
Computational Psychiatry Rising
 

(on the shoulder of reinforcement learning and 
decision making models)

What are the big problems that neuroscience could solve?

• mood disorder (Depression, Bipolar ..) : ~ 10% of the population (at 
some point in life) in US
• anxiety disorder (Panic, OCD, PTSD): ~18% of the population
• addiction: alcohol ~ 10% of the population (at some point in life)
• eating disorder (Anorexia, Bulimia): ~ 4 %
• ADHD:  ~4 % (adults)

[NIMH]

•  drugs often work poorly
• precise mechanisms of action unknown
• computational neuroscience very poorly represented in psychiatry in 
the past (often not at all) 
-- partly due to nomenclature of psychiatric diseases based on qualitative 
concepts, incompletely tied to neuroscientific foundations

New hopes

•  but this is changing.

• a new approach: seek a firmer foundation of the science of decision 
making

• pioneers : P. Dayan, Q. Huys, T. Braver., J. Cohen, M. Frank, S. Kapur, 
R. Montague, D. Pizzagali, K. Stephan, D. Steele, J. Williams, D. Redish 
and others ...

• “hope of a specific and quantitative anatomy of normal and abnormal 
function along with the prospect of rigorous tests for each underlying 
defect”.

The 4 Main Neuromodulators



The 4 Main Neuromodulators: critically involved in 
Major Psychiatric Disease

• Dopamine (DA) involved in Parkinsonsʼ, Schizophrenia,  Addiction,

• Serotonin (5HT) involved in Depression, OCD,  Eating disorders

• Acetylcholine (ACh) involved in Alzheimerʼs Disease

• Norepinephrine (NA) involved in ADHD, Depression

Yet How Neuromodulation influences Neural Activity is very poorly 
understood.

Drug Addiction as abnormal decision making 

 Addiction

A chronically relapsing disorder that is characterised by : 
  (i) compulsive drug seeking and taking
  (ii) inability to limit the intake of drugs
 (iii) emergence of a withdrawal syndrome during cessation 
of drug taking

Goal of neuroscience: understand the cellular & molecular 
mechanisms that mediate transition between occasional 
controlled drug use and loss of behavioural control over 
drug seeking and taking

a promising field for modeling, building on models of 
decision making and reinforcement learning. 

Systems involved: the reward system
Neuron
468

and stereotypy (Giros et al., 1996). However, such dopa-Table 1. Neurobiological Substrates for the Acute Reinforcing
mine transporter–deficient mice still could be trained toEffects of Drugs of Abuse
self-administer cocaine despite persistently high levels

Drug of Abuse Neurotransmitter Sites
of extracellular dopamine in dopaminergic terminal

Cocaine and Dopamine Nucleus accumbens fields, suggesting a more complex basis for the psycho-
amphetamines Serotonin Amygdala stimulant reinforcement (Rocha et al., 1998). Besides

Opiates Dopamine Ventral tegmental area inhibiting the dopamine transporter, psychostimulants
Opioid peptides Nucleus accumbens

also inhibit the reuptake of serotonin and noradrenaline,Nicotine Dopamine Ventral tegmental area
which may contribute to their reinforcing actions possi-Opioid peptides? Nucleus accumbens

Amygdala? bly in part by modulating dopamine neurotransmission
THC Dopamine Ventral tegmental area (Parsons et al., 1995; Tanda et al., 1997b).

Opioid peptides? Much like psychostimulants, opiate drugs are readily
Ethanol Dopamine Ventral tegmental area self-administered intravenously by animals, and the sys-

Opioid peptides Nucleus accumbens
temic and central administration of competitive opiateSerotonin Amygdala
antagonists will decrease opiate reinforcement (re-GABA

Glutamate viewed by Koob and Bloom, 1988; Di Chiara and North,
1992). The reinforcing actions of opiates appear to be
largelymediatedby the�opioid receptor since selective

the dopamine fibers of the region of the nucleus accum- � antagonists decrease opioid reinforcement in a dose-
bens (Roberts et al., 1980). Multiple receptor subtypes dependentmanner (Negus et al., 1993). In addition,mor-
exist for transducing the increase in extracellular dopa- phine reinforcement is abolished inmice with a targeted
mine induced by psychomotor stimulants into behav- disruption of the � opioid receptor gene (Matthes et al.,
ioral action. Antagonists for the dopamine D1, D2, and 1996).
D3 receptor subtypes all decrease the reinforcing prop- The reinforcing properties of opiates utilize the same
erties of cocaine (Woolverton and Johnson, 1992; Caine circuitry implicated in the actions of cocaine and am-
et al., 1995; Koob and Le Moal, 1997; Epping-Jordan et phetamine stimulants but may involve additional sites
al., 1998a). of interaction (Koob and Bloom, 1988) (Table 1). Block-
The neuronal interaction responsible for cocaine rein- ade of opioid receptors either in the VTA or the nucleus

forcement and the motivation to seek the drug appears accumbens will decrease heroin self-administration.to reside within the nucleus accumbens (Chang et al., Furthermore, rats will lever press to administer opioid
1994; Carelli and Deadwyler, 1996; Peoples et al., 1997). peptides in their nucleus accumbens or VTA, and opiateElectrophysiological recordings in animals receiving in-

administration into these restricted brain regions willtravenous cocaine by self-administration have identified
reinforce drug-seeking behavior (reviewed by Di Chiaraseveral patterns of neuronal responses in the nucleus
and North, 1992; Shippenberg et al., 1992). Opiates, likeaccumbens, all time-locked to the self-administered
other drugs of abuse, increase dopamine release in thedrug infusion. One group of neurons fires just before
nucleus accumbens (Di Chiara and Imperato, 1988;Pon-the lever press, and this anticipatory response may be
tieri et al., 1995) (see below). However, the reinforcingan initiation or trigger mechanism. A second group of
effect of opiates in the nucleus accumbens persistsneurons appears to change firing rate only after the
when all dopamine projections there are destroyed, sug-cocaine infusion, and these neurons may represent the
gesting that their reinforcing actions may involve bothdirect effects of reinforcement (Carelli and Deadwyler,
a dopamine-dependent (VTA) and a dopamine-inde-1996). Other neurons fire in proportion to the interinfu-
pendent (nucleus accumbens) mechanism (Koob andsion interval between consecutive self-administration
Bloom, 1988).responses (Peoples and West, 1996). However, there
Sedative-hypnotics, including ethanol, are thought toappears to be a fourth type of neuronal firing pattern

