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ABSTRACT
In today’s web-scale, data-driven environments, real-time detection

of persistent items that consistently recur over time is essential for

maintaining system integrity, reliability, and security. Persistent

items often signal critical anomalies, such as stealthy DDoS and

botnet attacks in web infrastructures. Although various methods

exist for identifying such items as well as for determining their fre-

quency, they require recording every item for processing, which is

impractical at very high data rates achieved bymodern data streams.

In this paper, we introduce Pontus, a novel approach that uses an

approximate data structure (sketch) specifically designed for the

efficient and accurate detection of persistent items. Our method not

only achieves fast and precise lookup but is also flexible, allowing

for minor modifications to accommodate other types of persistence-

based item detection tasks, such as detecting persistent items with

low frequency. We rigorously validate our approach through for-

mal methods, offering detailed proofs of time/space complexity

and error bounds to demonstrate its theoretical soundness. Our

extensive trace-driven evaluations across various persistence-based

tasks further demonstrate Pontus’s effectiveness in significantly

improving detection accuracy and enhancing processing speed

compared to existing approaches. We implement Pontus in an ex-

perimental platform with industry-grade Intel Tofino switches and

demonstrate the practical feasibility of our approach in a real-world

memory-constrained environment.
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1 INTRODUCTION
Recognizing persistent items is vital across a range of web-scale

applications, such as analyzing user behavior in e-commerce plat-

forms [12], preventing fraud in online financial transactions [5], and

detecting anomalies in network traffic [20, 24]. For example, certain

web-based network threats utilize stealthy techniques by distribut-

ing malicious packets at a controlled rate over an extended period,

rather than overwhelming targets in a short burst. This tactic is

specifically designed to evade detection by traditional web security

monitoring methods [26]. In a different context, persistent items

in server log files or monitoring data can reveal recurring faults or

performance bottlenecks in distributed web systems [35]. Identi-

fying and analyzing these persistent anomalies allows engineers

to address systemic issues that may not surface during standard

testing, but which consistently degrade the performance of web ser-

vices. Similarly, persistent user actions on web applications—such

as frequently used features or repeatedly accessed content—can

inform developers in optimizing UI/UX designs [21, 49], enhancing

user satisfaction and engagement on a broad scale.

Beyond detecting persistent items, it is also important to iden-

tify variations, such as items that are both persistent and frequent

[13, 32], or persistent and infrequent [19]. For example, persis-

tent and frequent requests in web services may indicate critical

resources or endpoints. Identifying these patterns can help optimize

load balancing and server provisioning to handle peak traffic more

effectively [22]. In enterprise networks, web services like Fast Re-

verse Proxy (FRP) [38] expose local servers behind firewalls [7] to

external traffic. FRP connections, while consistent, often generate

low packet volumes, making them persistent yet infrequent [19],

which can be key to enhancing security and network performance.

Challenges: Detecting persistence-based items in real-time

poses significant challenges due to three primary factors. (i) The

sheer volume and high speed of data streams make it impractical to
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track all items for analysis and lookup [46]. (ii) Many modern com-

puting systems used for web-scale data mining have tight memory

budgets and require highly compact processing methods. These

systems rely on on-chip CPU caches for high-speed processing, but

are constrained by the limited capacity of the fastest L1 cache [32].

Similarly, programmable network hardware that is posed to perme-

ate future-generation communication infrastructures is extremely

resource-constrained [4, 39]. (iii) The item distribution is typically

highly skewed [51], meaning that most items are non-persistent

and only a small portion is persistent.

Limitations of Prior Art: To overcome these obstacles, approx-

imate data structures, commonly referred to as sketches, have been
adapted to data stream processing in high-speed environments [14,

17, 27, 29, 40–42, 45, 47, 50]. Several sketch-based schemes tar-

get persistence-based item lookup [13, 19, 30–33, 49]. However,

as expounded in Section 7, these methods face the following key

limitations. (i) Many employ coarse item replacement strategies,

such as the direct swap strategy [49], which often lead to persistent

items being prematurely evicted from buckets due to frequent col-

lisions with non-persistent items, especially under tight memory

constraints where hash collisions are more severe. (ii) Some meth-

ods track multiple features per item to better protect persistent

items, but this compromises memory efficiency [31–33]. (iii) Other

approaches involve complex update operations, such as matrix

multiplication, reducing processing speed and limiting their abil-

ity to handle high-speed data streams [16]. (iv) Most methods are

overly dependent on multiple tuning parameters, making them less

practical for real-world deployment [13].

Our Solution: In this paper, we introduce Pontus, a novel prob-

abilistic method designed for the accurate and efficient lookup of

persistent items. Pontus introduces several key novelties in sketch

design for persistence-based item lookup: (i) it employs new flags

to avoid double-counting items and excessive decay of persistence

values due to severe hash collisions; (ii) it implements a probability-

decay eviction strategy prioritizing the removal of non-persistent

items that tend to dominate real-world data distributions [8, 47, 51];

(iii) it handles persistent item lookup tasks in scenarios with long

item keys by introducing a fingerprint-based variant that utilizes a

counter merge technique to enhance memory efficiency [46].

We rigorously model and analyze Pontus, offering theoretical

guarantees on error bounds, time complexity, and space complexity,

enabling us to quantify its performance and reliability.

We also implement a prototype of Pontus in C++ and evaluate its

performance across diverse datasets and tasks, including persistent

item lookup, persistence estimation, and the detection of both per-

sistent and frequent, as well as persistent and infrequent, items. Our

results demonstrate Pontus’s robustness and superiority over previ-

ous sketch-based designs. For persistent item lookup, Pontus attains

the highest detection accuracy even compared with the leading

competitors, P-Sketch [31] and Stable-Sketch [33]. In persistence

estimation, it reduces estimation errors by up to 484.2% relative

to existing methods. When detecting persistent and (in)frequent

items, Pontus achieves the best F1 score of approximately 0.9, even

with a constrained memory budget of 64KB. Moreover, thanks to

its streamlined update process, Pontus delivers the fastest update

speeds, outperforming benchmark schemes across various tasks.

Finally, we deploy Pontus on a hardware Tofino switch using

the P4 language [9], where it achieves a recall of 0.95 for persistent

item lookup with 16,384 entries by consuming only 8.2% of the total

available switch resources on average and entailing an average

packet processing latency of 409ns. This demonstrates Pontus’s

applicability to practical resource-constrained systems.

2 PROBLEM DEFINITION
Data Stream: We consider a data stream U = {𝑒1, 𝑒2, . . . , 𝑒𝑛}

composed of various items, where each item is represented as a

key-value pair. The key serves as the item identifier, and value is

the corresponding value associated with that item. For instance, in

network monitoring, the key often represents a flow identifier, such

as a source-destination address pair [43], while the value could be

its count information, such as frequency or persistence.

Sketch: Sketches are probabilistic summary data structures

that track values in a fixed number of entries known as buckets.
Classic examples of sketches include the Count-Min Sketch [15],

Count Sketch [10], and CU Sketch [18], among others. A Count-Min

Sketch is represented by a two-dimensional array of buckets with

𝑤 columns and 𝑑 rows. Initially, each counter in the buckets array

is set to zero. Additionally, 𝑑 pairwise-independent hash functions

ℎ1, . . . , ℎ𝑑 are chosen, with each hash function corresponding to

a row. When an item (𝑒𝑖 , 𝑣𝑖 ) arrives, indicating that item 𝑒𝑖 is up-

dated by a quantity of 𝑣𝑖 , 𝑣𝑖 is added to the counter in a bucket

in each row; the specific bucket is determined by applying the

corresponding hash function ℎ𝑧 to 𝑒𝑖 . Formally, ∀𝑧, 1 ≤ 𝑧 ≤ 𝑑 ,

𝐵(𝑧, ℎ𝑧 (𝑒𝑖 )) ← 𝐵(𝑧, ℎ𝑧 (𝑒𝑖 )) + 𝑣𝑖 . During the query process, the

count of item 𝑒𝑖 is estimated as 𝑆𝑒𝑖 = min𝑧 [𝐵(𝑧, ℎ𝑧 (𝑒𝑖 ))].
Persistence: In data streams, persistence is defined across 𝑀

non-overlapping, consecutive time windows. The window size can

be adapted based on data volume or timestamps. For example, in

network traffic analysis, one can define each window by a fixed

number of packets, such as 𝑁 = 1000 packets per window, meaning

that every 1000 received packets constitute one window, while the

data volume in each window can vary. The persistence 𝑃𝑒𝑖 of an

item 𝑒𝑖 increments by 1 if 𝑒𝑖 appears at least once in a window,

regardless of how many times it occurs within that window.

Persistent Item Lookup: An item 𝑒𝑖 is said to be 𝛼-persistent

if its persistence 𝑃𝑒𝑖 satisfies 𝑃𝑒𝑖 ≥ 𝛼𝑀 , where 𝛼 ∈ (0, 1] is a user-
defined threshold. This means that 𝑒𝑖 must appear in at least a

fraction 𝛼 of the total number of time windows𝑀 by the measure-

ment point to be classified as persistent.

Persistence Estimation: The task of persistence estimation

involves accurately determining the value of 𝑃𝑒𝑖 for each unique

item 𝑒𝑖 in the data streamU.

