
Perceptual learning is the improvement in per-
formance on a variety of simple sensory tasks,
following practice. In visual perception, such
tasks, often called discrimination tasks,
involve identifying small differences in simple

visual attributes, such as position (Fig. 1), orientation,
texture or shape. In general, perceptual learning ranges
from the discrimination of simple attributes to more com-
plex sensory patterns. At one end of the spectrum, it can
involve discrimination of visual orientation or depth,
auditory pitch, or changes in tactile vibration frequency.
At the other end, it can involve detection of geometric
shapes or alphanumeric characters1,2.

In perceptual learning, the improvement develops pro-
gressively over many trials, as opposed to other, more
explicit types of learning which may require only a single
exposure to a stimulus. Perceptual learning is implict, sub-
jects are not consciously aware of it and it progresses even in
the absence of a reward for correct responses. Perceptual
learning unfolds automatically on repeated exposures to the
sensory stimulus, and from integrated efforts at discrimination
over a long time. Perceptual learning has important advan-
tages as a brain process amenable to scientific study. First,
the behaviour can be quantified relatively accurately under
well-defined experimental conditions. Second, there are
good reasons to believe that perceptual learning is mediated
by neuronal processes that occur at the level of the primary
sensory cortex. These areas are the first to receive information
from the sensory organs and their circuitry is the best under-
stood of that in the cerebral cortex. Perceptual learning can
therefore be quantitatively assessed using three approaches:
psychophysical measurement of behaviour, physiological
recording of living cortical neurons and computer modelling
of well-defined neuronal networks.

Any model of perceptual learning must include at least
two components. First, it has to describe the way the sensory
world is represented by neuronal activity in the sensory
areas of the brain. Second, it has to describe the changes that
occur in the sensory pathways when perceptual learning
occurs. The current consensus stipulates that every sensory
attribute is represented by population activities in the early
sensory areas that are dedicated to this attribute. For example,
the orientation of visual stimuli is represented by a population
of orientation-sensitive neurons in the primary visual areas;
the pitch of tonic sounds is represented by a population of
frequency-selective neurons in the primary auditory cortex,
and so on. The output of such population activity is then

interpreted by higher-order cortical areas, which make per-
ceptual decisions. Much less is known about the nature and
location of the changes that underlie the improved perfor-
mance in a sensory task, although evidence is accumulating
that the same early stages in sensory processing that initially
represent an attribute also mediate the changes involved in
improving the discrimination of that attribute. A daunting
challenge posed by this picture is to understand how primary
circuits can undergo repeated changes that result from
learning, but simultaneously be able to operate in tasks that
have already been learned. 

Here, we review a few representative models of neural
networks and assess their performance in terms of perceptual
learning. ‘Feedforward networks’, although based on a very
limited number of input units, provide specific read-outs
that improve very specifically and quickly during training.
The main drawback of feedforward networks, however, is
that they rely on a feedback teaching signal, which does not
fit with known brain neuroanatomy. By contrast, ‘recurrent
networks’ rely on more realistic horizontal connections,
which allows them to learn without the need for any
reinforcement signals. Recurrent network models, however,
perform relatively poorly on specific perceptual tasks. Models
that combine both feedforward and recurrent architectures
address some of these problems, but current models are a
long way from matching biological circuits.