produce their reinforcing actions through multiple neu-unique to cocaine self-administration; these “cocaine-
rotransmitter systems (Engel et al., 1992) (Table 1). Onespecific cells” fire both before and after the cocaine-
of the major sites proposed for ethanol reinforcementreinforced response (Carelli and Deadwyler, 1996). Even
is modulation of GABA receptors (Liljequist and Engel,more intriguing is the observation that this subset of
1982; Samson and Harris, 1992). GABA antagonists re-neurons also fires to sensory stimuli (sounds or lights)
versemanyof the behavioral effects of ethanol (Liljequistthat have been experimentally paired with cocainedeliv-
and Engel, 1982; Samson and Harris, 1992). Further-ery. Nucleusaccumbens neuronsmay thereforemediate
more, the benzodiazepine R0 15–4513 (termed an in-conditioned drug responses (Carelli and Deadwyler,
verse agonist because it produces effects opposite to1996). Similarly, conditioned sensory stimuli are strong
those of typical benzodiazepines) will reverse some ofelicitors of “craving” in cocaine-taking humans.
the behavioral effects of ethanol, and dose-dependentlyRecent studies using recombinant DNA techniques to
reduces oral ethanol self-administration in rats (Samson“knock out” specific genes involved in dopaminergic
and Harris, 1992). When potent GABA antagonists areneurotransmission may provide evidence of some re-
microinjected into the brain, the most effective site todundancy in the neurochemical basis of cocaine rein-
reduce ethanol consumption is the central nucleus offorcement. In a mouse strain in which the gene for the
the amygdala (Hyttia and Koob, 1995).dopamine transporter was disrupted by homologous re-
Ethanol reinforcement also appears to involve activa-combination, psychostimulants failed to alter baseline

tion of brain dopamine systems. Acutely, ethanol con-extracellular dopamine levels and failed to induce be-
havioral effects such as enhanced locomotor activity sumption or systemic injection reduces the firing rate

•  mesolimbic dopaminergic system - 
increase of dopamine release

• mesolimbic DA system: originates in the 
ventral tegmental area (VTA) of the 
midbrain, and projects to the nucleus 
accumbens (NA - ventral striatum). 
The amygdala (A), hippocampus (HC) 
and medial prefrontal cortex (PFC) send 
excitatory projections to the nucleus 
accumbens.

• drug seeking behaviour induced by 
glutamatergic projections from the 
prefrontal cortex to the NAc. 



Why making a maladaptive choice over and over again? 
Theories of addiction

• In the past 30 years, lots of theories 
• e.g.
- compulsion zone : self administration is automatically induced when brain cocaine 
levels within a specific range.
- set point model (or allostasis): goal = adjust sensitivity of brain reward system to set 
level, by increasing tonic dopamine
- opponent process theory: drug addiction = result of emotional pairing between 
pleasure and symptoms of withdrawal. Motivation is first related to pleasure, and 
then to relief from withdrawal.
- impulsivity.

• recently, addiction as a vulnerability in the decision process -- inspiration from 
reinforcement learning

TD learning  -- 101

ADR Computational processes of addiction

Discounting parameter uniform distribution, 0 001 γ 0 999
Number of Agents 1000
Learning rate (η) 0.05
Softmax selection parameter (m) 4

TABLE S1: Parameters used in all simulations.

Simulation details: Selection of drug-reward over non-drug reward
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FIGURE S1: State space for selection simulations.

Simulations were based on the 6-state world-model (Figure S1). The five main states S0 S1 S2 S3 S4

were fully observable (providing unique observations O0 O1 O2 O3 O4 respectively); the ITI state was

implemented as 1000 identical states, each providing observation O5. At the beginning of each simu-

lation, the agent began in state S0. The agent remained in state S0 until it took an action. On taking

action a1, the world changed to state S1, where it remained for 3 time-steps, after which it provided a

reward R S3 to the agent. On taking action a2, the world changed to state S2, where it remained for

3 time-steps, after which it provided drug R S4 D S4 to the agent. After 1 time-step in either state

S3 or S4 (as appropriate) the world entered the ITI state. Actually, the world entered one of the 1000

possible ITI states, but the agent distributed it’s belief across those states. After 20 time-steps, the world

transitioned to state S0.

This world-model simulates a standard two-lever choice paradigm in which an agent must push one

lever to receive food reward and one lever to receive drug, each of which is delivered as appropriate

after a short delay. The ITI state models the agents lack of knowledge about inter-trial intervals and

provides for more realistic simulations in the Agent model (S13).

All non-reward related parameters were held constant. Figure 1 in the main paper shows how the

probabilty of selecting the drug-reward depended on number of times the agent reached the drug-receipt

state (S4) and on the size of the contrasting reward R S3 . The selection probability also depended

on the size of the drug reward R S4 D S4 . For the figure in the main paper, R S4 1 0 D S4
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•  world is made of states, actions and rewards;
actions are selected so as to maximize future 
rewards.
• states are associated with value functions 
defined as expected future reward

Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in

Department of Neuroscience, 6-145 Jackson Hall, 321
Church Street SE, University of Minnesota, Minneap-
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•  Goal of TD learning : correctly learn the values. To do this, iteratively use the 
difference between expected and observed change in value -- the prediction error:

Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in

Department of Neuroscience, 6-145 Jackson Hall, 321
Church Street SE, University of Minnesota, Minneap-
olis, MN 55455, USA. E-mail: redish@ahc.umn.edu