Persistent and Frequent Item Detection: For each 𝑒𝑖 ∈ U, let

𝑆𝑒𝑖 denote the total number of occurrences (frequency) of 𝑒𝑖 in the

data stream. Given a frequency threshold 𝛽 ∈ (0, 1], an item 𝑒𝑖 is

considered 𝛽-frequent if its frequency 𝑆𝑒𝑖 satisfies 𝑆𝑒𝑖 ≥ 𝛽𝑆 , where
𝑆 =

∑
𝑒𝑖 ∈U 𝑆𝑒𝑖 is the total number of occurrences (frequency sum)

across all items in the stream. The set of items that are both frequent

and persistent is then F 𝛽𝛼 = {𝑒𝑖 ∈ U | 𝑆𝑒𝑖 ≥ 𝛽𝑆 and 𝑃𝑒𝑖 ≥ 𝛼𝑀}.
Persistent and Infrequent Item Detection: Given an addi-

tional frequency threshold 𝜅 ∈ (0, 1), considerably lower than 𝛽 ,

we define the set of persistent but infrequent items as follows:

I𝜅𝛼 = {𝑒𝑖 ∈ U|𝑆𝑒𝑖 < 𝜅𝑆 and 𝑃𝑒𝑖 ≥ 𝛼𝑀}.



A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

3 DESIGN
3.1 Principles
State-of-the-art methods for persistent item lookup, such as P-

Sketch [31], Stable-Sketch [33], and Tight-Sketch [32], use a dual-

dimensional feature approach to better protect potential persistent

items, which is detailed in Section 7. While this improves detection

accuracy, it reduces memory efficiency, resulting in fewer avail-

able buckets. This problem is exacerbated in memory-constrained

environments, where hash collisions become more frequent.

Pontus improves the state of the art above by enhancing both

memory efficiency and detection accuracy. Given the skewed nature

of real-world data distributions [33], we employ a probability-decay

eviction strategy to prioritize the retention of potentially persistent

items. Our design incorporates two flags (requiring only 2 bits)

and is based on three key principles: (i) Since the persistence of an

item increases by only 1 per time window, we introduce an arrival
flag 𝐹 to track whether the recorded item has arrived during the

current window. (ii) Unlike item frequency, which can grow rapidly,

item persistence increases more slowly, making persistent items

more vulnerable to eviction in cases of frequent hash collisions

from a large number of incoming items. To prevent this, we limit

bucket access to allow persistence decay only once per window.

The collision decay flag 𝑅 indicates whether a hash collision

has occurred in the bucket during the current window. If a decay

has already occurred, further decay from other items is ignored to

avoid excessive reduction in the tracked item’s persistence. (iii) If

the persistence of a tracked item has been reduced due to a hash

collision, its persistence is increased by 2, rather than 1, when the

item arrives in the same window. Notably, our method requires

only one additional flag 𝑅 compared to existing approaches [49],

yet it delivers superior detection performance, as demonstrated

in Section 5. Additionally, Pontus’s efficient design facilitates its

practical deployment on resource-constrained hardware, as proven

in Section 6 with a P4-programmable Tofino switch.

3.2 Data Structure
Here, we illustrate the data structure of Pontus using persistent

item lookup as an example. We will elucidate how our scheme can

be extended to handle other persistence-based tasks in Section 3.5.

As shown in Figure 1, our probabilistic data structure consists of

𝑑 rows and𝑤 columns. Each bucket, denoted as 𝐵(𝑖, 𝑗) for 1 ≤ 𝑖 ≤ 𝑑
and 1 ≤ 𝑗 ≤ 𝑤 , contains four fields: 𝐾𝑖, 𝑗 stores the key of the

current candidate persistent item hashed to the bucket, 𝑃𝑖, 𝑗 tracks

the persistence count of the item, 𝐹𝑖, 𝑗 is the arrival flag, and 𝑅𝑖, 𝑗
represents the collision decay flag. Since each flag occupies only one

bit, both flags can be packed into a single 8-bit machine word for

efficient deployment. Our method utilizes 𝑑 pairwise-independent

hash functions, denoted as ℎ1, . . . , ℎ𝑑 , where each ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑑)
maps the key of each incoming item to one of the𝑤 buckets in the

𝑖-th row. Notably, the size of this data structure is fixed and can be

pre-allocated in memory for efficient operation.

3.3 Basic Operation
Pontus hinges upon two fundamental operations: (i) Update, involv-

ing the insertion of each incoming item into the probabilistic data

structure; and (ii) Query, enabling the retrieval of the estimated

persistence of a given item.

...

...

...

...

... ...

w columns

d rows

B(i,j) Ki,j Pi,j Fi,j Ri,j

...
Figure 1: Data structure of Pontus.

3.3.1 Update. Algorithm 1 outlines the update process of Pontus

for each time window. Initially, the key field and counter field in all

buckets are set to 𝑁𝑢𝑙𝑙 and 0 (Line 1). At the start of each window,

all flags in each bucket are reset to 𝑇𝑟𝑢𝑒 (Line 2). Subsequently,

three scenarios may occur:

(i) Upon the arrival of an item 𝑒𝑖 , the algorithm uses the hash func-

tionsℎ1, ℎ2, . . . , ℎ𝑑 iteratively to locate an appropriate bucket 𝐵(𝑖, 𝑗).
If the hashed bucket is empty, denoted by 𝐾𝑖,index == 𝑁𝑈𝐿𝐿, item

𝑒𝑖 is inserted into the bucket, and its persistence counter 𝑃𝑖,index
is initialized to 1. The flag 𝐹𝑖,index of the bucket is set to 𝐹𝑎𝑙𝑠𝑒 to

indicate that the item has been added in current time slot. Similarly,

the flag 𝑅𝑖,index is set to False, indicating that the bucket cannot be

decayed by other items within the current time window (Lines 3-6).

Then the hash operations cease (Line 7). Unlike methods such as

[15, 43], which track an incoming item across all rows, we track

each item in only one row. This optimizes memory usage by freeing

up more buckets to track other items.

(ii) If the hashed bucket contains 𝑒𝑖 and its corresponding flag

𝐹𝑖,index is 𝑇𝑟𝑢𝑒 , indicating that the item has not arrived within

the current time window, the increase of the persistence counter

𝑃𝑖,index follows two scenarios: (1) If 𝑒𝑖 arrives late in the current

time window and its counter has been reduced by another item that

hashed into the same bucket (as indicated by 𝑅𝑖,index being 𝐹𝑎𝑙𝑠𝑒),

the persistence counter for 𝑒𝑖 will be increased by 2 to compensate

for underestimation errors (Lines 8-10). (2) Otherwise, the counter

will be increased by 1 (Lines 11-12). Then, the flag 𝐹𝑖,index is updated

to 𝐹𝑎𝑙𝑠𝑒 to signify that the item has arrived, and 𝑅𝑖,index is set to

𝐹𝑎𝑙𝑠𝑒 , signaling that the bucket is inaccessible to other items within

this time window (Line 13). The hash operations halt (Line 14).

(iii) In cases of hash collisions across all rows, our method selects

the bucket with the smallest persistence counter to resolve the colli-

sion (Lines 15-16). Probabilistic decay is triggered when a randomly

generated value is less than the reciprocal of the persistence counter

plus one. If the persistence counter successfully decrements by 1,

the flag 𝑅
minRow,minIndex

is set to False (Lines 17-20), ensuring that

other items hashing into this bucket cannot perform additional de-

cay operations. If the persistence counter reaches zero, the bucket

is updated with the new item: the key is replaced, the persistence

counter is reset to 1, and the flag is set to False (Lines 21-24). If the
counter does not reach zero, the new item is discarded (Line 25).

This approach favors items with higher persistence, reducing their

chances of being replaced.

3.3.2 Query. To identify persistent items, the algorithm checks

the condition ∃𝑖 ∈ {1, 2, . . . , 𝑑}, ∃ 𝑗 ∈ {1, 2, . . . ,𝑤} such that 𝑃𝑖, 𝑗 ≥
𝛼𝑀 for each item 𝑒𝑖 . If this condition is met for any item 𝑒𝑖 , then

that item is identified and reported as a persistent item.

3.4 Running Examples
To exemplify the update process, we provide running examples in

Figure 2, using a sketch with two rows and three columns each.
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Algorithm 1: Update Process in Each Time Window

Input: an item 𝑒𝑖 , hash functions ℎ1, ℎ2, . . . , ℎ𝑑 , min𝑝 ← +∞
1 One-Time Initialization (Before the First Window): Initialize

persistence counters 𝑃𝑖,𝑗 to 0 and item keys 𝐾𝑖,𝑗 to NULL for all

buckets 𝐵 (𝑖, 𝑗 ) .
2 Per-Window Reinitialization: Reset flags 𝐹𝑖,𝑗 and 𝑅𝑖,𝑗 to True

for all buckets 𝐵 (𝑖, 𝑗 ) at the start of each time window.