In the second section of this review, we discuss in more
detail the defining characteristics of perceptual learning, as
it occurs in real brains. For each property, we consider the
challenges it presents for future modellers. In particular,
models must accommodate the effect of top-down influences
of attention, expectation and perceptual task on the operation
of intrinsic cortical circuits. It is becoming increasingly
clear that both the encoding and the retrieval of learned
information is dependent on feedback interactions
between higher- and lower-order cortical areas in sensory
cortex. Models should allow for learning in the absence as
well as in the presence of reward feedback. They need to
account for the high degree of specificity that perceptual
learning is known to have. They also need to allow the same
circuits to undergo the changes required to encode learned
information without this disrupting their existing role in
the analysis of the sensory environment. Finally, the rules
and characteristics of cellular plasticity have to be integrated
at the synaptic, neuronal and network levels (see review in
this issue by Abbott and Regehr, page 796) to fully account
for the mechanisms underlying perceptual learning.
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Neural network models of perceptual learning
Models of perceptual learning can be broadly divided into two
classes: feedforward versus feedback or recurrent network models.
These differ in: (1) network architecture; and (2) the location of the
functional changes (output versus input levels, respectively3). In
feedforward networks (for example, Fig. 2) neurons are located in
distinct consecutive layers such that information flows unidirectionally
from one layer to another, and learning is implemented by appropriate
changes in the relative strengths of feedforward connections. The
trigger for changing the connections is usually a discrepancy between
the activity at the upper layer (output) and a ‘desired’ output, which
has to be provided to the network during learning (‘supervised
learning’). In the feedback networks (for example, Fig. 3) informa-
tion can propagate in loops within a layer or be transferred from
higher to lower layers. Such networks allow learning without the

need for a reward or any ‘teaching signal’ (‘unsupervised learning’).
A combination of both architectures has been introduced in some
models4. Indeed, in complete brains most of the sensory areas have
the role of read-out for the previous levels and input representation
for the subsequent levels of processing. 

Feedforward networks
The best known model of the feedforward type is that conceived by
Poggio et al.5 on visual hyperacuity. Poggio et al.5 proposed a three-
layers feedforward network (Fig. 2b), the input layer of which consists
of a small number of gaussian filters (receptive fields) that transform
any input pattern into a vector of activity levels by convolving the input
with the corresponding receptive field profiles. The next layer of the
network is a set of radial basis functions, each computing the weighted
distance between the input vector and a certain template vector that is
unique for each function. Finally, the output of the module is
computed as a linear combination of the radial basis functions. In
models of vernier discrimination, where subjects determine the
direction of offset of one line relative to a nearly collinear reference line,
the output value of the model determines the perceptual decision, with
positive and negative values of output unit being interpreted as the
direction to which the target is shifted relative to the reference. 

When the model is trained on a set of example inputs with known
outputs, the input receptive fields do not change, but the number of
radial basis functions and internal parameters of the network are
updated. Surprisingly, with only a very limited number of input
receptive fields (eight), the model reproduces some salient properties
of perceptual learning with high fidelity. The model’s hyperacuity
level of performance is similar to the experimentally measured one.
This increases with the length of the two segments of the vernier
stimulus and is specific to its orientation, all in accordance with
psychophysical observations.

The main appeal of Poggio et al.’s5 model is that it raises the poss-
ibility that when a certain perceptual task is practiced, the brain
quickly synthesizes a specialized neural module that reads out the
responses in the primary sensory areas of the brain in a way that is
optimal for this particular task. Because the responses of sensory
neurons are not affected by learning and the synthesized module is
not involved in any other tasks, the obtained improvement in the per-
formance is highly specific to the task that was practiced. The model
also very successfully replicates observed performance under various
stimulus manipulations. However, this class of model has some
drawbacks. First, because different elements of the input pattern do
not interact with each other directly, the ability of the read-out module
to discriminate between different inputs does not strongly depend on
the spatial shape of the inputs. For example, the model learns to
estimate the horizontal displacement of a single vertical bar relative
to an arbitrary reference position, with an absolute precision that is
similar to that obtained for a corresponding vernier stimulus
(Sahar-Pikielny et al., unpublished data). The fact that spatial features
of vernier stimuli seem to be crucial for hyperacuity indicates the
involvement of lateral interactions between the receptive fields that
respond to different components of the stimulus. Second, most of
the learning algorithms in feedforward networks, including the one
used by Poggio et al.5, require a teaching signal. Yet, perceptual
learning does not require a feedback to proceed, although without it
learning proceeds at a slower pace6. Third, for a vernier task, human
subjects show hyperacuity on the very first trials, which may not
leave time for the synthesis of a specialized module.