R E P O R T S

10 DECEMBER 2004 VOL 306 SCIENCE www.sciencemag.org1944

 o
n

 J
u

ly
 8

, 
2

0
0
8

 
w

w
w

.s
c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d
e

d
 f

ro
m

 

Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in
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•  Value is then updated using:

• Once the value correctly predicts the reward, learning stops.
• a powerful learning algorithm in machine learning

Phasic dopamine signals prediction error 

• the “largest success of 
computational neuroscience” [Niv]

•  Monkeys underwent simple 
instrumental or pavlovian 
conditioning
• disappearance of dopaminergic 
response at reward delivery after 
learning, in VTA and SN.
• if reward is not presented, 
response depression below basal 
firing at expected time of reward.
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A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, and manipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

An adaptive organism must be able to
predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
ture ascribes to an object, a behavioral act,

or an internal physical state. The function
of reward can be described according to the
behavior elicited (2). For example, appeti-
tive or rewarding stimuli induce approach
behavior that permits an animal to con-
sume. Rewards may also play the role of
positive reinforcers where they increase the
frequency of behavioral reactions during
learning and maintain well-established ap-
petitive behaviors after learning. The re-
ward value associated with a stimulus is not
a static, intrinsic property of the stimulus.
Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

An adaptive organism must be able to
predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
ture ascribes to an object, a behavioral act,
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of reward can be described according to the
behavior elicited (2). For example, appeti-
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behavior that permits an animal to con-
sume. Rewards may also play the role of
positive reinforcers where they increase the
frequency of behavioral reactions during
learning and maintain well-established ap-
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ward value associated with a stimulus is not
a static, intrinsic property of the stimulus.
Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in
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Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:
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Z V
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gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in

Department of Neuroscience, 6-145 Jackson Hall, 321
Church Street SE, University of Minnesota, Minneap-
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value in taking action Sk Y
ai

Sl counter-
balances the reward achieved on entering
state Sl. When this happens, d 0 0. Taking
transient dopamine as the d signal (4, 5, 7)
correctly predicted rewards produce no do-
pamine signal (16, 17).

However, cocaine and other addictive drugs
produce a transient increase in dopamine
through neuropharmacological mechanisms
(1, 2, 8). The concept of a neuropharmaco-
logically produced dopamine surge can be
modeled by assuming that these drugs induce
an increase in d that cannot be compensated by
changes in the value (19). In other words, the
effect of addictive drugs is to produce a
positive d independent of the change in value
function, making it impossible for the agent to
learn a value function that will cancel out the
drug-induced increase in d. Equation 2 is thus
replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(Sl) indicates a dopamine surge oc-
curring on entry into state Sl. Equation 4 re-
duces to normal TDRL (Eq. 2) when D(Sl) 0 0
but decreases asymptotically to a minimum d
of D(Sl) when D(Sl) 9 0. This always pro-
duces a positive reward-error signal. Thus,
the values of states leading to a dopamine
surge, D 9 0, will approach infinity.

When given a choice between two ac-
tions, S0 Y

a1 S1 and S0 Y
a2 S2, the agent

chooses actions proportional to the values of
the subsequent states, S1 and S2. The more
valuable the state taking an action leads to,
the more likely the agent is to take that
action. In TDRL, the values of states leading
to natural rewards asymptotically approach a
finite value (the discounted, total expected
future reward); however, in the modified
model, the values of states leading to drug
receipt increase without bound. Thus, the
more the agent traverses the action sequence
leading to drug receipt, the larger the value
of the states leading to that sequence and the
more likely the agent is to select an action
leading to those states.

In this model, drug receipt produces a d 9 0
signal, which produces an increase in the
values of states leading to the drug receipt.
Thus, the values of states leading to drug
receipt increase without bound. In contrast,
the values of states leading to natural reward
increase asymptotically to a value approxi-
mating Eq. 1. This implies that the selection
probability between actions leading to natu-
ral rewards will reach an asymptotic balance.
However, the selection probability of actions
leading to drug receipt will depend on the
number of experiences. Simulations bear this
out (Fig. 1).

In the simulations, drug receipt entails a
normal-sized reward R(s) that can be com-

pensated by changes in value and a small
dopamine signal D(s) that cannot (14). Early
use of drugs occurs because they are highly
rewarding (1, 3, 20), but this use transitions
to a compulsive use with time (1, 3, 20–22).
In the model, the R(s) term provides for the
early rewarding component, whereas the grad-
ual effect of the D(s) term provides for the
eventual transition to addiction. This model
thus shows that a transition to addiction can
occur without any explicit sensitization or
tolerance to dopamine, at least in principle.

The unbounded increase in value of states
leading to drug reward does not mean that
with enough experience, drugs of abuse are
always selected over nondrug rewards. In-
stead, it predicts that the likelihood of
selecting the drug over a nondrug reward
will depend on the size of the contrasting
nondrug reward relative to the current value
of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-
tween food and cocaine, the probability of
selecting cocaine depends on the amount of
food available as an alternative and the cost
of each choice (23, 24). Similarly, humans
given a choice between cocaine and money
will decrease their cocaine selections with
increased value of the alternative (25). This
may explain the success of vouchers in
treatment (25). This will continue to be true
even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate
should decrease with experience (see below).
This may explain the incompleteness of the
success of vouchers (25).

Natural rewards are sensitive to cost in
that animals (including humans) will work
harder for more valuable rewards. This level
of sensitivity is termed elasticity in econom-
ics. Addictive drugs are also sensitive to cost in
that increased prices decrease usage (26, 27).
However, whereas the use of addictive drugs
does show sensitivity to cost, that sensitivity
is inelastic relative to similar measures ap-
plied to natural rewards (26, 28). The TDRL
model proposed here produces just such an
effect: Both modeled drugs and natural
rewards are sensitive to cost, but drug reward
is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to
natural rewards decrease asymptotically to a
stable value that depends on the time to the
reward, the reward level, and the discounting
factors. However, in the modified TDRL
model, the values of states leading to drug
rewards increase without bound, producing a
ratio of a constant cost to increasing values.
This decreasing ratio predicts that the elas-
ticity of drugs to cost should decrease with
experience, whereas it should not for natural
rewards (fig. S4).