3 for 𝑖 = 1 to 𝑑 do
4 index← ℎ𝑖 (𝑒𝑖 .key)

// Case 1: Empty bucket

5 if 𝐾𝑖,index == NULL then
6 𝐾𝑖,index, 𝑃𝑖,index, 𝐹𝑖,index, 𝑅𝑖,index ← 𝑒𝑖 .key, 1, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒

7 return

// Case 2: Item already tracked in the bucket

8 else if 𝐾𝑖,index == 𝑒𝑖 .key and 𝐹𝑖,index == True then
// Persistence decayed by another item

9 if 𝑅𝑖,index == False then
10 𝑃𝑖,index ← 𝑃𝑖,index + 2 // Reduced

11 else
12 𝑃𝑖,index ← 𝑃𝑖,index + 1 // Not reduced

13 𝐹𝑖,index, 𝑅𝑖,index ← 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒

14 return

// Track bucket with minimum persistence

15 else if 𝑃𝑖,index < min𝑝 then
16 min𝑝 ,minRow,minIndex← 𝑃𝑖,index, 𝑖, index

// Case 3: Probabilistic replacement

17 if 𝑅minRow,minIndex == True then
18 if random(0, 1) < 1

𝑃minRow,minIndex+1
then

19 𝑃
minRow,minIndex

← 𝑃
minRow,minIndex

− 1

20 𝑅
minRow,minIndex

← 𝐹𝑎𝑙𝑠𝑒

21 if 𝑃minRow,minIndex == 0 then
22 𝐾

minRow,minIndex
← 𝑒𝑖 .key

23 𝑃
minRow,minIndex

← 1

24 𝐹
minRow,minIndex

← 𝐹𝑎𝑙𝑠𝑒

25 return

❶ When item 𝑒1 arrives, it uses the hash function ℎ1 to find a

bucket in the first row. Since the bucket is empty, 𝑒1 is inserted, and

hashing stops. The bucket’s status updates to (𝑒1, 1, 𝐹 , 𝐹 ), indicating
no further increase in the persistence of 𝑒1 during the current time

window, and preventing other items hashed into this bucket from

performing probabilistic decay operations.

❷ Item 𝑒4 arrives and also utilizesℎ1 to locate a bucket in the first

row. It finds a match, ending the hash operations. A check shows

that the flag 𝐹 is 𝐹𝑎𝑙𝑠𝑒 , indicating that 𝑒4 has already been logged

in the current time window, thus 𝑒4’s status remains unchanged.

❸ Item 𝑒6 arrives and uses hash function ℎ2 to find a matching

bucket. The flag 𝐹 is 𝑇𝑟𝑢𝑒 , indicating 𝑒6 has not arrived in the cur-

rent timewindow. However, the flag𝑅 is 𝐹𝑎𝑙𝑠𝑒 , i.e., another item has

hashed into this bucket and decayed the persistence counter. Upon

𝑒6’s arrival, its persistence counter increases by 2 to ensure accuracy.

The bucket’s status updates from (𝑒6, 3,𝑇 , 𝐹 ) to (𝑒6, 5, 𝐹 , 𝐹 ).
❹ When item 𝑒8 arrives, it uses hash functions ℎ1 and ℎ2 itera-

tively to locate an available bucket, yet both buckets are occupied.

Since 𝑒7 has lower persistence and its 𝑅 flag is set to 𝑇𝑟𝑢𝑒 (i.e., the

bucket has not been decayed by other items in the current time

window), 𝑒8 attempts to decay its counter. The decay probability

is
1

4+1 . If the decay is unsuccessful, the bucket status remains un-

changed. If successful, it changes from (𝑒7, 4,𝑇 ,𝑇 ) to (𝑒7, 3,𝑇 , 𝐹 ). If
𝑒7’s counter decays to 0, 𝑒8 can evict and replace 𝑒7 in the bucket.
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Figure 2: Running examples of Pontus’s update process.

3.5 Adaptation to Other Lookup Tasks
3.5.1 Persistence Estimation. For persistence estimation, we em-

ploy the same update procedure as used in persistent item lookup.

During the query process, we hash all items in the data stream. If a

match is found in the sketch, we report the corresponding value

as the estimated persistence. However, if no match is found, the

smallest value among the hashed buckets in all rows is chosen to

mitigate overestimation errors.

3.5.2 Persistent and Frequent Item Lookup. To achieve lookups

that combine persistence and frequency, we introduce an additional

counter 𝑉𝑖, 𝑗 to each bucket to track the frequency of each recorded

item. When a new item arrives, the update process for persistence

follows the same steps as described in Section 3.3. The item first

attempts to locate an empty or matching bucket. If successful, the

item’s frequency is incremented by 1. In the case of hash collisions

across all rows, the item seeks to decrement the frequency and per-

sistence values of the bucket with the smallest sum of frequency and

persistence, guided by the probability 1/(𝑉𝑖, 𝑗 + 𝑃𝑖, 𝑗 + 1). This prob-
ability ensures that items with high persistence and frequency are

more likely to remain in their respective buckets. Since frequency

is always equal to or greater than persistence, if the persistence

value reaches 0, the newly arrived item replaces the tracked item,

resetting both the frequency and persistence counters to 1. The

query process is similar to that of persistent item lookup, requiring

a scan of all buckets to identify items where both the persistence

and frequency exceed their respective thresholds.

3.5.3 Persistent and Infrequent Item Lookup. To formalize this task,

we introduce an objective function Ω𝑖, 𝑗 = 𝑃𝑖, 𝑗 − 𝜍𝑉𝑖, 𝑗 , where 𝜍
represents a weight parameter (e.g., 0.2). In this formulation, a

potential persistent item with higher frequency receives a lower

reward. Consequently, persistent and infrequent items tend to have

larger objective values. During the update process, if a bucket is

successfully located, the procedure remains the same as described

previously. In the event of hash collisions across all rows, the item

selects the bucket with the smallest Ω value and decreases both the

persistence and frequency counters by 1, based on the probability

1/(Ω + 1). When the persistence counter is reduced to 0, the newly

arrived item replaces the tracked item, and both the frequency and

persistence counters are set to 1. The query process involves exam-

ining all buckets to identify items with persistence exceeding the

persistence threshold and frequency below the frequency threshold.
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Table 1: Collision rate with varying fingerprint lengths.

𝑛

𝜗 (bits)

4 8 16 20 25 32

0.5M 0.4748 0.0905 2.2 × 10
−3

4.9 × 10
−4

5.7 × 10
−5

3.7 × 10
−8

1M 0.6643 0.1667 4.4 × 10
−3

9.8 × 10
−4

1.2 × 10
−4

3.7 × 10
−8

2M 0.8592 0.2946 8.8 × 10
−3

2.0 × 10
−3

2.3 × 10
−4

3.7 × 10
−8

3M 0.9459 0.4117 1.3 × 10
−2

2.9 × 10
−3

3.4 × 10
−4

1.4 × 10
−6

4M 0.9777 0.5153 1.8 × 10
−2

3.9 × 10
−3

4.6 × 10
−4

3.0 × 10
−6

3.6 A Variant for Higher Memory Efficiency
In scenarios where item keys are long and fast memory is limited,

we propose a memory-efficient variant of Pontus, as follows.

3.6.1 Fingerprint-Based Key Compression. To ensure good invert-

ibility, which means returning all persistence-based items solely

from the sketch data structure without redundant hash operations,

Pontus selects tracking the item key by default. However, this strat-

egy may result in increased memory consumption, especially in

scenarios with longer keys like 5-tuples in network data. To mit-

igate this issue, the proposed variant employs a hash function to

generate a concise sequence of bits from the key, known as the

fingerprint [46], which conserves memory and thus increases the

number of available buckets for item storage. The utilization of

fingerprints, however, introduces the risk of fingerprint collisions,

where multiple items share the same fingerprint.

Formally, let 𝑛 be the number of items and𝑤 the number of buck-

ets in a row in the sketch data structure. Each bucket is equipped

with an 𝜗-bit fingerprint generated by a hash function applied to

the item keys. The probability of a fingerprint collision can be ex-

pressed as follows: 𝑃𝑟 {𝑓 𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛} = 1 − (1 − 2
−𝜗 )

𝑛
𝑤 .

Table 1 shows the fingerprint collision rates for various numbers of

items and fingerprint lengths. Each row corresponds to a specific

number of buckets, 𝑤 = 750, which reflects the configuration of

Pontus under a tight memory constraint of 16KB. As the fingerprint

length 𝜗 increases, the probability of collision decreases rapidly.

When the fingerprint length reaches 20 bits, the collision probability

becomes negligible even with larger item counts 𝑛.

3.6.2 Field Consolidation. We take persistent item lookup as an ex-

ample. In the default version of Pontus, we construct each field sep-

arately. However, this scheme can lead to memory under-utilization

on widely-used x86 systems, where the memory allocation of each

field is aligned to the machine word size, such as 8-bit, 16-bit, or

32-bit. For example, suppose we need to store four fields: a 19-bit

fingerprint (𝜑1 = 19), two 1-bit flags (𝜑2−3 = 2), and a persistence

value up to 2000 (𝜑4 = 11 bits). The total space required would

be

∑
4

𝑥=1 𝜑𝑥 = 32 bits. Yet, if we allocate each field separately, the

memory usage would be much higher - 32 bits for the fingerprint,

8 bits for each flag, and 16 bits for the persistence value.

To improve memory utilization, we can consolidate these fields

into a single machine word, provided that the total number of bits

required for all fields does not exceed the word size, typically 32 or

64 bits. Formally, let 𝜑𝑥 be the length (in bits) of the 𝑖-th field, where

𝑥 = 1, 2, . . . , 𝜁 , and 𝜁 is the total number of fields. If the following

condition is satisfied:

∑𝜁
𝑥=1

𝜑𝜁 ≤ Φ, where Φ is the machine word

size, then we can proceed to consolidate the fields into a single unit.

By adopting this approach whenever possible, we can effectively

utilize the available memory resources and avoid wastage caused

by the fixed-size memory allocation for individual fields.

3.6.3 Trade-off. Although this variant enhancesmemory efficiency

and improves lookup accuracy under limited memory conditions,

the incorporation of fingerprint-based compression and counter

consolidation operations slow down processing speed, an essential

metric in data stream mining. This creates a trade-off: users priori-

tizing processing speed may prefer the basic method, while those

valuing accuracy over speed may adopt the variant. We will delve

into this trade-off in detail in the Section 5.4.