Recurrent networks
Several recent observations indicating that perceptual learning
results in specific changes in the corresponding primary sensory
areas, both on the functional level and on the level of single neuron
response properties, provide strong support for models based on
recurrent networks. An example of this type of model is that proposed
by Adini and colleagues7,8 which describes perceptual learning in the
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Figure 1 Example of perceptual learning involving a three-line bisection task. a, The
subject has to determine whether the central line of three parallel lines is nearer the
line on the left or on the right. FP indicates the position of the fixation point.
Horizontal line shows one degree of viewing angle. b, Practicing this task over
thousands of trials for many weeks produces a threefold improvement in the
‘threshold’ — the amount of offset from the central position required to correctly
judge the direction of offset. Minute of arc is a 60th of a degree of a viewing angle.
The task is practiced in one visual field position, and the improvement is relatively
specific to the trained location and orientation, suggesting the involvement of early
stages in the visual cortical pathway, where receptive fields are smallest and
orientation tuning sharpest. c, Importantly, the training is specific for context or the
spatial configuration of the stimulus; improvement in the discrimination of the
position of a line relative to two parallel lines (three-line bisection) does not transfer
to discriminating the position of the same line relative to a collinear line (vernier
discrimination). Adapted from ref. 21.
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case of contrast discrimination. Adini et al.7 assume that perceptual
learning is mediated by an increase in contrast sensitivity. This, in
turn, results from stimulus-evoked modifications to recurrent
connections in the local network in the primary visual cortex. 

The model assumes that contrast discrimination is mediated by a
local cortical column consisting of two interconnected subpopulations
of excitatory and inhibitory neurons9 (Fig. 4). The activity of the
excitatory (E) and the inhibitory (I) subpopulations is determined by
the external feedforward inputs (e and i, respectively), which increase
with the stimulus contrast (C), and by the strength of recurrent inter-
actions in the local network (Js). Moreover, sensory input from the eye
is divided by a fixed proportion between the two populations (i�ke;
where the constant k does not depend on the contrast).

The contrast discrimination threshold is controlled by the steepness
of the relationship between the activity (E) and the contrast; that is, by
contrast sensitivity. The synaptic learning rule chosen guarantees the
convergence of the synaptic strengths to an equilibrium level after
repeated presentations of the stimulus. This equilibrium depends on
the way the inputs are divided between the populations (that is, on the
value of the constant k), but not on the contrast of the stimulus. So, after
the stimulus is seen many times, the network adapts to its configuration
and terminates the synaptic modifications. However, surrounding the
target stimulus with flankers may rekindle the modifications if the
additional input to the target, mediated by intracortical connections, is
divided differently between the two populations (that is, if it has a
different value for k). To explain the psychophysical results Adini et al.7

assumed that in the presence of flankers the intracortical input is biased
in favour of the inhibitory component more than the feedforward
input. If this is the case, practicing the contrast discrimination task in
the presence of flankers leaves the local network with higher contrast
sensitivity than before practice.

An attractive feature of Adini et al.’s7 model is that it does not
require a feedback teaching signal because synaptic modifications are
activity-dependent in a hebbian sense. (A hebbian rule of synaptic
modification refers to the idea that synapses between neurons that

are simultaneously active become stronger.) However, the model
cannot easily account for the task-specificity of perceptual learning.

The problem of having perceptual learning affect general processing
mechanisms is shared by any model of perceptual learning based on
activity-dependent modifications in the lateral connections in the
primary sensory areas10. A further example is Teich and Qian’s11 model
of learning orientation discrimination. The goal of this model was to
propose a mechanism for experimentally observed changes in
orientation tuning of monkey V1 cells that are specific to the trained
orientation12. (The model is based on the well-studied recurrent model
of orientation selectivity proposed in refs 13–15.) Teich and Qian11