The hypothesis that values of states
leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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•  cocaine and other drugs produce a transient increase in dopamine
• idea: this dopamine surge induce an increase in prediction error δ that canʼt be 
compensated by changes in values.

 where D(Sl) indicates a dopamine surge occurring on entry into Sl.
Consequence: values of states leading to the drug increase without bound.



bound implies that the elasticity to cost
should decrease with use, whereas the
elasticity of natural rewards should not. This
also suggests that increasing the reward for
not choosing the drug Esuch as vouchers
(25)^ will be most effective early in the
transition from casual drug use to addiction.

The hypothesis that cocaine produces a
d 9 0 dopamine signal on drug receipt implies
that cocaine should not show blocking. Block-
ing is an animal-learning phenomenon in
which pairing a reinforcer with a conditioning
stimulus does not show association if the rein-
forcer is already predicted by another stimulus
(17, 29, 30). For example, if a reinforcer X is
paired with cue A, animals will learn to
respond to cue A. If X is subsequently paired
with simultaneously presented cues A and B,
animals will not learn to associate X with B.
This is thought to occur because X is com-
pletely predicted by A, and there is no error
signal (d 0 0) to drive the learning (17, 29, 30).
If cocaine is used as the reinforcer instead of
natural rewards, the dopamine signal should
always be present (d 9 0), even for the AB
stimulus. Thus, cocaine (and other drugs of
abuse) should not show blocking.

The hypothesis that the release of dopa-
mine by cocaine accesses TDRL systems
implies that experienced animals will show a
double dopamine signal in cued-response
tasks (14). As with natural rewards, a tran-
sient dopamine signal should appear to a
cuing signal that has been associated with
reward (16). However, whereas natural
rewards only produce dopamine release if
unexpected (16, 17), cocaine produces dopa-
mine release directly (8), thus, after learning
both the cue and the cocaine should produce
dopamine (Fig. 3). Supporting this hypothe-
sis, Phillips et al. (31) found by using fast-
scan cyclic voltammetry that, in rats trained
to associate an audiovisual signal with co-
caine, both the audiovisual stimulus and the
cocaine itself produced dramatic increases

in the extracellular concentration of dopa-
mine in the nucleus accumbens.

Substance abuse is a complex disorder.
TDRL explains some phenomena that arise
in addiction and makes testable predictions
about other phenomena. The test of a theory
such as this one is not whether it encom-
passes all phenomena associated with addic-
tion, but whether the predictions that follow
from it are confirmed.

This model has been built on assump-
tions about cocaine, but cocaine is far from
the only substance that humans (and other
animals) abuse. Many drugs of abuse indi-
rectly produce dopamine signals, including
nicotine (10) and heroin and other opiates
(11). Although these drugs have other effects
as well (1), the effects on dopamine should
produce the consequences described above,
leading to inelasticity and compulsion.

Historically, an important theoretical ex-
planation of addictive behavior has been that
of rational addiction (32), in which the user
is assumed to maximize value or Butility[
over time, but because long-term rewards for
quitting are discounted more than short-term
penalties, the maximized function entails re-
maining addicted. The TDRL theory proposed
in this paper differs from that of rational
addiction because TDRL proposes that addic-
tion is inherently irrational: It uses the same
mechanisms as natural rewards, but the sys-
tem behaves in a nonoptimal way because of
neuropharmacological effects on dopamine.
Because the value function cannot compen-
sate for the D(s) component, the D(s) com-
ponent eventually overwhelms the R(s)
reward terms (from both drug and contrast-
ing natural rewards). Eventually, the agent
behaves irrationally and rejects the larger
rewards in favor of the (less rewarding)
addictive stimulus. The TDRL and rational-
addiction theories make testably different
predictions: Although rational addiction pre-
dicts that drugs of abuse will show elasticity

to cost similar to those of natural rewards,
the TDRL theory predicts that drugs of
abuse will show increasing inelasticity with
use.

The rational addiction theory (32) as-
sumes exponential discounting of future
rewards, whereas humans and other animals
consistently show hyperbolic discounting of
future rewards (12, 13). Ainslie (13) has sug-
gested that the Bcross-over[ effect that occurs
with hyperbolic discounting explains many
aspects of addiction. The TDRL model used
here also shows hyperbolic discounting (14)
and so accesses the results noted by Ainslie
(13). However, in the theory proposed here,
hyperbolic discounting is not the fundamen-
tal reason for the agent getting trapped in a
nonoptimal state. Rather, the TDRL theory
hypothesizes that it is the neuropharmaco-
logical effect of certain drugs on dopamine
signals that drives the agent into the nonop-
timal state.

Robinson and Berridge (22) have sug-
gested that dopamine mediates the desire to
achieve a goal (Bwanting[), differentiating
wanting from the hedonic desire of Bliking.[
As noted by McClure et al. (15), Robinson
and Berridge_s concept of incentive salience
(22) has a direct correspondence to variables
in TDRL: the value of a state reachable by
an action. If an agent is in state S0 and can
achieve state S1 via action S0 Y

ai
S1 and if

state S1 has a much greater value than state
S0, then S0 Y

ai
S1 can be said to be a pathway

with great incentive salience. The value func-
tion is a means of guiding decisions and thus is
more similar to wanting than to liking in
the terminology of Robinson and Berridge
(15, 22). In TDRL, dopamine does not
directly encode wanting, but because learning
an appropriate value function depends on an
accurate d signal, dopamine will be necessary
for acquisition of wanting.

