering a query
is within a factor of € with probability 8. The space usage of our
scheme is O(% log % log n). The update time for each operation is
O(log % + M% log %) The time complexity of returning all persistent
item is O(% log %)

Proor. The data structure of our scheme contains dw buck-
ets, where each bucket records a log n-bit key, two flag bits, and
a persistence counter. Thus, the space usage of our scheme is
O(dwlogn) = O(% log % logn).

For our scheme, each operation conducts at most d hash actions
to find a proper bucket. Since all counter flags need to be reset to
True when a new window starts, our scheme will traverse all buck-
ets at the beginning of an epoch. As the number of time windows is
M, the maximum update time is O(d+Mdw) = O(log }S+M% log %)

Returning all persistent items demands a scan of all buckets
(dw) to obtain which buckets have a persistence counter greater
than the predefined threshold, which requires O(dw) = O(% log (ls)
time. O

A.2 No Overestimation Errors

THEOREM A.2. For any given item e;, let P,; and pei denote the
actual persistence and estimated persistence of e;, respectively. Then
P, < Pe,.

PROOF. At the start of the detection task (t = 0), both P, and P,
are zero, so the theorem holds. Assume that at the (¢ — 1)-th time
window, P, < Pe,. At t-th time window, two scenarios are possible:
(i) If e; arrives, then Pe,» = ﬁei +1and Pe; = P, +1. Hence, 138,. < P,
is true. (ii) If an item other than e; arrives, the estimated persistence
of item e; either decreases by 1 or stays the same, i.e., ﬁe,— = Pei -1
or ﬁe,» = ﬁei. Given that Pe; = P,,, it follows that ﬁe,» < Pe,.

Since the claim holds for all scenarios, Theorem A.2 is proven.

m]

A.3 Error Bound of Pontus

THEOREM A.3. Let e; denote the item with the i-th highest persis-
tence among all considered persistent items. Note that our analysis of
the error bound specifically focuses on those persistent items. Given
a small positive number € and a persistent item e;, we define the
probability that the difference between P, and Pe, exceeds eP by the
following inequality. Here, p is a constant slightly greater than 1, and
P represents the total persistence value of all items in the data stream

(Zeie’u Pe,-)-'

« 1
Pr{(Pe, — P¢;) > €P} < — - (P, — A/P2 — 4K), (1)
2eP !

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

where k is defined as follows:

D
lc:Prc'Prw«—1
1n_1d (ﬂ)dfl
i1 w
=|[1-(1-—= e w o —L 2
[(w) } BECERV @
M - Py,
p-1

Proor. We assume that once a persistent item e; enters a bucket,
it is not evicted from the bucket by other items, but its counter may
be reduced by other items with a persistence smaller than its own.
First, we compute the probability that any other newly arrived item
ej does not find an available bucket after being hashed d times,

denoted by Pr:
1 n-114
Prc:[l—(l——)] , 3)
w

where in a given bucket, the probability that a specific item is

mapped is % Thus, in a bucket to which e; is mapped, the probabil-
n-1
ity that no other item is mapped to the same bucket is (1 - %v) ,
where n is the total number of distinct items in the data stream.
Consequently, in a given array, the probability that a hash collision

occurs in the bucket to which e; is mapped is 1— (1 - %)n 1. Thus,
Pr. represents the probability that e; experiences hash collisions
in all d rows.

Next, we define Pr,, as the probability that, during the process
of hashing item e; for d times, e; remains the item with the lowest
persistence count among all rows in which e; is hashed:

i—1)(1\%! 1\
mel D)) s

This probability follows a binomial distribution Bin(i — 1, lw)
and can be approximated by a Poisson distribution with parameter
%. Therefore, Pr,, can be expressed as:

1)
_ izl w

d-nr ©)

Due to the protection of the collision decay flag during the update
process in Pontus, reductions in e;’s persistence can only occur
during time windows when e; is absent. Furthermore, within each
such period, at most one successful reduction can decrease the
persistence count of ¢; by 1. Consequently, the maximum decrease D
in the persistence count of e; over the entire process is: D = M —P,.

Consider the persistence of e; as consisting of discrete states
ranging from 1 to P, denoted by s, where s = 1,2,...,P,. At
each state, the probability of successfully reducing e;’s persistence
count is 1/s. Then, based on the previously defined probabilities,
the expected number of times the persistence value of e; is decayed

A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

0.5
Actual Value
0.4 Theoretical Bound

T

Real Persistence Estimated Persistence So03
1500 2

3 g 0.2
s fim}

1000 0.1

3 0.0

0 50 160 150 200 32 64 v128 256
Index Memory Size (KB)
(a) Comparison between actual and estimated per- (b) Error bound.

sistence by Pontus.
Figure 6: Model Validation.

can be quantified as follows:

E(If'ei)1
E(X;) =Prc-Pry-D- — . -
E(Pei) g:l g
Mt iz1) !
! - A ©)
=|1-|1-— e w o — L
w (d-1)!
E(Pei)l
(M=Pe) Y
=1 9

The following results apply to our settings where M does not

exceed 150K. Items with such high persistence are rare in practice.