demonstrate that observed changes in orientation tuning are repro-
duced in the model if intracortical excitatory connections to cells at
and near the trained orientation weaken slightly as a result of learning.
In particular, the tuning curves of cells (neurons’ responses as a func-
tionof a change in the stimulus) whose preferred orientation is near the
trained one becomes sharper, in contrast to the broadened tuning
curves of cells whose preferred orientation is farther away from the
trained one.Similar manipulations, but ones that involve weakening of
both excitatory and inhibitory connections around the trained
orientation, lead to effects that are observed during the so-called tilt
illusion and adaptation experiments16,17, including iso-orientation
inhibition and changes in orientation tuning bandwidth. These two
modifications in tuning lead to opposite effects on the orientation
discrimination at the trained or adapted orientation (improvement for
learning and deterioration for adaptation). An important issue for
future studies on synaptic plasticity and its relationship to perceptual
learning is the incorporation of mechanisms that guarantee synaptic
modifications that lead to improvement in performance during
training. Indeed, we know of only one report of practice-induced
deterioration in performance18, which indicates that in general, prac-
tice leads to an improvement in performance.
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Figure 2 Three-layer feedforward network model of a vernier hyperacuity task.
Subjects are required to detect the spatial displacement between the two line
segments shown in a, superimposed on the receptive fields of the input gaussian
filters. The network is shown in b. Gaussian filters transform any input pattern into a
vector of activity levels by convolving the input with the corresponding receptive field
profiles: xi�G�(r�ri )*I (r ), where I (r ) is an amplitude of a visual input at retinal
location r and ri is the centre of the corresponding receptive field. The next layer of
the network is a set of radial basis functions (RBFs), each computing the weighted
distance between the input vector and a certain template vector that is unique for
each function: ya�G (��x�ta��W), where ��x�ta��W �(x�ta )TWTW (x�ta ) is the
weighted distance between the input vector and the template for the function. W
denotes the vector of corresponding weights. Finally, the output of the module is
computed as a linear combination of the radial basis functions with coefficients:

z��
a

caya. This output value determines the perceptual decision, for example,

positive and negative values of z are interpreted as opposite senses of the vernier

displacement. Adapted from ref. 5. 
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Figure 3 A schematic representation of a cortical column, consisting of two
interconnected excitatory (E ) and inhibitory (I ) subpopulations, with modifiable
intrinsic connections — used here to model contrast discrimination. Both E and
I populations receive external input from the thalamus (e,i respectively ) and
from within the cortex (�e, �i ) when surrounding stimuli are present. Thalamic
input increases with contrast but the ratio between e and i remains fixed (k =
constant). The resulting network activity also increases with contrast. Assuming
the threshold-linear gain functions for both subpopulations, their activity is given
by: 

E�e ; I�e 

(see ref. 8 for more details). J refers to a strength of corresponding connections. 
The form of the contrast sensitivity in the network is therefore determined by 
the feedforward input e, with network interactions providing additional scaling factors.
The equilibrium strength of intrinsic connections reached after repeated presentation of
the central stimulus alone depends on k but not on the stimulus contrast.
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Combined models
Zhaoping et al.4 proposed a model that combines both recurrent and
feedforward learning. This model aims to explain the ability of
observers to solve a bisection task with very high precision. Zhaoping
and colleagues4 demonstrate that a linear feedforward mechanism
can account for the observed performance provided that the retinal
position of the stimulus array is fixed. This condition, however, is too
restrictive. First, experimentally, the effects of learning persist when
the stimulus is presented up to several degrees away from the trained
position. Second, fixation errors, eye tremor and microsaccades are
inevitable over the course of the experiment. As shown by Zhaoping
et al.4, these uncertainties in the exact position of the stimulus lead to
a very poor performance of the purely feedforward read-out
mechanism. Zhaoping and colleagues propose that this problem can
be rectified if the stimulus undergoes recurrent pre-processing based
on the horizontal connections in the primary visual cortex. The
pattern of this connection has to be chosen in a way that is highly
specific to the particulars of the task, such as the range of stimulus
array positions and the distance between the stimulus components. If
this is done, the bumps of activity that are evoked by each bar of the
stimulus are shifted laterally in such a way as to facilitate the consequent
perceptual decision mediated by the feedforward mechanism that
reads out the activity in the primary visual cortex.