Many unmodeled phenomena play impor-
tant roles in the compulsive self-administration
of drugs of abuse (1), including titration of
internal drug levels (33), sensitization and
tolerance (34), withdrawal symptoms and
release from them (20), and compensation
mechanisms (35, 36). Additionally, individ-
uals show extensive interpersonal variability
(37, 38). Although these aspects are not ad-
dressed in the model presented here, many of
these can be modeled by adding parameters
to the model: for example, sensitization can
be included by allowing the drug-induced d
parameter D(s) to vary with experience.

TDRL forms a family of computational
models with which to model addictive
processes. Modifications of the model can
be used to incorporate the unmodeled exper-
imental results from the addiction literature.
For example, an important question in this
model is whether the values of states leading
to drug receipt truly increase without bound.
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Entry into reward state, S(1)
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Entry into ITI state
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Fig. 3. Dopamine signals. (Left) With natural rewards, dopamine initially occurs primarily at
reward receipt (on entry into reward state S1) and shifts to the conditioned stimulus [on entry into
interstimulus-interval (ISI) state S0] with experience. (State space is shown in fig. S7.) (Right) With
drugs that produce a dopamine signal neuropharmacologically, dopamine continues to occur at
the drug receipt (on entry into reward state S1) even after experience, as well as shifting to the
conditioned stimulus (on entry into ISI state S0), thus producing a double dopamine signal.
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Redish’s (2004) model

•  drug is hijacking the learning pathways, creating a prediction error 
where there should be none.

value in taking action Sk Y
ai

Sl counter-
balances the reward achieved on entering
state Sl. When this happens, d 0 0. Taking
transient dopamine as the d signal (4, 5, 7)
correctly predicted rewards produce no do-
pamine signal (16, 17).

However, cocaine and other addictive drugs
produce a transient increase in dopamine
through neuropharmacological mechanisms
(1, 2, 8). The concept of a neuropharmaco-
logically produced dopamine surge can be
modeled by assuming that these drugs induce
an increase in d that cannot be compensated by
changes in the value (19). In other words, the
effect of addictive drugs is to produce a
positive d independent of the change in value
function, making it impossible for the agent to
learn a value function that will cancel out the
drug-induced increase in d. Equation 2 is thus
replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(Sl) indicates a dopamine surge oc-
curring on entry into state Sl. Equation 4 re-
duces to normal TDRL (Eq. 2) when D(Sl) 0 0
but decreases asymptotically to a minimum d
of D(Sl) when D(Sl) 9 0. This always pro-
duces a positive reward-error signal. Thus,
the values of states leading to a dopamine
surge, D 9 0, will approach infinity.

When given a choice between two ac-
tions, S0 Y

a1 S1 and S0 Y
a2 S2, the agent

chooses actions proportional to the values of
the subsequent states, S1 and S2. The more
valuable the state taking an action leads to,
the more likely the agent is to take that
action. In TDRL, the values of states leading
to natural rewards asymptotically approach a
finite value (the discounted, total expected
future reward); however, in the modified
model, the values of states leading to drug
receipt increase without bound. Thus, the
more the agent traverses the action sequence
leading to drug receipt, the larger the value
of the states leading to that sequence and the
more likely the agent is to select an action
leading to those states.

In this model, drug receipt produces a d 9 0
signal, which produces an increase in the
values of states leading to the drug receipt.
Thus, the values of states leading to drug
receipt increase without bound. In contrast,
the values of states leading to natural reward
increase asymptotically to a value approxi-
mating Eq. 1. This implies that the selection
probability between actions leading to natu-
ral rewards will reach an asymptotic balance.
However, the selection probability of actions
leading to drug receipt will depend on the
number of experiences. Simulations bear this
out (Fig. 1).

In the simulations, drug receipt entails a
normal-sized reward R(s) that can be com-

pensated by changes in value and a small
dopamine signal D(s) that cannot (14). Early
use of drugs occurs because they are highly
rewarding (1, 3, 20), but this use transitions
to a compulsive use with time (1, 3, 20–22).
In the model, the R(s) term provides for the
early rewarding component, whereas the grad-
ual effect of the D(s) term provides for the
eventual transition to addiction. This model
thus shows that a transition to addiction can
occur without any explicit sensitization or
tolerance to dopamine, at least in principle.

The unbounded increase in value of states
leading to drug reward does not mean that
with enough experience, drugs of abuse are
always selected over nondrug rewards. In-
stead, it predicts that the likelihood of
selecting the drug over a nondrug reward
will depend on the size of the contrasting
nondrug reward relative to the current value
of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-
tween food and cocaine, the probability of
selecting cocaine depends on the amount of
food available as an alternative and the cost
of each choice (23, 24). Similarly, humans
given a choice between cocaine and money
will decrease their cocaine selections with
increased value of the alternative (25). This
may explain the success of vouchers in
treatment (25). This will continue to be true
even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate
should decrease with experience (see below).
This may explain the incompleteness of the
success of vouchers (25).

Natural rewards are sensitive to cost in
that animals (including humans) will work
harder for more valuable rewards. This level
of sensitivity is termed elasticity in econom-
ics. Addictive drugs are also sensitive to cost in
that increased prices decrease usage (26, 27).
However, whereas the use of addictive drugs
does show sensitivity to cost, that sensitivity
is inelastic relative to similar measures ap-
plied to natural rewards (26, 28). The TDRL
model proposed here produces just such an
effect: Both modeled drugs and natural
rewards are sensitive to cost, but drug reward
is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to
natural rewards decrease asymptotically to a
stable value that depends on the time to the
reward, the reward level, and the discounting
factors. However, in the modified TDRL
model, the values of states leading to drug
rewards increase without bound, producing a
ratio of a constant cost to increasing values.
This decreasing ratio predicts that the elas-
ticity of drugs to cost should decrease with
experience, whereas it should not for natural
rewards (fig. S4).