4 THEORETICAL ANALYSIS
We present a comprehensive theoretical analysis of Pontus, fo-

cusing on its application to persistent item lookup. This includes

formal proofs of performance guarantees—covering space, update,

and query complexity—and error bounds for both the default and

memory-efficient variants. Empirical tests further validate these

error bounds. Due to space constraints, the results and detailed

proofs are provided in Appendix A.

5 TRACE-DRIVEN EVALUATION
5.1 Setup
To evaluate the performance of Pontus, we conduct evaluations on

a laptop equipped with an Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

processor and 16GB of DRAM memory, running Ubuntu 20.04 LTS.

Implementation. We implement Pontus and the compared

benchmarks in C++. For all datasets, we use source-destination

addresses as item keys, with each pair consisting of 8 bytes. We

employ MurmurHash [6] for hashing incoming items. The number

of rows 𝑑 for Pontus is set to 2 [50], while the number of buckets

𝑤 in each row is determined based on the specified memory size.

For the variant of Pontus, we set the fingerprint length to 18 bits,

ensuring a sufficiently low fingerprint collision rate.

Parameter Settings. For persistent item lookup, we adjust the

window size uniformly across each trace to divide the data into 1,500

windows (𝑀 = 1500) and set the persistence threshold 𝛼 to 0.4. In

the case of persistent and frequent item lookup, we use a frequency

threshold 𝛽 of 5 × 10
−4

[33]. For persistent and infrequent item

lookup, we adjust the frequency threshold 𝜅 to ensure frequencies

remain below 2000. It’s important to note that these parameter

settings are not fixed; we also explore variations in threshold values

to confirm the robustness of Pontus in Section 5.3.

Baselines. For persistent item lookup, we evaluate the perfor-

mance of Pontus against several benchmarks: On-Off Sketch [49],

Pyramid-based On-Off Sketch [34], P-Sketch [31], Stable-Sketch

[33], Tight-Sketch [32], WavingSketch [30], and Small Space (SS)

[28]. Detailed descriptions of these methods are provided in Section

7. In the experiments with On-Off Sketch and WavingSketch, we

set the number of slots to 16, following [32]. The parameters for SS

are configured according to [48], while for P-Sketch, Stable-Sketch

and Tight-Sketch, the number of rows is set to 2 [31].

Traces. We select three real-world traces for evaluation: two

from the CAIDA 2018 [1] and 2019 [2] datasets, and one from the

MAWI 2020 dataset [36]. Specifically, CAIDA 2018 consists of 22.3M

packets from 0.76M items, while CAIDA 2019 encompasses 29.5M

packets from 1.53M items. MAWI 2020 involves 44.5M packets from

2.75M items.
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(e) Precision (C2019).
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(f) Precision (M2020).
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(g) F1 score (C2018).
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(h) F1 score (C2019).
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(i) F1 score (M2020).
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(j) Speed (C2018).
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(k) Speed (C2019).
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(l) Speed (M2020).

Figure 3: Performance of different schemes for persistent item lookup (C indicates CAIDA, and M denotes MAWI).

Metrics. We evaluate Pontus’s performance on persistence-

based tasks using five key metrics: Recall, Precision, F1 score, Aver-

age Absolute Error (AAE), and update throughput. Recall measures

the fraction of true persistent items correctly identified, while Preci-

sion quantifies the proportion of identified persistent items that are

truly persistent. The F1 score, calculated as
2×Recall×Precision
Recall+Precision , pro-

vides a balanced measure of accuracy. For persistence estimation,

AAE computes the average magnitude of errors as
1

𝑛

∑𝑛
𝑖=1 |𝑃𝑖 − 𝑃𝑖 |,

where 𝑃𝑖 is the true persistence and 𝑃𝑖 is the estimated value. Update

throughput measures the processing speed in millions of operations

per second (Mops). Each experiment is tested five times, and the

average results are reported.

5.2 Performance Comparison
5.2.1 Persistent Item Lookup. For persistent item lookup, we evalu-

ate Pontus’s performance across various memory sizes: 16KB, 32KB,

64KB, 128KB, and 256KB. These memory sizes are consistent with

common configurations in recent sketch-based research [23, 33, 47].

Since P-Sketch, Stable-Sketch, and Tight-Sketch share a similar data
structure to Pontus, we compare them separately for clearer analysis.

Figures 3(a)-(f) show the recall and precision rates of various

methods across different datasets. Pontus consistently achieves

the highest recall and precision rates under all traces. On aver-

age, Pontus improves recall by 18.51%-686.85% for CAIDA 2018,

23.2%-607.29% for CAIDA 2019, and 58.62%-384.21% for MAWI 2020

traces. Additionally, Pontus maintains a precision rate of 1 across

all memory budgets. This is because the probability decay mecha-

nism ensures one-sided underestimation errors, meaning that all

persistent items identified by Pontus are genuine.

As depicted in Figures 3(g)-(i), our method shows a significant

improvement in F1 score compared to the benchmarks. For example,

under the CAIDA 2018 trace, the average F1 score of Pontus is

15.11% to 724.17% higher than the baselines. The detection accuracy

of our method is even more pronounced under the MAWI 2020

trace. This is because the MAWI trace exhibits higher skewness,

indicating a smaller number of persistent items, thereby increasing

the detection difficulty. Despite this challenge, Pontus maintains

its superiority, resulting in an increase of 45.65% to 10415.54%. Our

method excels in its meticulous replacement of persistent items.

Given the prevalent highly skewed data distribution in practical

Table 2: F1 score for Pontus and benchmarks.

F1 Score Pontus Stable-Sketch P-Sketch Tight-Sketch

C2018 (16KB) 0.805 0.734 0.609 0.699

C2018 (32KB) 0.915 0.874 0.803 0.840

C2019 (16KB) 0.716 0.610 0.518 0.596

C2019 (32KB) 0.872 0.820 0.725 0.793

scenarios [8, 47], the crude item replacement of On-Off Sketch often

leads to many persistent items being mistakenly replaced by non-

persistent ones, especially under tight memory constraints where

hash collisions are more severe. While WavingSketch uses a Bloom

Filter [37] to eliminate duplicates, its application under constrained

memory settings results in increased data usage and significant false

positive errors. Similarly, in Small-Space, the sampling rate is low

under limited memory sizes, leading to reduced lookup accuracy.

Figures 3(j)-(l) illustrate the update speed of different methods.

As shown, our method achieves markedly faster update speeds.

For example, under the CAIDA 2019 trace, the update speed of our

method is 117.31%–320.26% higher than that of the baselines.

DeepDive:We further evaluate the detection accuracy of Pontus

against Stable-Sketch, P-Sketch, and Tight-Sketch across different

traces and memory settings (16KB and 32KB). As shown in Table 2,

Pontus consistently achieves the highest F1 scores compared to the

other methods. Pontus’s key advantage lies in its efficient use of

memory, utilizing only one additional collision decay flag, while

the other methods require an additional 2-byte field to track dual-

dimensional features. Additionally, Pontus shows faster update

speeds, reaching around 25.2Mops, compared to 23.3Mops for P-

Sketch, 22.6Mops for Stable-Sketch, and 23.6Mops for Tight-Sketch.

5.2.2 Persistence Estimation. Figure 4 shows the error in persis-

tence estimation. Since P-Sketch, Stable-Sketch, and Tight-Sketch

do not offer a persistence estimation version, we exclude them from

the comparison. As demonstrated, Pontus significantly reduces

estimation errors. For AAE, Pontus reduces the average error by

283.56% and 196.16% compared to On-Off Sketch, and by 484.2%

and 396.27% compared to Pyramid On-Off Sketch, over the CAIDA

2018 and 2019 traces, respectively.

Pontus’s superiority stems from two key aspects. Firstly, it accu-

rately tracks potential persistent items by monitoring item keys and

employing a collision decay flag to protect them from easy eviction
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Figure 4: AAE for persistence estimation.

Table 3: Pontus on persistent and (in)frequent item lookup.

Memory Size (KB) 16 32 64 128 256

F1 score (frequent) 0.864 0.864 0.911 0.928 0.928

F1 score (infrequent) 0.571 0.787 0.89 0.936 0.966

Update speed (Mops, frequent) 26.076 26.472 25.4011 25.491 23.966

Update speed (Mops, infrequent) 25.464 25.247 24.108 23.143 22.644

by non-persistent ones, leading to precise estimation for items with

high persistence. Secondly, Pontus mitigates overestimation errors

for non-persistent items by using the smallest value among the

hashed buckets. This dual approach allows Pontus to maintain high

accuracy across both persistent and non-persistent items.

5.2.3 Other persistence-based Tasks. Table 3 presents the F1 score
and update speed of Pontus for persistent and (in)frequent item

lookup. For persistent and infrequent item detection, we configure

𝜍 in the objective function Ω as 0.2. We employ the CAIDA 2018

trace for testing, and similar trends are observed across other traces.

Pontus demonstrates high detection accuracy and rapid update

speed. Specifically, with a memory size of 64KB (a typical size of L1

cache [32]), Pontus achieves accuracy scores around 0.9 for both

tasks. Furthermore, the update speed exceeds 25Mops, indicating

that Pontus is well-suited for high-speed data streams or networks,

such as those requiring processing speeds of 14.88Mops per item

in a 10Gbps network [43].