Although recurrent networks provide a more realistic setting as a
substrate for perceptual learning, training them to produce an
optimal performance on a task is in general an unsolved problem. An
interesting approach has recently been proposed by Seung19, which
applies the well-known reinforcement learning algorithm20 to bio-
logically realistic neural networks. The learning algorithm derived by
Seung19 uses the stochastic nature of the synaptic transmission,

which is mediated by probabilistic release of neurotransmitter.
According to this algorithm, connections that show a consistent
correlation between the neurotransmitter release and good overall
performance of the network on the task are ‘rewarded’ by having their
release probabilities increased. Importantly, this idea can be applied
to networks with arbitrary architectures, having both feedforward
and recurrent elements. However, reaching an optimal performance
is crucially dependent on the global evaluation signal (reward) that is
available to the synaptic connections in the network.

Real brains’ challenges to models
Perceptual learning is highly specific
If a subject is trained on a discrimination task at one location in space,
the improvement in performance is relatively specific for that location
and does not transfer to other locations in the sensory map. For
example, training a subject on a three-line bisection task leads to
improvement at the trained location, but the degree of transfer drops
off as the visual stimulus is shifted to locations up to 8� away, and there
is no transfer when the stimulus is shifted to the opposite hemifield.
The training is also specific to the orientation of the trained stimulus.
This suggests the involvement of early stages in cortical processing
(such as primary visual cortex, V1), where the receptive fields are
smallest, the visuotopic maps most highly organized, and the
orientation selectivity sharpest21. However it is interesting to note that
the degree of transfer observed is larger than the receptive fields in V1.
This amount of spread of learned information should inform the
implementation of computational models of learning.

Perceptual learning is also specific for context and the
configuration of the stimulus learned in training. For example,
training on a three-line bisection task (Fig. 1) does not transfer to a

vernier discrimination task. In both tasks the target of
the discrimination has the same visual field position
and orientation, and the trained attribute (position)
is also the same.But in one task the context is two side-
by-side flanking parallel lines and in the other it is two
lines that are collinear with the target. Contextual
specificity has been seen in other forms of perceptual
learning, such as depth discrimination22. It is worth
noting, however, that nonspecific effects of perceptual
learning on the basic representations within an adult
visual system have recently been reported for amblyopic
patients23. But the more general rule is that learning
on one task only shows transfer to another task to the
degree that both tasks have elements in common.
Further work is needed to determine — when 
training in discriminating multiple stimuli — which
components of these stimuli are employed for making
the discrimination. Models will assume greater
importance in guiding these studies by showing which
features are most useful for recognition systems to
generalize to novel stimuli24.

The observed task specificity of perceptual learning
poses a serious challenge to models based on changes
in the wiring of neural circuits in the primary sensory
areas. This is because task specificity should lead to
some general effects on sensory processing in the
particular domain that is affected by training. An
exciting possibility that could explain the relative
absence of cross-talk could be a task-dependence of
the lateral interactions in the sensory areas. Indeed,
after a monkey was trained on a three-line bisection
task, the modulation of the cell’s response to a line
segment within the receptive field by a second parallel
line, placed outside the receptive field, differed
depending on whether the monkey was tested on the
trained task or on an unrelated fixation or vernier
discrimination task25,26.
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Figure 4 Learning on a texture discrimination task. a, The subject views a pattern of lines and has to
detect the orientation of a series of lines that are presented at a different orientation from the background
lines (top). The stimulus array is followed by a ‘mask’ (bottom) after different delays (SOA or stimulus
onset asynchrony). b, Improvement is measured as a shortening of the delay time to mask presentation
that still allows 80% of correct responses. c, Performance has an initial quick phase of improvement
within a few daily sessions, followed by a slower rate of improvement over a period of 10–15 sessions.
The obtained level of improvement is almost entirely preserved for up to 22 months after the experiments
were done. Adapted from ref. 38.
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This degree of specificity also has important implications for the
way in which acquired information is represented in the cortex. A
suggested mechanism is referred to as ‘cortical recruitment’. This
involves an increase in the area of cortex representing the trained
location. Experiments demonstrating this phenomenon were done
in the somatosensory and auditory systems27,28. However, even here
other cortical changes seem to correlate better with the improvement
in performance. These include a change in the temporal characteristics
of neuronal responses, with a more reliable entrainment of the
response to the periodicity of the stimulus29. In the visual system no
such cortical magnification has been observed25. It is still unclear
whether there are differences between results from the visual com-
pared to other sensory systems, although there are some differences
in the experimental designs used. For example, in the visual studies
emergent properties of cortex are associated with training, whereas
in the somatosensory and auditory systems properties of the cortical
inputs are involved. Modelling the cortical changes underlying
perceptual learning must allow for the specificity of learning for the
trained stimulus. Moreover, these models must be consistent with
the finding that training on one stimulus at one location does not
produce a degradation in performance when discriminating other
stimuli at other locations.

