
978-1-4673-5828-6/13/$31.00 c©2013 IEEE

Practical Node Policing in 802.11 WLANs

Hessan Feghhi, Paul Patras and David Malone

Hamilton Institute, National University of Ireland Maynooth

Maynooth, Co. Kildare, Ireland

E-mail: {hessan.feghhi,paul.patras,david.malone}@nuim.ie

Abstract—As open-source WiFi device drivers are increas-
ingly available, wireless equipment can be configured to disobey
the 802.11 specification, with the goal of achieving performance
gains, to the detriment of fair users. We demonstrate a practical
implementation of a node policing scheme that combats such
selfish behaviour, using commercial off-the-shelf hardware and
a modified firmware. With a small testbed, we show that access
points running our scheme can detect misbehaving stations,
inflict punishment upon them and effectively restore fairness
in the network.

I. INTRODUCTION

Channel access in current IEEE 802.11 wireless LANs

(WLANs) is usually controlled by the Distributed Coordina-

tion Function (DCF) [1]. Specifically, stations run indepen-

dent DCF instances, which assign transmission opportunities

in a decentralised fashion. Thus, each node is responsible for

its own behaviour and there is little incentive to play by the

standard rules if changes can be made to DCF. In fact, open-

source device drivers (e.g. MadWifi,1 compat-wireless,2 etc.)

provide flexible access to the Medium Access Control

(MAC) layer primitives, which enable users with minimal

programming skills to reconfigure their interfaces and boost

their performance, while starving compliant contenders.

To understand the impact of such attacks, consider a very

simple case of a real network with a regular access point

(AP) serving two clients, both sending backlogged UDP

traffic with payload size of 1000 Bytes, at 11 Mb/s PHY

rate. One of them employs compliant channel access, and

the other competes with a Contention Window minimum

parameter half the size of the standard’s default value (i.e.

CWmin = CW default
min /2). Note that with e.g. Atheros

chipset based wireless cards and Linux operating system,

this is achievable by simply invoking an iwpriv system

command. As depicted in Fig. 1 (with light bars), in this

scenario the cheating node attains a throughput figure more

than twice that of the fair station, while the performance of

the other is clearly affected. We note that more sophisticated

attacks that manipulate the arbitration inter-frame spacing

(AIFS) or the transmission opportunity limit (TXOP) pa-

rameters would have even more significant impact on the

compliant users.

1http://www.madwifi-project.org
2http://wireless.kernel.org/en/users/Drivers

0

0.5

1

1.5

2

2.5

3

3.5

4

Fair Cheating Fair Cheating
T

h
ro

u
g

h
p

u
t

[M
b

/s
]

Regular AP

Policing AP

Figure 1. Comparison of throughput performance with one attacker.

To address this problem, we have implemented a scheme

to police an 802.11 WLAN, whereby the AP measures

each station’s performance and then controls a probability

Pack that a node will not be sent an acknowledgement

(ACK) after a successful transmission, thus forcing it to

backoff and double its contention window, thereby reducing

its transmission probability. Considering the earlier example

scenario, this approach can successfully restore through-

put fairness between compliant and misbehaving nodes, as

shown in Fig. 1 (with dark bars).3 Our technique builds

upon earlier work [2], where analysis and simulation foresee

an appropriate controller can effectively tackle MAC mis-

behaviour. However, implementing ACK suppression with

real devices is a challenging task, since automatic repeat-

request (ARQ) is a basic operation handled at a low level of

the network stack. We tackle this challenge by exploiting

the OpenFWWF firmware,4 which offers high flexibility,

including access to functionality such as ACK generation,

and develop a practical policing implementation that we

deploy with commodity hardware.

To demonstrate the effectiveness of our prototype, we

showcase a real scenario where a misbehaving user, engaged

in a file transfer operation, manipulates their MAC config-

uration to reduce transfer duration, while jeopardizing the

3We disable rate adaptation, but generally assume nodes run state-of-the-
art rate control algorithms, e.g. Minstrel, which only act upon failures due
to channel errors.

4http://www.ing.unibs.it/˜openfwwf/

Per-station Information

Policing Controller

Virtual StationMAC Functionality

Throughput
ACK-Dropping

Probability

Virtual MAC

Throughput

S
h

a
re

d

M
e

m
o

ry

Figure 2. Policing implementation.

performance of a competing video flow. Using a Linux-based

AP equipped with a commercial off-the-shelf Broadcom

WiFi card, we show that our implementation detects the

cheater, rapidly counteracts the observed behaviour and

restores the quality of the video stream.

II. POLICING ALGORITHM

The operation of the policing algorithm relies on the

fundamental nature of ACK reception at the client side. In

our scheme, when the AP decides not to generate an ACK,

it also drops the received frame, just as if it was corrupt.

Consequently, even misbehaving stations must resend the

packet to ensure successful delivery. Further, the subsequent

retries occur less frequent, given the CW doubling. Other-

wise, aggressive nodes employing fixed CW settings will

be eventually disassociated. This technique only requires

changes at the AP and does not change the 802.11 rules.

Further, it adds no additional signalling between AP and

well-behaved nodes for detecting cheaters, which makes it

easy to deploy.

Pack controller operation: The algorithm is executed

iteratively and involves controlling, at each step, the proba-

bility Pack,i, with which the frames of a station i will not
be acknowledged during the next cycle [2]:

P k+1

ack,i =

[

P k
ack,i + α

(

Sk
i

Sk
f

− (1− γP k
ack,i)

)]

0,1

,

where [x]a,b = max(a,min(b, x)), Sk
i is the throughput of

client i, Sk
f is the maximum rate a well-behaved node can

attain, α > 0 is a parameter controlling adaptation rate and

γ > 0 introduces a penalty for misbehaviour.