The hypothesis that values of states
leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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Fig. 2. Elasticity of drug receipt and
natural rewards. Both drug receipt and
natural rewards are sensitive to costs,
but natural rewards are more elastic.
Each dot indicates the number of
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were limited by simulated time. The
curves have been normalized to the
mean number of choices made at zero
cost.
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Redish’s (2004) model: predictions

•  With repeated experience, drug choice become 1) less sensitive to alternative 
non drug reinforcers [some evidence]; 2) more inelastic to costs [confirmed]
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Gutkin, Dehaene & Changeux (PNAS, 2006) 
model of nicotine addiction

• a circuit model, 3 time scales

• Nicotine, through action on nACHRs in VTA, 
evokes phasic DA signal and changes the gain 
of DA signaling: potentiates DA transmission.

• The phasic DA instructs learning of action 
selection. Tonic DA gates this process. 

• Slow onset opponent process decrease tonic  
DA neurotransmission to the point that 
extinction learning and response unlearning is 
impaired: routinized/ rigid behavior.
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Models of Addiction: Conclusions

• Redishʼs model, extensions  and RL framework
 -->  a new generation of models and model-driven experiments.

Lots of remaining challenges:
• addiction to ordinary rewards such as fatty foods, which unlike cocaine 
produce a dopamine signal that can be accommodated
• addiction to non-stimulant substances which depend less on mesolimbic 
dopamine (e.g. alcohol)
• describing withdrawal symptoms -- opponent mechanisms
• why do people want to get sober?
• why do people relapse?; accounting for effect of stress.
• vulnerability: only a minority of people become addicted -- while other 
people can enjoy casual use, why?



Serotonin, Inhibition and Negative Mood

P. Dayan & Q. Huys (2008)

Serotonin - 5-HT

• role in normal and abnormal function still mysterious

• involved in prediction of aversive events (opponent of dopamine which 
would be related to prediction of reward)

• involved in behavioral inhibition

•  involved in models of depression and anxiety:
i) depleting 5-HT by dietary depletion of precursor tryptophan can re-
instate depression
ii) selective serotonin re-uptake inhibitors(SSRIs) = antidepressant
iii) but constitutive decreases in efficiency of 5HT re-uptake is a risk factor 
for depression.

Idea

• idea: inhibition is directly associated with aversive predictions.
• Prediction of a sufficiently distant threat leads to inhibition, in the form of 
withdrawal and disengagement (as in conditioned suppression)

http://go.owu.edu/~deswartz/procedures/conditioned_suppression.html

• 5-HT terminates trains of thought that have a 
negative value

Model

• a model of trains of thoughts
• belief= state
• thought = change of belief = action 
• thoughts gain value through their connections with a group of terminal states 
O+/O- that are assigned + or - affective values 
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Figure 1: Markov models of thought. The abstract state space is divided into the 4 blocks shown. The right two,
O+ and O−, are associated with direct affective values r(s) (inset histograms); the left two, I− and I+, are internal.
Transitions between (belief) states are determined by actions (thoughts). We initially focus on a fixed policy, leading
to the transition between states shown in the figure: states in each internal block I+ and I− preferentially connect
with each other and their respective outcome states O+ and O−. However, each state has links to states in the other
block. The model is approximately balanced as a whole, with an equal number of positive and negative states.
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Figure 2: Probability of continuing a train of thoughts. For values V (s) > 0, thoughts are continued with probability
1. Conversely, when the state s has negative value, the probability of continuation drops of as an exponential function
of the value. The rate of the exponential is set by α5HT.

2.2 Serotonergic inhibition

A policy is a (probabilistic) mapping from states to actions a ← π(s) and defines the transition matrix between the
states in the model. For simplicity, we consider a fixed, basic, policy π0. In this, each element of I+ effectively has
8 outgoing connections, 3 to other (randomly chosen) elements in I+; 3 to randomly chosen elements in O+; and 1
each to randomly chosen elements in I− and O−. Similarly, each element of I− has 8 outgoing connections, 3 to other
(randomly chosen) elements in I−; 3 to randomly chosen elements in O−; and 1 each to randomly chosen elements
in I+ and O+. Thoughts are modelled as actions a following these connections, labelled by the identities of the states
to which they lead. Supplement S1 gives details of a more complex environment in which we explicitly explore effects
of impulsivity.

To isolate the effect of 5-HT in inhibiting actions in aversive situations, we consider the highly simplified proposal
that serotonin stochastically terminates trains of thoughts when these reach aversive states. More specifically, under
serotonergic influence the transition probabilities are modified in a manner that depends on states’ values. We let
the probability of continuing a train of thought (of continuing along the fixed policy π0) be dependent (and inversely
related to) the value V (s) of a state:

p5HT(s) = min (1, exp (α5HTV (s))) (1)
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2.2 Serotonergic inhibition

A policy is a (probabilistic) mapping from states to actions a ← π(s) and defines the transition matrix between the
states in the model. For simplicity, we consider a fixed, basic, policy π0. In this, each element of I+ effectively has
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of impulsivity.

To isolate the effect of 5-HT in inhibiting actions in aversive situations, we consider the highly simplified proposal
that serotonin stochastically terminates trains of thoughts when these reach aversive states. More specifically, under
serotonergic influence the transition probabilities are modified in a manner that depends on states’ values. We let
the probability of continuing a train of thought (of continuing along the fixed policy π0) be dependent (and inversely
related to) the value V (s) of a state:

p5HT(s) = min (1, exp (α5HTV (s))) (1)
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• O+ and O-  (each with 100 elements) are associated with value r(s) 
• I+ and I- (400 elements) are internal states
• sparse connections between states

• A fixed policy            defined the transition probabilities from one state to the 
next.
• Internal states will acquire value through (TD reinforcement) learning.

r(s)

π0

Idea

•  5-HT terminates trains of thought that have a negative value

• Probability of continuing a train of thought depends on V(s)

• When thoughts are terminated, they stop and restart randomly in I+ or I-.
• Consequence: the more the 5HT the less the ʻnegativeʼ states are explored -- 
sampling bias
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2.2 Serotonergic inhibition

A policy is a (probabilistic) mapping from states to actions a ← π(s) and defines the transition matrix between the
states in the model. For simplicity, we consider a fixed, basic, policy π0. In this, each element of I+ effectively has
8 outgoing connections, 3 to other (randomly chosen) elements in I+; 3 to randomly chosen elements in O+; and 1
each to randomly chosen elements in I− and O−. Similarly, each element of I− has 8 outgoing connections, 3 to other
(randomly chosen) elements in I−; 3 to randomly chosen elements in O−; and 1 each to randomly chosen elements
in I+ and O+. Thoughts are modelled as actions a following these connections, labelled by the identities of the states
to which they lead. Supplement S1 gives details of a more complex environment in which we explicitly explore effects
of impulsivity.

