
Neural Networks That Learn
(Supervised Learning)

Readings: D&A, chapter 8.

• we want to have a network which is able to do a classification of inputs

into 2 categories (e.g. A or not A)

• we want to optimize the parameters = weights w of the network so that

the network makes as few errors as possible;

• we assume that there exist a data base which contains examples (u,v)

of the inputs to learn together with the correct (or !target") output;

• Final task of the network: generalize to new data;

Supervised learning

Supervised learning
!a a a uu u u uaa µ

UA label

Data µx()

µt()

x

x

x

x

xx
o

o

o

o
o

o
o o

o

x

class A

point not

in class A
x o

point in

data space

• The task of learning and generalization corresponds to finding a

surface -- a.k.a discriminant function -- which separates the

elements of class A from the others.

• simplest one-layer network (with binary output);

• the inputs are m input patterns u;

• w are the weights of the perceptron;

• Task of the perceptron : place each input pattern into one of two classes

designated by the desired output vm= -1 or vm= +1;

• The threshold determines the dividing line between values of w.u that

generate +1 and -1 outputs

The Perceptron (1) - definition

34 Plasticity and Learning

fication in the case of unsupervised learning can be applied to supervised
learning as well. However, stabilization is easier in the supervised case,
because the right side of equation 8.44 does not depend on w. Therefore,
the growth is only linear, rather than exponential, in time, making a sim-
ple multiplicative synaptic weight decay term sufficient for stability. This
is introduced by writing the supervised learning rule assupervised learning

with decay

τw
dw

dt
= 〈vu〉 − αw , (8.45)

for some positive constant α. Asymptotically, equation 8.45 makes w =
〈vu〉/α, that is, the weights become proportional to the input-output cross-
correlation.

We have discussed supervisedHebbian learning in the case of a single out-
put unit, but the results can obviously be generalized to multiple outputs
as well.

Classification and The Perceptron

The perceptron is a nonlinear map that classifies inputs into one of twoperceptron
categories. It thus acts as a binary classifier. To make the model consistentbinary classifier
when units are connected together in a network, we also require the in-
puts to be binary. We can think of the two possible states as representing
units that are either active or inactive. As such, we would naturally assign
them the values 1 and 0. However, the analysis is simpler while producing
similar results if, instead, we require the inputs ua and output v to take the
two values +1 and −1.

The output of the perceptron is based on a modification of the linear rule
of equation 8.2 to

v =
{

+1 if w · u− γ ≥ 0
−1 if w · u− γ < 0 .

(8.46)

The threshold γ thus determines the dividing line between values ofw · u
that generate +1 and −1 outputs. The supervised learning task for the
perceptron is to place each of NS input patterns um into one of two classes
designated by the binary output vm. How well the perceptron performs
this task depends on the nature of the classification. The weight vector and
threshold define a subspace (called a hyperplane) of dimension Nu−1 (the
subspace perpendicular tow) that cuts the Nu-dimensional space of input
vectors into two regions. It is only possible for a perceptron to classify
inputs perfectly if a hyperplane exists that divides the input space into one
half-space containing all the inputs corresponding to v = +1, and another
half-space containing all those for v = −1. This condition is called linear
separability. An instructive case to consider is when each component oflinear separability
each input vector and the associated output values are chosen randomly
and independently with equal probabilities of being +1 and −1. For large

Peter Dayan and L.F. Abbott Draft: December 17, 2000

w.u =
i=N∑

i=1

wiui

The Perceptron (2) - Linear Separability

• The boundary between the 2 classes is given by:

• This is a linear equation and defines a hyperplane in the input

space.

• A simple perceptron can only solve problems which are linearly

separable.
o

o

o

o

o

oo

x

x

x

x

x x

i=N∑

i=1

wiui − γ = 0

The Perceptron (3): how do we learn the weights?

• Test one data point um after the other, i.e. apply it at input layer and

compare the output v(um) to the desired output vm

• If output is correct, don"t take any action;

• If output is incorrect, change w.

• The learning rule is [Rosenblatt, 1958]:

• where is the learning rate -- a small parameter.

• e.g. vm =+1, v(um)=-1

η

∆wi = η(vm − v(um))um
i

wi.ui → wi.ui + 2ηu2
i

wi → wi + 2ηui

The Perceptron (4): Learning

• if a point x is misclassified, the weight vector is changed in direction

of x. This rotates the separating line in the desired direction.

o

o

x

x

w

x

!w

o

o

x

o

o

x

x

Batch Learning vs. Online Learning

• Two ways to apply the learning rule:

• Online: change the weights after presentation of each input data:

• Batch: present all the data then change the weights:

• Batch learning is often more effective but a bit more prone to get

stuck in local minima.

• Online learning is more plausible biologically, but the error is not

guaranteed to go down at each step (optimizing for a new pattern

can result in unlearning the previous pattern).

∆wi = η(vm − v(um))um
i

∆wi = η
m=Ns∑

m=1

(vm − v(um))ui
m

Gradient descent (1)

E

w
w* k
k

E

w
k

!

!

• The perceptron is a simple case. More generally, we consider a

continuous output function:

• We want to change the weights such that the error decreases = in

direction of the negative gradient:

E(w) =
1
2

∑

m

(vm − v(um))2

v(um) = g(w.um − γ)

• The total quadratic error is:

= a function of w

∆wi = −η
∂E

∂wi

Gradient descent (2)

E

w
w* k
k

E

w
k

!