Time course of perceptual learning
An important component of models of perceptual learning is the rate
at which learning occurs. As shown below, in some experiments there
is an initial period of fast learning, which is then followed by a much
slower rate of improvement (see Fig. 4). Several neural network models
are able to reproduce this behaviour, albeit by using different mech-
anisms. In the feedforward network of Poggio et al.5 (Fig. 3), during
the first phase of learning new units are added to the intermediate
layer of the network, ensuring the coverage of all the space of possible
input patterns. As a result, the classification error rate comes within
10% of its asymptotic value after just several examples. This is followed
by a later, slower phase of learning during which the architecture of
the network remains fixed but the parameters of the network slowly
adapt to their optimal values. This leads to incremental improvement
in performance. In neural terms, the first phase could correspond to
the recruitment of neurons in intermediate levels of visual processing
which would represent the stimuli encountered by observers at the
beginning of practice. In Zhiaoping et al.’s4 model (which combines
both recurrent and feedforward mechanisms) two phases of learning
could correspond to differing speeds of modification in the corres-
ponding connections.

Perceptual learning requires repetition but not feedback
The improvement in performance seen in perceptual learning is
proportional to the number of trials taken, although performance
eventually asymptotes to a point beyond which additional trials make
no further difference. During a discrimination task improvement is
seen even in the absence of a reward or any indication that the correct
response was made. Nevertheless, brain reward systems have been
shown to have a role in perceptual learning. One of the sources of
reward in the brain is thought to be the cholinergic input from the
nucleus basalis. Pharmacological blockade of the cholinergic input can
inhibit, and stimulation of the nucleus basalis can promote, perceptual
learning30,31. So, it is possible that mere performance of the task has an
implicit reward associated with it, even when a reward is not given in
every trial. Although learning can occur in the absence of feedback,
feedback can facilitate learning. Moreover, feedback that is un-
correlated with the response disrupts learning. But the nature of
effective feedback is interesting, because block feedback (that is,
feedback after several trials, so in response to a certain percentage
correct after a number of presentations) is as effective as trial-by-
trial feedback6. 

These observations put obvious constraints on the feedforward
networks with supervised learning, in which feedback is usually

implemented as a ‘teaching’ signal that is required for the correct
change in the strength of synaptic connections32. An interesting mod-
ification of supervised models of perceptual learning is that proposed
by Herzog and Fahle33. The main innovation of this model is that an
internal evaluating feedback signal is used to guide selective con-
nections between the input units of the model and the next network
layer. Internal feedback is estimated as a difference between the
responses of the output units to inputs that have to be discriminated.
Learning then selectively inhibits the feedforward connections that
are not providing the signal required to increase the evaluated
performance (a process called gating; see refs 34, 35 for similar ideas).
Unsupervised learning algorithms in feedforward networks have also
been proposed36,37.