When comparing Pontus against the advanced Tight-Sketch [32],

focusing on persistent and frequent item lookup using the CAIDA

2018 trace, Pontus outperforms Tight-Sketch in terms of F1 score by

7.46% at 16KB and 3.47% at 32KB. Also, Pontus achieves faster up-

date speeds compared to Tight-Sketch, which is limited to 15.8Mops

(figures omitted due to the space limitation).

5.3 Multiple Cases
5.3.1 Performance across Different Parameters. We use persistent

item lookup on the CAIDA 2019 trace as an example, varying the

number of windows𝑀 to 1000 and 2000, and adjusting the persis-

tence threshold 𝛼 to 0.3 and 0.5.

Pontus consistently achieves the highest detection accuracy

across all parameter settings, demonstrating its effectiveness and

robustness (see Appendix B for figures). For example, the average

F1 score of Pontus is 25.35%, 20.94%, 20.02%, and 13.62% higher

than the closest competing method, Pyramid-based On-Off Sketch,

for the (1000, 0.3), (1000, 0.5), (2000, 0.3), and (2000, 0.5) parameter

settings, respectively.

5.3.2 Effectiveness of Utilizing One More Flag. Pontus utilizes the
collision decay flag to improve performance in persistent item

lookup. Table 4 presents the AAE of our method with and without

Table 4: Comparative AAE for different memory sizes on
CAIDA 2018 and 2019 dataset.

AAE 16KB 32KB 64KB

Default Pontus (C2018) 26.5511 11.4344 4.0875
Pontus with only 𝐹𝑖, 𝑗 (C2018) 47.6988 17.5055 5.074

Default Pontus (C2019) 39.2512 16.4859 6.8585
Pontus with only 𝐹𝑖, 𝑗 (C2019) 67.8754 25.8737 8.6751

the flag.Without the decay flag, other hashed items can prematurely

decay the persistence counter before the tracked item arrives in the

current time slot. In memory-constrained scenarios, the addition

of the collision decay flag significantly reduces estimation errors

across different traces. For instance, with 16KB of memory, the flag

reduces AAE by 79.65% and 72.93% on the CAIDA 2018 and 2019

traces, respectively.

5.4 Memory-Efficient Variant Performance
Due to space constraints, we provide a detailed comparison of the

variant and default versions of Pontus in the Appendix C.

6 TESTBED EVALUATION
We implement a prototype of Pontus into a real testbed with off-the-

shelf Intel Tofino programmable switches using the P4 language.

Programmable switches are highly constrained in terms of available

resources like number of stages and limited support for mathemati-

cal operations. Given these limitations, we implement Pontus with

the number of rows 𝑑 set to 1, consistent with the configurations

used in [44, 50]. The total number of time windows is configured

to 1500.

We employ the Tofino Native Architecture (TNA) RegisterAction

extern function to track and update the total persistence value of

items, arrival flag 𝐹 , and collision decay flag 𝑅. We allocate register

entries based on the number of buckets used in the experiments.

As a hash function to locate items into the registers, we use prede-

fined HashAlgorithm_t.CRC16 function. Mathematical operations

like division are challenging in programmable switches due to the

constraints of the hardware and the design of the P4 language. The

MathUnit extern provides a way to perform approximated division,

but it does not yield exact results and is constrained by factors such

as approximation methods and input ranges. To overcome this, we

calculated better approximated division results offline and fill the ta-

ble entries in the switch. For the case of probabilistic replacements,

we replace the item or decay its persistence counter if the condition

𝑅𝐴𝑁𝐷 (0, 2𝑏 ) ≤ 𝑖𝑛𝑡 ( 2
𝑏

1+𝑃minRow,minIndex

) holds, where 𝑏 is the bit size
of the total time windows. Whenever probabilistic replacement

conditions hold in the case of collision, we recirculate the packet to

replace the non-persistent item or decrease the persistence counter

since TNA does not allow accessing to the same register more than

once per packet. In our experiments with CAIDA 2018 trace, only

a small fraction (1.93%–2.36%) of the packets are recirculated in

different memory allocations due to the probabilistic replacement.

At the end of each window, a digest is sent to the controller to reset

the associated flags in the register, as the only way of resetting

multiple instances in a register array is to use control plane APIs.

Resource Usage and Latency: Pontus can detect persistent

items effectively at line-rate with a low resource footprint. We
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evaluate the resource usage and latency of our solution by using

Intel P4 Insight analysis tool [25] which provides a detailed analysis

of compiled P4 programs. Table 5 shows the resource usage in

programmable Intel Tofino Switch. Overall, Pontus consumes 8.2%

of the total available switch resources in average which leaves

sufficient room in the switch to coexist with other legacy switching

functions. Most of the consumption comes from Gateways, used

for conditional statements and to implement if/else conditions,

and Logical Table IDs that organizes the program into individual

lookups to make the processing sequential. The SRAM is the main

storage of the switch, used for exact match tables, action data and

for stateful objects like registers. Even though we implement our

solution in the switch by employing registers, we consume only

4.3% of total available SRAM resources. The results also reveal

that Pontus entails an average packet processing latency of 409 ns,

incurring just an additional 117 ns of latency compared to simple

forwarding in the switch.

Table 5: Resource Usage of Pontus in Tofino Switch

Resource Usage Resource Usage
Hash Bit 5.7% Match Crossbars 4.6%

Gateways 16.7% Logical Table ID 21.9%

VLIW Instruction 7.3% SRAM 4.3%

Total Average 8.2%
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Figure 5: Recall rate on
hardware and software
platforms.

Accuracy Comparison Be-
tween Hardware and Software
Versions: Figure 5 compares the

recall rate of capturing real per-

sistent items between the Tofino

hardware version and the soft-

ware version, using the CAIDA

2018 trace. Since our method only

produces underestimation errors,

all captured persistent items are

guaranteed to be real, resulting in

a precision of 1, so the precision

rate is omitted. The results show similar capture rates across various

register entry sizes, demonstrating the correctness and consistency

of our implementation.

7 RELATEDWORK
Persistent Item Lookup: Conventional methods for persistent

item lookup, such as Small-Space (SS) [28], rely on sampling to

monitor item persistence while minimizing space usage. However,

these methods [11, 28] face significant challenges: they often cap-

ture numerous non-persistent items, leading to inefficient memory

use. Moreover, reducing sampling rates due to memory limitations

can increase lookup errors and compromise accuracy. To overcome

these inefficiencies, researchers have explored various sketch-based

approaches. On-Off Sketch [49] periodically increases item persis-

tence but struggles with misidentifying non-persistent items due

to its coarse-grained differentiation. Pyramid-based On-Off Sketch

[34] enhances counter memory efficiency but inherits the original

method’s limitations. WavingSketch [30] employs a Bloom Filter to

remove duplicates, but this leads to significant false positives and

measurement inaccuracies, especially in limited memory scenar-

ios where erroneous replacements occur. PIE [16] employs coding

to monitor persistent items, but its complex update process, such

as matrix multiplication for item encoding, hampers functionality

in memory-constrained environments. P-Sketch [31] and Stable-

Sketch [33] use arrival continuity and bucket stability as additional

features to better protect potential persistent items. Tight-Sketch

[32] incorporates item arrival strength as an extra attribute and

employs a two-stage update strategy. However, tracking these fea-

tures consumes more memory, reducing the number of available

buckets and increasing the likelihood of hash collisions.

Persistence Estimation: On-Off Sketch [49] estimates item

persistence by using a flag to eliminate duplicates within each time

window, but this leads to significant overestimation in memory-

constrained environments. Pyramid On-Off Sketch [34] improves

memory efficiency with a hierarchical counter structure, where

overflows are propagated to upper layers. However, this method still

faces two challenges under limited memory: (1) slower processing

due to complex updates and queries requiring multi-layer traversal,

and (2) severe overestimation when multiple counters sharing the

same parent overflow simultaneously.

Persistent and Frequent Item Lookup: LTC [13] utilizes a

complex data structure that incorporates a clock algorithm for

increasing item persistence and a long-tail restoration technique

to mitigate overestimation errors. However, this sophisticated ap-

proach leads to a slow update process, making it unsuitable for

high-speed data streams.

Persistent and Infrequent Item Lookup: PISketch [19] pro-

vides a method for identifying persistent and infrequent items.

However, its effectiveness is heavily dependent on complex pa-

rameter configurations. This reliance on precise parameter tuning

introduces a significant risk of suboptimal performance if the set-

tings are not accurately calibrated to the specific characteristics of

the data stream being analyzed.

8 CONCLUDING REMARKS
In this paper, we introduced Pontus, a new probabilistic method for

accurate and efficient detection of persistent items in high-velocity

data streams. Pontus uses two flags to eliminate duplicates within

a time window and mitigates underestimation errors. Additionally,

we employ a probabilistic eviction strategy to prevent persistent

items from being easily displaced by non-persistent ones, address-

ing the challenge of skewed data distributions. Pontus is further

extended to handle other persistence-based tasks, and we provide

formal proof of its theoretical soundness. Our extensive trace-driven

evaluations demonstrate Pontus’s effectiveness, showing signifi-

cant improvements in lookup accuracy and a substantial increase

in update speed. Finally, our implementation on the programmable

Tofino switch highlights its feasibility for practical deployment.

The authors have made their code publicly available at [3].

ACKNOWLEDGMENTS
This research was supported by the SNS JU and the European

Union’s Horizon Europe research and innovation program under

Grant Agreement No. 101139270 (ORIGAMI). Beyza Bütün is a Co-

munidad de Madrid predoctoral fellow (PIPF-2022/COM-24867).