Fair throughput estimation: Unlike previous works that

focus on identifying the mechanisms of cheating and coun-

teract (if at all) depending on their nature (e.g. [3], [4]), with

our approach the AP estimates the maximum throughput of

a fair station Sf given the current conditions and remains

agnostic to the form of misbehaviour. Specifically, we ob-

serve the channel states (idle/busy) at the AP to estimate the

collision probability p seen by a “virtual” fair MAC instance

that follows the 802.11 protocol but does not actually inject

any traffic, which we compute as follows:

p =
#busy slots

#busy slots+#idle slots
.

Subsequently, we use this do derive the expected “fair”

throughput performance Sf using a model [5].

Implementation: We implemented our mechanisms on

x86-based computers, equipped with Broadcom B4318

adapters, running Debian Linux (kernel 2.6.32) and the

mac80211 framework with modified b43 driver and Open-

FWWF firmware. Fig. 2 depicts the key building blocks.

The ACK dropping resides in the firmware, as this is a

time sensitive task. A table with Pack values corresponding

to each associated station is stored in the shared memory.

Upon a frame reception, a look-up routine fetches the

appropriate Pack and then skips ACK generation with the

appropriate probability. The virtual MAC is also included in

the firmware and runs whenever the adapter processing unit

is in idle state. Note that this happens not only when the

channel is idle, but also when transmissions/receptions are

ongoing, thus we obtain estimates with good accuracy.

ACK drop probabilities must be updated periodically,

to account for the network dynamics. These updates are

performed by the driver, which has access to the inputs

required and typically runs on a higher performance CPU

than the firmware. The Pack updates are performed by

measuring per-station throughput and comparing with the

estimated fair value.

III. DEMO SCENARIO

To demonstrate the effectiveness of our implementation,

we consider the scenario in Fig. 3, where station 1 is

Figure 3. Demo scenario.

Figure 4. Demo visualisation tools: the received video stream is displayed
at the top of the GUI; the plots on the bottom show in real time the measured
throughput (left) and the applied ACK dropping probabilities (right).

streaming a 2 Mb/s MPEG-2 encoded video of “Ice Age 3:

Dawn of the dinosaurs” teaser, with an approximate duration

of 2 minutes. Simultaneously, station 2 is uploading a large

data file to the wired network. Nodes are configured with

the HR/DSSS (802.11b) PHY layer parameters (11 Mb/s

data rate). The policing algorithm runs at the AP and a set

of visualisation tools are deployed on the wired client, both

to illustrate in real-time the operation of the policing scheme

(i.e. the time evolution of Pack and the measured per-station

throughput Si), and to permit the playback and subjective

evaluation of the quality of the video (see Fig. 4).

Normal operation: First, we consider that both stations

follow the IEEE 802.11 standard rules and show that under

such circumstances the video is streamed with no perfor-

mance degradation, while the remaining channel capacity is

used to accommodate the transfer of the data file. We use

this setup as a benchmark for comparing the throughput and

video performance when the AP operates with and without

the policing scheme, and the node sending data is cheating,

as we explain next.

Node misbehaviour, without policing: To show the

impact of MAC misbehaviour, we configure the CWmin

parameter of station 2 to half of the value recommended

by the standard and repeat the previous experiment. This

setting increases the aggressiveness of station 2, which will

be backlogged with packets. Consequently, it will consume

most of the available capacity, thereby leaving station 1

unable to satisfy the bandwidth demands of the video flow.

Using our graphical interface, we show that the cheater

achieves a throughput value nearly twice that of the fair

node, while the degradation of the video quality can be easily

observed from the frequently garbled playback.

Node misbehaviour, with policing: Finally, we activate

the node policing mechanism at the AP and repeat the

experiment with one cheating node sending data and a fair

station streaming video. We show that the policing algorithm

quickly detects the attack and increases the ACK dropping

probability corresponding to the misbehaving node. As a

result, station 2 is forced to backoff periodically, which

effectively reduces its transmission attempt rate and conse-

quently limits the attained performance. This is visible in the

time evolution of the throughput displayed in the GUI, which

is immediately throttled down to the fair value, leaving more

transmission opportunities for the fair contender. Conversely,

as station 1 is following the standard specifications, its

corresponding Pack probability remains effectively at zero,

and the quality of the transmitted video is preserved.

IV. CONCLUSION

Given the increased number of wireless devices that

permit modifying the 802.11 MAC parameters, users have

little incentive to conform to the standard specification.

With this demo, we showcase a practical solution that can

be implemented with commodity hardware and effectively

polices 802.11 misbehavoiur, without requiring any coop-

eration between the AP and clients, therefore being fully

standard compliant.

ACKNOWLEDGEMENTS

This work was supported by the European Commission

(FP7 grant agreement n. 257263 – FLAVIA project) and

Science Foundation Ireland (grant 08/SRC/I1403).

REFERENCES

[1] IEEE 802.11 WG, Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications. IEEE 802.11 Standard, 2007.

[2] I. Dangerfield, D. Malone, and D. Leith, “Incentivising Fairness and
Policing Nodes in WiFi,” IEEE Communications Letters, vol. 15, pp.
500–50, May 2011.

[3] P. Serrano, A. Banchs, V. Targon, and J. F. Kukielka, “Detecting selfish
configurations in 802.11 WLANs,” IEEE Communications Letters,
vol. 14, no. 2, Feb. 2010.

[4] M. Raya, I. Aad, J.-P. Hubaux, and A. E. Fawal, “DOMINO: Detecting
MAC layer greedy behavior in IEEE 802.11 hotspots,” IEEE Transac-

tions on Mobile Computing, vol. 5, pp. 1691–1705, Dec. 2006.

[5] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coordi-
nation function,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 3, Mar. 2000.