To isolate the effect of 5-HT in inhibiting actions in aversive situations, we consider the highly simplified proposal
that serotonin stochastically terminates trains of thoughts when these reach aversive states. More specifically, under
serotonergic influence the transition probabilities are modified in a manner that depends on states’ values. We let
the probability of continuing a train of thought (of continuing along the fixed policy π0) be dependent (and inversely
related to) the value V (s) of a state:

p5HT(s) = min (1, exp (α5HTV (s))) (1)
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Values after learning

Figure 3: Learning with behavioural inhibition. (A;B) with α5HT = 0, for one particular learning run, the values
Vest match their true values Vtrue (inferred through dynamic programming) under an equal-sampling exploration policy
(A); and trains of thought end in terminal states O−,O+ equally often as a function of their actual outcomes (B; the
red line is the regression line). (D;E) with α5HT = 20, negative V values are poorly estimated (since exploration
is progressively inhibited for larger α5HT), and the more negative the value of the outcome, the less frequently that
outcome gets visited over learning (E). Importantly, there is an optimistic underestimate of the negative value of state.
(C) shows the root mean square error (averaging over 20 runs) for states with positive (dotted) and negative Vtrue

values as a function of α5HT. The effect of the sampling bias is strikingly apparent, preventing accurate estimates
mainly of the negatively valued states. (F) shows the average reward received during learning as a function of α5HT –
the benefits of behavioural inhibition are apparent.
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α5HT = 0

α5HT = 20

•  5HT is favorable - enhanced average rewards
•  but values are overly optimistic and errors for aversive chains (overvalued)

Serotonin (via Tryptophan) depletion after learning

• after learning, switching              =20 to <20
• suddenly more negative states become explored
•-> more negative average affective outcome
• surprises (errors) associated with transitions that were previously inhibited

Figure 4: Reduced inhibition. These graphs show statistics of the effect of learning V values with α5HT = 20, and then
suffering from reduced serotonin α5HT < 20 during sampling of thoughts. For a given thought environment, these are
calculated in closed form, without estimation error. A) as is also evident in figure 3F, the average affective return is
greatly reduced from the value with α5HT = 20, in fact for the extreme value of α5HT = 0, it becomes slightly negative
(reflecting a small sample bias in the particular collection of outcomes). B;C) normalized outcome prediction errors at
the time of transition to O+ (B) or O− (C) for α5HT = 20 against α5HT = 0. These reflect the individual probability
that each terminal transition goes to r(s) from V (s′) for s ∈ O and s′ ∈ I, including all the probabilistic contingencies
of termination, etc. They are normalized for the two values of α5HT. Terminations in O+ are largely unaffected by
the change in inhibition; terminations in O− with negative consequences, have greatly increased negative prediction
error.

for the last transition of a chain from state s ∈ I± to a state a ∈ O±. We may expect negative prediction errors

δ− =

{

δ if δ < 0
0 otherwise

(8)

to be of special importance, because of substantial evidence that aversive outcomes whose magnitudes and timing
are expected so they can be prepared for, have substantially less disutility than outcomes that are more aversive than
expected (at least for physiological pains, see 37).

Figure 4 shows the consequences of learning under full inhibition and then wandering through state space with re-
duced inhibition. The change in the average terminal affective value as a percentage of the case during learning that
α5HT = 20 is shown in figure 4A. As was already apparent in figure 3F (which averages over the whole course of learn-
ing), large costs are incurred for large reductions in inhibition. For α5HT = 0, the average reward is actually negative,
which is why the curve dips below −100%. This value is relevant, since the internal environment is approximately
symmetric in terms of the appetitive and aversive outcomes it affords. Subjects normally experience an optimistic
or rosy view of it, by terminating any unfortunate trains of thought (indeed 55% of their state occupancy is in I+

compared with I−) . Under reduced 5-HT, subjects see it more the way it really is (the ratio becomes 50%).

Figure 4B;C show comparative scatter plots of the terminal prediction errors. Here, we consider just the last transition
from an internal state to an outcome state. Prediction errors here that are large and negative, with substantially more
aversive outcomes than expected may be particularly damaging. Figure 4C compares the average terminal prediction
errors for all transitions into states in O− with no serotonergic inhibition α5HT = 0, to those for the value α5HT = 20
that was used during learning. For the case that α5HT = 20, the negative prediction errors are on average very small
(partly since the probability of receiving one is very low). With reduced inhibition, the errors become dramatically
larger, potentially leading to enhanced global aversion. By comparison, as one might expect, the positive prediction
errors resulting from transitions into O+ are not greatly affected by the inhibition (figure 4B).

3.3 Recall bias

Two additional effects enrich this partial picture. One, which plays a particularly important role in the cognitive
behavioural therapy literature, is that depressed patients have a tendency to prefer to recall aversive states or memories
(38; 39). Figure 5A shows the consequence of doing this according to a simple softmax (see methods). These curves,
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Discussion

• 5HT is favorable - enhanced average rewards
•  but values are overly optimistic and errors for aversive chains

• consistent with the fact that 5-HT suppression leads to impulsivity (choosing 
states that would not be selected otherwise)
• consistent with the idea that 5-HT is related to prediction of aversive outcomes

• consistent with the fact that 5-HT depletion after learning leads to depressive 
symptoms.

• predictions: 5-HT levels during learning would control the extent to which 
negative states are explored / learned.