Weihe Li was partially supported by Cisco through the Cisco Uni-

versity Research Program Fund (Grant no. 2019-197006).



A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

REFERENCES
[1] 2018. Anonymized Internet Traces. https://catalog.caida.org/dataset/passive_

2018_pcap.

[2] 2019. Anonymized Internet Traces. https://catalog.caida.org/dataset/passive_

2019_pcap.

[3] 2025. Pontus Repository. https://github.com/Mobile-Intelligence-Lab/Pontus.git.

[4] Aristide Tanyi-Jong Akem, Beyza Bütün, Michele Gucciardo, Marco Fiore, et al.

2024. Jewel: Resource-efficient joint packet and flow level inference in pro-

grammable switches. In IEEE International Conference on Computer Communica-
tions.

[5] Thushara Amarasinghe, Achala Aponso, and Naomi Krishnarajah. 2018. Critical

analysis of machine learning based approaches for fraud detection in financial

transactions. In Proceedings of the 2018 International Conference on Machine
Learning Technologies. 12–17.

[6] Austin Appleby. 2008. MurmurHash. URL https://sites. google.
com/site/murmurhash (2008).

[7] Steven M Bellovin and William R Cheswick. 1994. Network firewalls. IEEE
communications magazine 32, 9 (1994), 50–57.

[8] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic

Characteristics of Data Centers in the Wild. In ACM IMC. 267–280.
[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.

2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2004. Finding frequent

items in data streams. Theoretical Computer Science 312, 1 (2004), 3–15. Automata,

Languages and Programming.

[11] Lin Chen, Raphael C-W Phan, Zhili Chen, and Dan Huang. 2022. Persistent items

tracking in large data streams based on adaptive sampling. In IEEE INFOCOM
2022-IEEE Conference on Computer Communications. IEEE, 1948–1957.

[12] Mu-Chen Chen, Ai-Lun Chiu, and Hsu-Hwa Chang. 2005. Mining changes in

customer behavior in retail marketing. Expert Systems with Applications 28, 4
(2005), 773–781.

[13] Shiyu Cheng, Dongsheng Yang, Tong Yang, Haowei Zhang, and Bin Cui. 2020.

LTC: a fast algorithm to accurately find significant items in data streams. IEEE
Transactions on Knowledge and Data Engineering 34, 9 (2020), 4342–4356.

[14] Graham Cormode and Minos Garofalakis. 2007. Sketching probabilistic data

streams. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. 281–292.

[15] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. J. Algorithms 55, 1 (apr
2005), 58–75.

[16] Haipeng Dai, Muhammad Shahzad, Alex X. Liu, and Yuankun Zhong. 2016.

Finding Persistent Items in Data Streams. Proc. VLDB Endow. 10, 4 (nov 2016),

289–300.

[17] Alessandro Epasto,MohammadMahdian, VahabMirrokni, and Peilin Zhong. 2022.

Improved sliding window algorithms for clustering and coverage via bucketing-

based sketches. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 3005–3042.

[18] Cristian Estan and George Varghese. 2003. New Directions in Traffic Measure-

ment and Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Trans.
Comput. Syst. 21, 3 (aug 2003), 270–313.

[19] Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, Wenrui Liu, Tong Yang,

Hengrui Wang, Yifei Xu, Steve Uhlig, and Yaofeng Tu. 2022. Pisketch: finding

persistent and infrequent flows. In Proceedings of the ACM SIGCOMM Workshop
on Formal Foundations and Security of Programmable Network Infrastructures.
8–14.

[20] Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and Dina

Papagiannaki. 2009. Exploiting temporal persistence to detect covert botnet

channels. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 326–345.

[21] Şule Gündüz and M Tamer Özsu. 2003. A Web Page Prediction Model Based on

Click-Stream Tree Representation of User Behavior. In ACM KDD. 535–540.
[22] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo, Hong Xu,

Jiawei Huang, and Kai Chen. 2024. Load Balancing With Multi-Level Signals for

Lossless Datacenter Networks. IEEE/ACM Transactions on Networking (2024).

[23] Jiawei Huang, Wenlu Zhang, Yijun Li, Lin Li, Zhaoyi Li, Jin Ye, and Jianxin Wang.

2022. ChainSketch: An Efficient and Accurate Sketch for Heavy Flow Detection.

IEEE/ACM Transactions on Networking (2022).

[24] Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar. 2005.

Click fraud resistant methods for learning click-through rates. In Internet and
Network Economics: First International Workshop, WINE. Springer, 34–45.

[25] Intel. [n.d.]. P4 Insight. https://www.intel.com/content/www/us/en/products/

details/network-io/intelligent-fabric-processors/p4-insight.html.

[26] VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad. 2011. A review of

anomaly based intrusion detection systems. International Journal of Computer

Applications 28, 7 (2011), 26–35.
[27] John Kallaugher and Eric Price. 2020. Separations and equivalences between

turnstile streaming and linear sketching. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing. 1223–1236.

[28] Bibudh Lahiri, Jaideep Chandrashekar, and Srikanta Tirthapura. 2011. Space-

efficient tracking of persistent items in a massive data stream. In Proceedings of
the 5th ACM international conference on Distributed event-based system. 255–266.

[29] Jakub Lemiesz. 2021. On the algebra of data sketches. Proceedings of the VLDB
Endowment 14, 9 (2021), 1655–1667.

[30] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong

Zhang. 2020. WavingSketch: An Unbiased and Generic Sketch for Finding Top-k

Items in Data Streams. In ACM KDD. 1574–1584.
[31] Weihe Li and Paul Patras. 2023. P-Sketch: A Fast and Accurate Sketch for Persis-

tent Item Lookup. IEEE/ACM Transactions on Networking (2023), 1–16.

[32] Weihe Li and Paul Patras. 2023. Tight-Sketch: A High-Performance Sketch for

Heavy Item-Oriented Data Stream Mining with Limited Memory Size. In Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23). 1328–1337.

[33] Weihe Li and Paul Patras. 2024. Stable-Sketch: A Versatile Sketch for Accu-

rate, Fast, Web-Scale Data Stream Processing. In Proceedings of the ACM Web
Conference (Webconf ’24).

[34] Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and

Shigang Chen. 2022. Pyramid Family: Generic Frameworks for Accurate and

Fast Flow Size Measurement. IEEE/ACM Transactions on Networking 30, 2 (2022),

586–600.

[35] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,

and Samira Khan. 2020. Cross-failure bug detection in persistent memory pro-

grams. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 1187–1202.

[36] MAWI. 2020. MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/

mawi/

[37] Michael Mitzenmacher. 2001. Compressed bloom filters. In Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing. 144–150.

[38] Antonio Nappa, Rana Faisal Munir, Irfan Khan Tanoli, Christian Kreibich, and

Juan Caballero. 2016. RevProbe: detecting silent reverse proxies in malicious

server infrastructures. In Proceedings of the 32nd Annual Conference on Computer
Security Applications. 101–112.

[39] Dan R. K. Ports and Jacob Nelson. 2019. When Should The Network Be The

Computer? (HotOS ’19). Association for Computing Machinery, New York, NY,

USA, 209–215. https://doi.org/10.1145/3317550.3321439

[40] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented Sketch: Faster

and More Accurate Stream Processing. In SIGMOD. 1449–1463.
[41] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008.

Sketching concurrent data structures. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 136–148.

[42] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu.

2005. Programming by sketching for bit-streaming programs. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and imple-
mentation. 281–294.

[43] Lu Tang, Qun Huang, and Patrick P. C. Lee. 2019. MV-Sketch: A Fast and Compact

Invertible Sketch for Heavy Flow Detection in Network Data Streams. In IEEE
INFOCOM. 2026–2034.

[44] Lu Tang, Qun Huang, and Patrick P. C. Lee. 2020. A Fast and Compact Invertible

Sketch for Network-Wide Heavy Flow Detection. IEEE/ACM Transactions on
Networking 28, 5 (2020), 2350–2363.

[45] David P Woodruff and Samson Zhou. 2022. Tight bounds for adversarially robust

streams and sliding windows via difference estimators. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 1183–1196.

[46] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. 2018.

HeavyGuardian: Separate and Guard Hot Items in Data Streams. In ACM KDD
(London, United Kingdom). 2584–2593.

[47] Jin Ye, Lin Li, Wenlu Zhang, Guihao Chen, Yuanchao Shan, Yijun Li, Weihe Li,

and Jiawei Huang. 2022. UA-Sketch: An Accurate Approach to Detect Heavy

Flow based on Uninterrupted Arrival. In Proceedings of the 51st International
Conference on Parallel Processing. 1–11.

[48] Yinda Zhang. 2020. On-Off Sketch Repository. https://github.com/Sketch-Data-

Stream/On-Off-Sketch.

[49] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin

Cui. 2020. On-off Sketch: A Fast and Accurate Sketch on Persistence. Proc. VLDB
Endow. 14, 2 (oct 2020), 128–140.

[50] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: High-performance

sketch-based measurement over arbitrary partial key query. In ACM SIGCOMM.

207–222.