!

• if we are in a region where the slope of E(wk) is negative, we want

to increase wk;

• if we are in a region where the slope is positive, we want to

decrease wk;

• the steepest the slope, the more we want to change the weights.

∆wi = −η
∂E

∂wi

Gradient descent (3)

• The gradient can be easily calculated, we get:

• This is known as the delta rule [Widrow & Hoff, 1960].

• The perceptron rule is a particular case of this where g"=1.

• `delta" refers to:

∆wi = η
∂E

∂wi
= η

m=Ns∑

m=1

g′(w.um)(vm − v(um)).ui
m-∆wi = −η

∂E

∂wi

δm = g′(w.um)(vm − v(um))

• Online rule:

∆wi = ηδmum
i

• perceptron can compute AND and OR but not XOR -- since XOR is

not linearly separable.

Perceptron cannot solve XOR

• A perceptron was introduced in 1958 by Frank

Rosenblatt -- a schoolmate of Marvin Minsky.

• He predicted that "perceptron may eventually be able

to learn, make decisions, and translate languages."

• An active research program into the paradigm was

carried out throughout the 60s but came to a sudden halt

with the publication Minsky and Papert's 1969 book

Perceptrons. They showed that there were severe

limitations to what perceptrons could do and that Frank

Rosenblatt's claims had been grossly exaggerated.

• The effect of the book was devastating: virtually no

research was done in connectionism for 10 years.

Rosenblatt died in a boating accident shortly after the

book was published.

History of AI -- Perceptrons and the dark age of connectionism

http://en.wikipedia.org/wiki/History_of_artificial_intelligence

Towards Multi-Layer networks

• What to do when the problem is not linearly separable?

•1) preprocess to make the problem separable (e.g. by mapping to a

higher dimension space) -- cf Support Vector Machines ; or

• 2) use a multi-layer network.

• The most important learning rule for multi-layer networks is the

(error) back-propagation algorithm. = Generalization of the delta rule

[Chauvin & Rumelhart, 1985].

• initialize weights to small random values

• apply a sample input pattern rin to the input nodes

• propagate input through the network by calculating the rate of nodes in

successive layers l

Back-propagation algorithm

rl
i = g(hl−1

i) = g(
∑

j

wl
ijr

l−1
j)

• Compute the delta term for the output layer

δout
i = g′(hout

i)(vout
i − rout

i)

• Back-propagate delta terms through the network

δl−1
i = g′(hl−1

i)
∑

j

wl
ijδ

l
j

• Update weight matrix by adding the term

•Repeat until error is sufficiently small.

∆wl
ij = kδl

ir
l−1
j

Back-propagation algorithm

• At output layer, same as delta rule

• At hidden layer, each units receives the weighted sum of the delta-

terms of the units it connects to (in output layer). This serves as delta-

term in this layer.

δl−1
i = g′(hl−1

i)
∑

j

wl
ijδ

l
j

wjk
(1)

!!
(2)

(1)

(0)
k
x (1)

j
x

r(1)
k

r(0)
k

• a general limitation of pure gradient descent methods is the

possibility that the network gets trapped in a local minimum of the

Error surface.

• Solution: include some stochastic process that enable random

search

• simulated annealing: add some noise to the weights values. the

noise level is then gradually reduced to unsure convergence.

Stuck in a Local Minimum ?

E

w

Over-fitting and Generalization

• is it so good to have a very flexible network?

• in some cases it is better to have a network which doesn"t perform

perfectly on the training data set

• learning the noise in the data = overfitting. This happens when the

number of free parameters (weights) in the model is too large.

• stopping the training when the error on the testing data set increases is

one way to prevent overfitting (regularization by early stopping)

• having lots of data is another.

o

o

o

o

o

oo

x

x

x

x

x x

o

o

oo

o
o

o

o

o

x

x

x

x

x

x

x

x

x

x

x

o

o

o

o

o

o

o

oo

x

x

x

x

x x

o

o

oo

o
o

o

o

o

x

x

x

x

x

x

x

x

x

x

x

o

o

o

o

o

o

o

oo

x

x

x

x

x x

o

o

oo

o
o

o

o

o

x

x

x

x

x

x

x

x

x

x

x

o

o

o

o

o

o

o

oo

x

x

x

x

x x

o

o

oo

o
o

o

o

o

x

x

x

x

x

x

x

x

x

x

x

o

o

History of AI: revival of connectionnism

The introduction of the Hopfield nets (1982) by John Hopfield

and of the backpropagation algorithm by David Rumelhart

revived the field of connectionism which had been abandoned

since 1970.

The new field was unified and inspired by the appearance of

Parallel Distributed Processing in 1986—a two volume

collection of papers edited by Rumelhart and psychologist

James McClelland.

Neural networks would become commercially successful in

the 1990s, when they began to be used as the engines

driving programs like optical character recognition and speech

recognition.

Models of the brain?

• controversial.

• Supervised learning is a better model of learning for some systems (e.g.

motor learning -- visual feedback) than for others (e.g. development)

• Backpropagation of error signals is the most problematic feature;

• inclusion of derivative terms;

• Different authors have proposed more biologically plausible

implementations of back-propagation (O Reilly (1996), Roelsfema & Van

Ooyen (2005))