Consequently, the following formula holds:
E(P,, E(P,;)

) _ 7,\
)T Y P LTl B E
= 9 A

1-p71 p-1
where p is a constant slightly greater than 1, for example, 1.08.
Based on the above, we compute the expected underestimation
of Pe;:
E(Pe;) = Pe, — E(X))
Pr.-Pry,-D K 8)
e — ~

E(Pe)-(p-1) " E(P)
Resolving (8), we obtain E(Pei) as:

Pe, + 4 /pgi — 4k

€i

E(ﬁei) = 2 > (9)
Furthermore, applying the Markov inequality, we deduce that:
R E(Pe, - P,
Pr{(Pe, — Po,) 2 €P} < EPe, — Fe)
eP
_ Pel- - E(Pel)
epP
) Pe, +A[P2 — 4x (10)
=— Py - ——
eP ! 2
1 2
= = (Pe; — | PE, — 4K).

2eP

Theorem A.3 has been proven. O

To validate the correctness of the derived error bound, we utilize
the CAIDA 2018 trace for testing, which comprises 2.3M packets
from 0.76M items. Initially, we compare the real and estimated
values of persistent items using our method with a memory size of
32KB, adhering to the settings described in Section 5.1. Specifically,
Pontus captures 883 persistent items. For clarity, in Figure 6(a),
we randomly select 200 items from this pool, noting that all other
items yielded similar results. As depicted, our estimated persistence
closely aligns with the actual persistence, with no instances of
overestimation errors.

Then, we validate the accuracy of our derived bound. We set p at
1.08 and vary the memory size from 32KB to 256KB to cover typical
L1 cache sizes, specifically 32KB and 64KB. Additionally, we adjust

the parameter € to maintain eP at 20, signifying that the persistence
estimation errors are within 20. Our observations in Figure 6(b)

indicate that the theoretical error bound closely matches and is
slightly larger than the experimental values, thus confirming the
correctness of our derived error bound.

A.4 Error Bound of Pontus’s Variant

THEOREM A.4. Given a small positive number € and a persistent
item e;, the probability that the absolute difference between the actual
persistence P, and its estimate Pe, exceeds €P is bounded by:

. 1
Pr{|Pe, — Pe,| 2 eP} < —— - [(Pe, + E(Y))
2eP

where P is the sum of persistence values of all items, x retains the
definition from Theorem A.3, with 9 representing the length of a
fingerprint. Furthermore, E(Y;), is given by:

iil 1-— 1_ln_1k (12)
28 d w ’

k=1

E(Y) = (M~Pe,)-

Proor. First, by using fingerprints instead of keys, for any new
incoming item e; to successfully reduce the probability of e;, it is
required that the fingerprints of the two items differ. The probability

of this occurring is:
1

2_19 .
We define E(Y;) to represent the expected overestimation in the
persistence count of e; due to fingerprint collisions:

d n-11%
1 1 1
— Y lh-[1-= . (14
k=1

where the persistent count of e; can only be increased by at most 1

Prfp =1- (13)

E(Y) = (M- Pe,) -

in each period in which it is not present. The factor 1/ 29 represents
the probability that two items share the same fingerprint. The last
term represents the probability that any newly arriving e; hashes
into the same bucket as e; during a given time window by sharing
the same fingerprint.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

——Pontus On-Off ——Pontus On-Off
e Pyramid On-Off e Pyramid On-Off
10| T Waving —e—ss 10| T4 Waving —e—ss
g™ g™
o o F 4
2 2
— —
“ 0.5 “ 0.5
— e
0.0 44" 0.0 *
" 16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)
(a) (1000, 0.3). (b) (1000, 0.5).
—*—Pontus On-Off —*—Pontus On-Off
e Pyramid On-Off «=e—Pyramid On-Off
10| T4 Waving —e—ss 10| T4 Waving —e—ss
e g™
o o
b 3
— ~
%05 %05
_—" o
0.0 " 00 ——
T 16 32 64 128 256 T 16 32 64 128 256

Memory Size (KB)

(c) (2000, 0.3).

Memory Size (KB)
(d) (2000, 0.5).
Figure 7: F1 scores of different methods under various pa-

rameter settings for persistent item lookup (where the first
value indicates M and the second value indicates).