[51] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve

Uhlig. 2018. Cold Filter: A Meta-Framework for Faster and More Accurate Stream

Processing. In SIGMOD. 741–756.

https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://github.com/Mobile-Intelligence-Lab/Pontus.git
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://doi.org/10.1145/3317550.3321439
https://github.com/Sketch-Data-Stream/On-Off-Sketch
https://github.com/Sketch-Data-Stream/On-Off-Sketch


WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Weihe Li, Zukai Li, Beyza Bütün, Alec F. Diallo, Marco Fiore, and Paul Patras

A THEORETICAL ANALYSIS
A.1 Complexity

Theorem A.1. Assuming that Pontus is configured with 𝑑 =

log
2

1

𝛿
and 𝑤 = 2

𝜖 , where 𝛿 (0 < 𝛿 < 1) represents the error
probability and 𝜖 (0 < 𝜖 < 1) denotes the approximation param-
eter. This parameter indicates that the error in answering a query
is within a factor of 𝜖 with probability 𝛿 . The space usage of our
scheme is 𝑂 ( 1𝜀 log

1

𝛿
log𝑛). The update time for each operation is

𝑂 (log 1

𝛿
+𝑀 1

𝜀 log
1

𝛿
). The time complexity of returning all persistent

item is 𝑂 ( 1𝜀 log
1

𝛿
).

Proof. The data structure of our scheme contains 𝑑𝑤 buck-

ets, where each bucket records a log 𝑛-bit key, two flag bits, and

a persistence counter. Thus, the space usage of our scheme is

𝑂 (𝑑𝑤 log𝑛) = 𝑂 ( 1𝜀 log
1

𝛿
log𝑛).

For our scheme, each operation conducts at most 𝑑 hash actions

to find a proper bucket. Since all counter flags need to be reset to

𝑇𝑟𝑢𝑒 when a new window starts, our scheme will traverse all buck-

ets at the beginning of an epoch. As the number of time windows is

𝑀 , the maximum update time is𝑂 (𝑑+𝑀𝑑𝑤) = 𝑂 (log 1

𝛿
+𝑀 1

𝜀 log
1

𝛿
).

Returning all persistent items demands a scan of all buckets

(𝑑𝑤 ) to obtain which buckets have a persistence counter greater

than the predefined threshold, which requires𝑂 (𝑑𝑤) = 𝑂 ( 1𝜀 log
1

𝛿
)

time. □

A.2 No Overestimation Errors
Theorem A.2. For any given item 𝑒𝑖 , let 𝑃𝑒𝑖 and 𝑃𝑒𝑖 denote the

actual persistence and estimated persistence of 𝑒𝑖 , respectively. Then
𝑃𝑒𝑖 ≤ 𝑃𝑒𝑖 .

Proof. At the start of the detection task (𝑡 = 0), both 𝑃𝑒𝑖 and 𝑃𝑒𝑖
are zero, so the theorem holds. Assume that at the (𝑡 − 1)-th time

window, 𝑃𝑒𝑖 ≤ 𝑃𝑒𝑖 . At 𝑡-th time window, two scenarios are possible:

(i) If 𝑒𝑖 arrives, then 𝑃𝑒𝑖 = 𝑃𝑒𝑖 + 1 and 𝑃𝑒𝑖 = 𝑃𝑒𝑖 + 1. Hence, 𝑃𝑒𝑖 ≤ 𝑃𝑒𝑖
is true. (ii) If an item other than 𝑒𝑖 arrives, the estimated persistence

of item 𝑒𝑖 either decreases by 1 or stays the same, i.e., 𝑃𝑒𝑖 = 𝑃𝑒𝑖 − 1
or 𝑃𝑒𝑖 = 𝑃𝑒𝑖 . Given that 𝑃𝑒𝑖 = 𝑃𝑒𝑖 , it follows that 𝑃𝑒𝑖 ≤ 𝑃𝑒𝑖 .

Since the claim holds for all scenarios, Theorem A.2 is proven.

□

A.3 Error Bound of Pontus
Theorem A.3. Let 𝑒𝑖 denote the item with the 𝑖-th highest persis-

tence among all considered persistent items. Note that our analysis of
the error bound specifically focuses on those persistent items. Given
a small positive number 𝜖 and a persistent item 𝑒𝑖 , we define the
probability that the difference between 𝑃𝑒𝑖 and 𝑃𝑒𝑖 exceeds 𝜖𝑃 by the
following inequality. Here, 𝜌 is a constant slightly greater than 1, and
𝑃 represents the total persistence value of all items in the data stream(∑

𝑒𝑖 ∈U 𝑃𝑒𝑖
)
:

Pr{(𝑃𝑒𝑖 − 𝑃𝑒𝑖 ) ≥ 𝜖𝑃} ≤
1

2𝜖𝑃
· (𝑃𝑒𝑖 −

√︃
𝑃2𝑒𝑖 − 4𝜅), (1)

where 𝜅 is defined as follows:

𝜅 = 𝑃𝑟𝑐 · 𝑃𝑟𝑤 ·
𝐷

𝜌 − 1

=
©­«
[
1 −

(
1 − 1

𝑤

)𝑛−1]𝑑ª®¬ ·
©­­«𝑒−

𝑖−1
𝑤 ·

(
𝑖−1
𝑤

)𝑑−1
(𝑑 − 1)!

ª®®¬
·
𝑀 − 𝑃𝑒𝑖
𝜌 − 1 .

(2)

Proof. We assume that once a persistent item 𝑒𝑖 enters a bucket,

it is not evicted from the bucket by other items, but its counter may

be reduced by other items with a persistence smaller than its own.

First, we compute the probability that any other newly arrived item
𝑒 𝑗 does not find an available bucket after being hashed 𝑑 times,

denoted by 𝑃𝑟𝑐 :

𝑃𝑟𝑐 =

[
1 −

(
1 − 1

𝑤

)𝑛−1]𝑑
, (3)

where in a given bucket, the probability that a specific item is

mapped is
1

𝑤 . Thus, in a bucket to which 𝑒 𝑗 is mapped, the probabil-

ity that no other item is mapped to the same bucket is

(
1 − 1

𝑤

)𝑛−1
,

where 𝑛 is the total number of distinct items in the data stream.

Consequently, in a given array, the probability that a hash collision

occurs in the bucket to which 𝑒 𝑗 is mapped is 1−
(
1 − 1

𝑤

)𝑛−1
. Thus,

𝑃𝑟𝑐 represents the probability that 𝑒 𝑗 experiences hash collisions

in all 𝑑 rows.

Next, we define 𝑃𝑟𝑤 as the probability that, during the process

of hashing item 𝑒 𝑗 for 𝑑 times, 𝑒𝑖 remains the item with the lowest

persistence count among all rows in which 𝑒 𝑗 is hashed:

𝑃𝑟𝑤 =

(
𝑖 − 1
𝑑 − 1

) (
1

𝑤

)𝑑−1 (
1 − 1

𝑤

)𝑖−𝑑
. (4)

This probability follows a binomial distribution Bin(𝑖 − 1, 1

𝑤 )
and can be approximated by a Poisson distribution with parameter

𝑖−1
𝑤 . Therefore, 𝑃𝑟𝑤 can be expressed as:

𝑃𝑟𝑤 = 𝑒−
𝑖−1
𝑤

(
𝑖−1
𝑤

)𝑑−1
(𝑑 − 1)! . (5)

Due to the protection of the collision decay flag during the update

process in Pontus, reductions in 𝑒𝑖 ’s persistence can only occur

during time windows when 𝑒𝑖 is absent. Furthermore, within each

such period, at most one successful reduction can decrease the

persistence count of 𝑒𝑖 by 1. Consequently, themaximumdecrease𝐷

in the persistence count of 𝑒𝑖 over the entire process is:𝐷 = 𝑀−𝑃𝑒𝑖 .
Consider the persistence of 𝑒𝑖 as consisting of discrete states

ranging from 1 to 𝑃𝑒𝑖 , denoted by 𝑠 , where 𝑠 = 1, 2, . . . , 𝑃𝑒𝑖 . At

each state, the probability of successfully reducing 𝑒𝑖 ’s persistence

count is 1/𝑠 . Then, based on the previously defined probabilities,

the expected number of times the persistence value of 𝑒𝑖 is decayed
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Figure 6: Model Validation.

can be quantified as follows:

𝐸 (𝑋𝑖 ) = 𝑃𝑟𝑐 · 𝑃𝑟𝑤 · 𝐷 ·
1

𝐸 (𝑃𝑒𝑖 )
·
𝐸 (𝑃𝑒𝑖 )∑︁
𝑔=1

1

𝑔

=

[
1 −

(
1 − 1

𝑤

)𝑛−1]𝑑
· 𝑒−

𝑖−1
𝑤 ·

(
𝑖−1
𝑤

)𝑑−1
(𝑑 − 1)!

· (𝑀 − 𝑃𝑒𝑖 ) ·
𝐸 (𝑃𝑒𝑖 )∑︁
𝑔=1

1

𝑔
.

(6)

The following results apply to our settings where 𝑀 does not

exceed 150K. Items with such high persistence are rare in practice.

Consequently, the following formula holds:

𝐸 (𝑃𝑒𝑖 )∑︁
𝑔=1

1

𝑔
≤
𝐸 (𝑃𝑒𝑖 )∑︁
𝑔=1

𝜌−𝑔 ≤ 𝜌−1 (1 − 𝜌−𝐸 (𝑃𝑒𝑖 ) )
1 − 𝜌−1

<
1

𝜌 − 1 , (7)

where 𝜌 is a constant slightly greater than 1, for example, 1.08.

Based on the above, we compute the expected underestimation

of 𝑃𝑒𝑖 :

𝐸 (𝑃𝑒𝑖 ) = 𝑃𝑒𝑖 − 𝐸 (𝑋𝑖 )

≈ 𝑃𝑒𝑖 −
𝑃𝑟𝑐 · 𝑃𝑟𝑤 · 𝐷
𝐸 (𝑃𝑒𝑖 ) · (𝜌 − 1)

= 𝑃𝑒𝑖 −
𝜅

𝐸 (𝑃𝑒𝑖 )
.