Longevity of perceptual learning
A striking long-term stability of the improvement in performance is
observed in certain tasks. For example, in Karni and Sagi’s experi-
ments on texture discrimination38 subjects achieved a significant
improvement in performance over four to five days. However, once
subjects learned the task, they maintained their improved level of per-
formance for at least three years without needing further practice.
This observation particularly challenges any model that is based on
activity-dependent synaptic plasticity in the sensory areas. Obviously,
neurons in these areas are constantly responding to a continuous
stream of sensory inputs that should, with time, wipe out specific
traces produced by training. A possible explanation for long-term
improvement could be that a certain fraction of synaptic connections
becomes resilient to modification as a result of perceptual learning
(see review in this issue by Abbott and Regehr, page 796). Alternatively,
training on one task could affect a small subset of inputs that are only
engaged when that task is performed. Even if the same cells participate
in different tasks they may engage different inputs. This would
minimize negative interference in the traces produced by training on
the different tasks. Understanding the causes for the striking longevity
of perceptual learning and its dependence on the parameters of practice
protocols may be an important step towards elucidating the process of
consolidation of long-term memories in general.

Perceptual learning involves top-down influences
In most instances of perceptual learning the subject must attend to
the trained stimulus for improvement to occur39,2, although some
studies have suggested that learning can occur in the absence of
attention40,41. This is one form of evidence for the role of top-down
influences in learning; that is, for the regulation of information-
encoding in lower-order cortical areas by higher-order areas. The
top-down signal may be carried by cortical feedback connections. A
generally accepted view of pathways of connectivity between cortical
areas is that of a hierarchy which starts from primary sensory cortex
and proceeds up to the highest areas encoding the most complex
information. For every forward connection in this pathway, however,
there is a reverse or feedback connection. The role of cortical feed-
back is little understood, but increasing evidence for attentional
influences at early stages suggests that feedback may be involved in
transmitting this kind of cognitive control. The attentional signal
may have a role both in the ongoing processing of sensory information
and in the encoding of learned information. A recent study has
shown that the top-down influence can be extremely specific to
different discrimination tasks at the same visual location. In these
experiments, neurons in V1 changed their functional properties
according to the task being performed, and these properties were
only present when the animal was performing the trained task26. So,
there is a long-term change in function associated with the period of
training (which can take place over many weeks), and a short-term
switching between different functional states as the subject shifts
from one trained task to another. The same top-down influences or
feedback circuits involved in regulating the encoding of learned
information may also be involved in its recall.
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An appealing hypothesis, from a theoretical point of view, assigns
to the feedback influences the role of transmitting to primary cortical
areas signals that reflect the expectations of the sensory inputs. These
signals are based on the internal representation of the sources of these
inputs42. The neurons in the lower areas then respond to the deviations
of the actual sensory inputs from the predicted ones. For this predic-
tive coding system to work well it has to learn the statistical regularities
in the sensory environment. This kind of model has not yet been
directly applied to perceptual learning, and no direct experimental
evidence for the effect of internally generated expectations on the
neural responses in the primary sensory areas is currently available.
Although there is no evidence that early sensory areas respond to
deviations — instead they carry information more fully related to the
stimulus — their tuning is clearly modulated by top-down influences
of attention, expectation and perceptual task. Models that incorpor-
ate top-down interactions for both encoding and recall will assume
increasing importance as experimental results provide further
evidence for these interactions.

Cortical representation associated with perceptual learning
There is considerable debate concerning which cortical areas
represent the higher order properties associated with contextual
influences, and which circuits carry these influences (including
intrinsic circuits within individual cortical areas and feedback con-
nections to those areas). Even so, it is becoming increasingly clear that
many areas, including primary sensory cortex, show functional
changes that reflect learned information. The notion that different
cortical areas specialize in particular kinds of information will probably
change, for several reasons. As supported by both psychophysical and
fMRI studies, the strategies that the brain uses for object recognition
change depending on the degree of familiarity the subject has with
the object. Learning to identify an object is associated with global
changes in the representation of information across the cortical
sensory pathway (Sigman et al., submitted). Moreover, the act of
object recognition does not involve a single cortical area but an inter-
action between multiple cortical areas and between forward, intrinsic
and feedback circuits43,26 (also Sigman et al., submitted). This of
course creates a formidable challenge in terms of creating models that
can replicate the multiple levels at which information can be rep-
resented in the cortex.