1.0 1.0
0.9 ; 0.9
0.8 0.8

1 score
1 score

w 0.7 w 0.7
o= PONtUS e PONtUS
0.6 Pontus with FP 0.6 Pontus with FP
05 == Pontus with FP+Consolidation 05 == Pontus with FP+C
T 16 32 64 128 256 T 16 32 64 128 256

Memory Size (KB)

(a) F1 score (C2018).

Memory Size (KB)

(b) F1 score (C2019).

w
o
w
=}

B25 *—h—*_,* Q25 ————,
o o
2o Ay | | 2| T
3 3
;}.{ 15 é}‘ 15
210 210
2 = Pontus 8 == Pontus
55 Pontus with FP 85 Pontus with FP
0 —h— Pontus with FP+Consolidation 0 ~—&— Pontus with FP+Consolidation
16 32 64 128 256 16 32 64 128 256
Memory Size (KB) Memory Size (KB)

(c) Speed (C2018). (d) Speed (C2019).

Figure 8: F1 score and update speed of our default Pontus
version and its variant for persistent item lookup.
Based on these definitions, the expected value of ﬁe,— under the

fingerprint scenario is calculated as follows:

E(Pe;) = Pe; — E(X;) + E(Y;)

Prc - Pry,-D 1 .
‘T E(Be) - (p—1) '(1_ 2_9) FEODy5)
=P —L‘(l—i)+E(Y-)
YRR 2T

where Pr¢, Pr,,, and D maintain their definitions as outlined in
Theorem A.3.

Weihe Li, Zukai Li, Beyza Bitiin, Alec F. Diallo, Marco Fiore, and Paul Patras

Similar to the above derivation process, we solve formula (15) to

obtain:
[Pe, + E(Y))] + m

2
Therefore, by applying the Markov inequality, we deduce the
error bound as:

E(pei) =

, (16)

, E(Pe, — Pe;)
Pr{|Pe; — Pe,| > €P} < %
_Pei_E(Pei)
B eP
(17)
= — . [(P,, +E(Y;
%€ [(€ (1))
1
_.p2 _ _ 2
P, — 4k (1 23)
O

B PERFORMANCE ACROSS DIFFERENT
PARAMETERS

Here, we use persistent item lookup as an example. We vary the
number of windows, M, to 1000 and 2000, and adjust the persistence
threshold, a, to 0.3 and 0.5. We employ the CAIDA 2019 trace for
testing.

As shown in Figure 7, we observe that Pontus maintains the
highest detection accuracy across different parameter settings, af-
firming its effectiveness and robustness. For instance, the average
F1 score of Pontus is 25.35%, 20.94%, 20.02%, and 13.62% higher than
the most competing method Pyramid-based On-Off Sketch over
(1000, 0.3), (1000, 0.5), (2000, 0.3), and (2000, 0.5) parameter settings.

C VARIANT PERFORMANCE

Figure 8 depicts the results of our default Pontus and its variant
across various traces. Our variant incorporates two techniques:
fingerprint (PF) compression and field consolidation. We evaluate
the effectiveness of each component. As depicted in Figure 8(a) and
(b), each technique demonstrates improvements in detection accu-
racy, particularly under tight memory constraints such as 16KB.
For example, with the CAIDA 2018 trace and a memory size of
16KB, our variant enhances accuracy by 18.39% compared to our
default version. On average, the variant improves accuracy by 5.3%.
However, such improvements come at the price of lower processing
speed. As shown in Figure 8(c) and (d), we observe that the use of

fingerprint slows down the update speed. This is because each item
requires additional hash operations to obtain its fingerprint value.

Furthermore, counter consolidation further reduces the speed, as it
involves checking whether the consolidation is successful and oper-
ating on a bit-level, which leads to slower processing. Additionally,
the use of fingerprint breaks invertibility. During the query process,
each item needs to be rehashed to obtain its fingerprint, resulting
in longer query times. Thus, if speed is not a primary concern in
practice, using this variant can be an option. By default, we choose
the default version because it achieves superior accuracy compared
to existing baselines and maintains high processing speed.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Design
	3.1 Principles
	3.2 Data Structure
	3.3 Basic Operation
	3.4 Running Examples
	3.5 Adaptation to Other Lookup Tasks
	3.6 A Variant for Higher Memory Efficiency

	4 Theoretical Analysis
	5 Trace-Driven Evaluation
	5.1 Setup
	5.2 Performance Comparison
	5.3 Multiple Cases
	5.4 Memory-Efficient Variant Performance

	6 Testbed Evaluation
	7 Related Work
	8 Concluding Remarks
	References
	A Theoretical Analysis
	A.1 Complexity
	A.2 No Overestimation Errors
	A.3 Error Bound of Pontus
	A.4 Error Bound of Pontus's Variant

	B Performance Across Different Parameters
	C Variant Performance