(8)

Resolving (8), we obtain 𝐸 (𝑃𝑒𝑖 ) as:

𝐸 (𝑃𝑒𝑖 ) =
𝑃𝑒𝑖 +

√︃
𝑃2𝑒𝑖 − 4𝜅
2

, (9)

Furthermore, applying the Markov inequality, we deduce that:

𝑃𝑟 {(𝑃𝑒𝑖 − 𝑃𝑒𝑖 ) ≥ 𝜖𝑃} ≤
𝐸 (𝑃𝑒𝑖 − 𝑃𝑒𝑖 )

𝜖𝑃

=
𝑃𝑒𝑖 − 𝐸 (𝑃𝑒𝑖 )

𝜖𝑃

=
1

𝜖𝑃
·
©­­«𝑃𝑒𝑖 −

𝑃𝑒𝑖 +
√︃
𝑃2𝑒𝑖 − 4𝜅
2

ª®®¬
=

1

2𝜖𝑃
· (𝑃𝑒𝑖 −

√︃
𝑃2𝑒𝑖 − 4𝜅).

(10)

Theorem A.3 has been proven. □

To validate the correctness of the derived error bound, we utilize

the CAIDA 2018 trace for testing, which comprises 2.3M packets

from 0.76M items. Initially, we compare the real and estimated

values of persistent items using our method with a memory size of

32KB, adhering to the settings described in Section 5.1. Specifically,

Pontus captures 883 persistent items. For clarity, in Figure 6(a),

we randomly select 200 items from this pool, noting that all other

items yielded similar results. As depicted, our estimated persistence

closely aligns with the actual persistence, with no instances of

overestimation errors.

Then, we validate the accuracy of our derived bound. We set 𝜌 at

1.08 and vary the memory size from 32KB to 256KB to cover typical

L1 cache sizes, specifically 32KB and 64KB. Additionally, we adjust

the parameter 𝜖 to maintain 𝜖𝑃 at 20, signifying that the persistence

estimation errors are within 20. Our observations in Figure 6(b)

indicate that the theoretical error bound closely matches and is

slightly larger than the experimental values, thus confirming the

correctness of our derived error bound.

A.4 Error Bound of Pontus’s Variant
Theorem A.4. Given a small positive number 𝜖 and a persistent

item 𝑒𝑖 , the probability that the absolute difference between the actual
persistence 𝑃𝑒𝑖 and its estimate 𝑃𝑒𝑖 exceeds 𝜖𝑃 is bounded by:

Pr{|𝑃𝑒𝑖 − 𝑃𝑒𝑖 | ≥ 𝜖𝑃} ≤
1

2𝜖𝑃
·
[
(𝑃𝑒𝑖 + 𝐸 (𝑌𝑖 ))

−

√︄
𝑃2𝑒𝑖 − 4𝜅 ·

(
1 − 1

2
𝜗

)
(11)

where 𝑃 is the sum of persistence values of all items, 𝜅 retains the
definition from Theorem A.3, with 𝜗 representing the length of a
fingerprint. Furthermore, 𝐸 (𝑌𝑖 ), is given by:

𝐸 (𝑌𝑖 ) = (𝑀 − 𝑃𝑒𝑖 ) ·
1

2
𝜗
·
𝑑∑︁
𝑘=1

1

𝑑

[
1 −

(
1 − 1

𝑤

)𝑛−1]𝑘
. (12)

Proof. First, by using fingerprints instead of keys, for any new

incoming item 𝑒 𝑗 to successfully reduce the probability of 𝑒𝑖 , it is

required that the fingerprints of the two items differ. The probability

of this occurring is:

𝑃𝑟 𝑓 𝑝 = 1 − 1

2
𝜗
. (13)

We define 𝐸 (𝑌𝑖 ) to represent the expected overestimation in the

persistence count of 𝑒𝑖 due to fingerprint collisions:

𝐸 (𝑌𝑖 ) = (𝑀 − 𝑃𝑒𝑖 ) ·
1

2
𝜗
·
𝑑∑︁
𝑘=1

1

𝑑

[
1 −

(
1 − 1

𝑤

)𝑛−1]𝑘
, (14)

where the persistent count of 𝑒𝑖 can only be increased by at most 1

in each period in which it is not present. The factor 1/2𝜗 represents

the probability that two items share the same fingerprint. The last

term represents the probability that any newly arriving 𝑒 𝑗 hashes

into the same bucket as 𝑒𝑖 during a given time window by sharing

the same fingerprint.



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Weihe Li, Zukai Li, Beyza Bütün, Alec F. Diallo, Marco Fiore, and Paul Patras

16 32 64 128 256
0.0

0.5

1.0

F
1

 s
c
o

r
e

Memory Size (KB)

 Pontus  On-Off

 Pyramid On-Off 

 Waving   SS

(a) (1000, 0.3).
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(b) (1000, 0.5).
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(c) (2000, 0.3).
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(d) (2000, 0.5).

Figure 7: F1 scores of different methods under various pa-
rameter settings for persistent item lookup (where the first
value indicates𝑀 and the second value indicates 𝛼).
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(a) F1 score (C2018).
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(b) F1 score (C2019).
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(c) Speed (C2018).
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(d) Speed (C2019).

Figure 8: F1 score and update speed of our default Pontus
version and its variant for persistent item lookup.

Based on these definitions, the expected value of 𝑃𝑒𝑖 under the

fingerprint scenario is calculated as follows:

𝐸 (𝑃𝑒𝑖 ) = 𝑃𝑒𝑖 − 𝐸 (𝑋𝑖 ) + 𝐸 (𝑌𝑖 )

≈ 𝑃𝑒𝑖 −
𝑃𝑟𝑐 · 𝑃𝑟𝑤 · 𝐷
𝐸 (𝑃𝑒𝑖 ) · (𝜌 − 1)

·
(
1 − 1

2
𝜗

)
+ 𝐸 (𝑌𝑖 )

= 𝑃𝑒𝑖 −
𝜅

𝐸 (𝑃𝑒𝑖 )
·
(
1 − 1

2
𝜗

)
+ 𝐸 (𝑌𝑖 ),

(15)

where 𝑃𝑟𝑐 , 𝑃𝑟𝑤 , and 𝐷 maintain their definitions as outlined in

Theorem A.3.

Similar to the above derivation process, we solve formula (15) to

obtain:

𝐸 (𝑃𝑒𝑖 ) =

[
𝑃𝑒𝑖 + 𝐸 (𝑌𝑖 )

]
+
√︂
𝑃2𝑒𝑖 − 4𝜅 ·

(
1 − 1

𝑤𝜗

)
2

, (16)

Therefore, by applying the Markov inequality, we deduce the

error bound as:

𝑃𝑟
{
|𝑃𝑒𝑖 − 𝑃𝑒𝑖 | ≥ 𝜖𝑃

}
≤
𝐸 (𝑃𝑒𝑖 − 𝑃𝑒𝑖 )

𝜖𝑃

=
𝑃𝑒𝑖 − 𝐸 (𝑃𝑒𝑖 )

𝜖𝑃

=
1

2𝜖𝑃
·
[ (
𝑃𝑒𝑖 + 𝐸 (𝑌𝑖 )

)
−

√︄
𝑃2𝑒𝑖 − 4𝜅 ·

(
1 − 1

2
𝜗

) .
(17)

□

B PERFORMANCE ACROSS DIFFERENT
PARAMETERS

Here, we use persistent item lookup as an example. We vary the

number of windows,𝑀 , to 1000 and 2000, and adjust the persistence

threshold, 𝛼 , to 0.3 and 0.5. We employ the CAIDA 2019 trace for

testing.

As shown in Figure 7, we observe that Pontus maintains the

highest detection accuracy across different parameter settings, af-

firming its effectiveness and robustness. For instance, the average

F1 score of Pontus is 25.35%, 20.94%, 20.02%, and 13.62% higher than

the most competing method Pyramid-based On-Off Sketch over

(1000, 0.3), (1000, 0.5), (2000, 0.3), and (2000, 0.5) parameter settings.

C VARIANT PERFORMANCE
Figure 8 depicts the results of our default Pontus and its variant

across various traces. Our variant incorporates two techniques:

fingerprint (PF) compression and field consolidation. We evaluate

the effectiveness of each component. As depicted in Figure 8(a) and

(b), each technique demonstrates improvements in detection accu-

racy, particularly under tight memory constraints such as 16KB.

For example, with the CAIDA 2018 trace and a memory size of

16KB, our variant enhances accuracy by 18.39% compared to our

default version. On average, the variant improves accuracy by 5.3%.

However, such improvements come at the price of lower processing

speed. As shown in Figure 8(c) and (d), we observe that the use of

fingerprint slows down the update speed. This is because each item

requires additional hash operations to obtain its fingerprint value.

Furthermore, counter consolidation further reduces the speed, as it

involves checking whether the consolidation is successful and oper-

ating on a bit-level, which leads to slower processing. Additionally,

the use of fingerprint breaks invertibility. During the query process,

each item needs to be rehashed to obtain its fingerprint, resulting

in longer query times. Thus, if speed is not a primary concern in

practice, using this variant can be an option. By default, we choose

the default version because it achieves superior accuracy compared

to existing baselines and maintains high processing speed.
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