Rules of plasticity
The most generally accepted view of plasticity at the synaptic level is
that, with coincidence in the activation of the presynaptic terminal
and the postsynaptic cells, the synapses involved become
strengthened44. This hebbian rule is dealt with in more detail else-
where in this issue (see review in this issue by Abbott and Regehr, page
796). But this rule has profound implications at the systems level,
although some experimental results suggest that this rule does not
operate exclusively. A fundamental question is whether sensory
systems are designed to pick out exceptions in the environment, or to
identify common coincidences. Coincidences or correlations in the
environment can be represented at the level of correlations in
neuronal firing, which then leads to synaptic strengthening.
Information theoretic considerations, on the other hand, suggest
that sensory systems are designed to pick up exceptions or changes in
the environment (for example, the presence of a surface edge as
opposed to the continuation of a uniform surface). Similar to JPEG
compression, this would suggest that to carry the maximum amount
of information along a limited number of channels (the optic nerve,
for example), the functional properties of neurons have to be as
distinct from one another as possible. This requires ‘decorrelation’ of
their function, which suggests the need for an ‘anti-hebbian’ rule of
plasticity45.

A particular form of synaptic plasticity combining hebbian and
anti-hebbian rules in a way that is motivated by recent studies on
spike-time-dependent synaptic plasticity46,47 was proposed by Adini

and colleagues37. Here, the learning rule chosen guarantees the con-
vergence of the synaptic strengths to an equilibrium level after
repeated presentations of the stimulus. However, synaptic modification
restarts when the stimulus changes. This property could account for
the saturation of perceptual learning after repeated practice. The
perceptual task that was studied — contrast discrimination — seems
to be saturated when it is performed on a wide range of contrasts, but
not when a single contrast, or a few contrast levels in a fixed order are
presented (see refs 48, 49 for a recent debate on this issue). When the
stimulus configuration is changed during practice by adding sur-
rounding components, Adini et al.7,49 observed an improvement in
performance that was to a large degree independent of uncertainty in
the stimulus contrast, in accordance with the above-mentioned
feature of the learning rule.

Neuronal changes associated with perceptual learning
Various experimental observations, and computational models, have
revealed changes in functional properties at the neuronal level that are
associated with perceptual learning. These include changes in the
tuning of neurons to the trained attribute. Steepening of the slope of
the tuning curve reduces the threshold at which neurons show
significant differences in response, and therefore the threshold
required for discrimination11,12 (although others have failed to find
such a change50). This in effect leads to a reduction in the number of
neurons responding to the stimulus, contrary to the observed increase
in response in the cortical area representing the trained stimulus.
Changes have been observed in the timing and reliability of neuronal
responses, which represents an increase in signal to noise. This also
leads to a reduction in the threshold at which there are significant
changes in response. Along with improvement in discrimination of
more complex forms, neurons show changes in contextual tuning.
This is the way in which the elements of a complex stimulus interact, in
terms of neurons’ responses, as the stimulus configuration is changed.

Outlook
Many facets of perceptual learning have been successfully reproduced
in simple, but plausible, neural network models. These models
provide important insights into possible mechanisms which can
then be tested experimentally. But, so far, these models are far too
specific to provide a full account of the phenomenology of perceptual
learning. As a result, they do not support a more general understanding
of the neuronal processes underlying early stages of information
processing. What is needed is a combination of feedforward models
with models based on lateral feedback and top-down influences
representing the task, expectations, attention and signals controlling
synaptic modification. Future work will have to increasingly include
details of the biophysical mechanisms of synaptic learning in
cortical networks. ■■
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