• dopamine and serotonin: mutual opposition model.  serotonin proposed to report 
negative prediction errors

(Vincent Valton in Bordeaux) Rat Gambling Task

- decision making in rats using 
adapted version of Iowa 
Gambling task.
- large inter-individual differences
- poor decision making results 
from hypersensitivity to reward 
and higher risk taking
- TD modeling

outbred, healthy rats, we identified two subpopulations of rats: a
majority that can deduce favorable options and another that
systematically prefers the worst available options. We show that
these poor decision makers are hypersensitive to reward and
more prone to take risks.

Methods and Materials

Animals
Male Wistar Han rats (Charles River, Lyon, France) were used

(n ! 158), aged 12 to 13 weeks old at the beginning of the
experiments. The rats were housed in groups of four in a
temperature-controlled room (22°C) on an inverted 12-hour
light/dark cycle (light on at 8:00 PM). Tests were conducted
during the dark phase of the cycle. They had free access to water

and were moderately food deprived (95% of free feeding weight)
throughout the experiments, unless stated otherwise. All exper-
iments were performed in accordance with the European Com-
munities Council Directive of November 24, 1986 (86/609/
European Economic Community) and following the “Guidelines
for the Care and Use of Mammals in Neuroscience and Behav-
ioral Research” (17).

Rat Gambling Task
Twelve identical operant chambers (Imetronic, Pessac, France;

adapted from five-choice serial reaction time chambers [18])
were used for the RGT. Four circular holes were available on a
curved wall and could be dimly illuminated with a white
light-emitting diode (LED) located at their rear. A food magazine
on the opposite wall was connected to an external dispenser
delivering food pellets (45 mg, formula P, Sandown Scientific,
London, United Kingdom). A clear vertical Plexiglas partition
(Imetronic, Pessac, France) (28 " .5 cm " 30 cm) with a central
opening (7 cm " 7 cm) was placed across the middle of the
chamber, parallel to the food wall. This partition allowed an equal
distance to each nose-poke hole and avoided thigmotaxic behavior.

Training. First, rats had to associate a nose poke in one of
the four illuminated holes with the delivery of one food pellet in
the magazine. After a nose poke, only the selected hole remained
illuminated but all were inactivated until the rat collected the
food reward. This procedure continued daily until rats obtained
100 pellets within a session (30-min cutoff). Two consecutive
nose pokes in the same hole were required to obtain food, to
ensure that the selection of the hole was a voluntary choice. After
reaching the criterion (the same as previously), rats were trained
during the last two consecutive 15-min sessions. In the first
session, two pellets were delivered after a choice was made
(maximum 100 pellets). This session habituated the rats to the
quantity of pellets that could be obtained during the test. A
second session followed, delivering only one pellet at a time
(maximum 50 pellets). The training phase usually lasted 5 to 7
days and tests were performed the following day.

Characteristics of the parameters used in the following test
conditions are summarized in Table 1. Methods for calculation of
the parameters are given in the Methods in Supplement 1.

Control of Sensitivity to Different Penalties. A group of
nine rats could freely choose between the four holes (A–D)

Figure 1. Comparison between the Iowa Gambling Task in humans (A) and
the Rat Gambling Task (B). (A) Human subjects successively select a card
among four available decks (A–D) to earn as much money as possible (100
trials). (B) Rats can nose-poke among four different holes (A–D) to obtain
food reward (1-hour test). The selection of one option is immediately re-
warded (money gain/food pellet) but can also be followed by a penalty
(money lost/time-out) of variable intensity, according to two different prob-
abilities. Two options (C, D) are equally more advantageous than the other
two (A, B), which are equally disadvantageous in the long term.

Table 1. Summary of the Parameters Used in the Different Decision-Making Test Conditions

Holes
Reward
(Pellets)

Penalty
Duration & Occurence(s)

Theoretical Maximum
Benefit (Pellets)

Penalty-Sensitivity Task A
1

222 [1/2] 30
Ratio

CD/AB: 10
B 444 [1/4] 30
C

1
12 [1/4] 300

D 6 [1/2] 300
Rat Gambling Task A

2
222 [1/2] 60

Ratio
CD/AB: 5

B 444 [1/4] 60
C

1
12 [1/4] 300

D 6 [1/2] 300
Time-Out Variant Task (1) A

2
222 [1/2] 60

Ratio
CD/AB: 4

B 444 [1/4] 60
C

1
24 [1/4] 240

D 12 [1/2] 240
Time-Out Variant Task (2) A

2
222 [1/2] 60

Ratio
CD/AB: 3

B 444 [1/4] 60
C

1
48 [1/4] 170

D 24 [1/2] 170
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 Decision-making Priors

• “Optimism : the extent to which people hold 
generalised favourable expectancies for the future”

•  the LOT-R questionnaire.

 

 
The revised life orientation test (LOT-R) 

 
Please be as honest and accurate as you can throughout. Try not to let your 
response to one statement influence your responses to other statements.  
 
There are no ‘correct’ or ‘incorrect’ answers. Answer according to your own 
feelings, rather than how you think ‘most people’ would answer.  
 
Using the scale below, write the appropriate number beside each statement.  
 
 
 

0 = strongly disagree 
1 = disagree 
2 = neutral 
3 = agree 
4 = strongly agree 

 
 
 
 

1) In uncertain times, I usually expect the best 
 
2) It’s easy for me to relax 

 
3) If something can go wrong for me it will 

 
4) I’m always optimistic about my future 

 
5) I enjoy my friends a lot 

 
6) It’s important for me to keep busy 

 
7) I hardly ever expect things to go my way 

 
8) I don’t get upset too easily 

 
9) I rarely count on good things happening to me 

 
10)  Overall, I expect more good things to happen to me than bad  

 
 
All data from this questionnaire will be kept in the strictest confidence. 
 
Name: 
Contact details: 

 

 
The revised life orientation test (LOT-R) 

 
Please be as honest and accurate as you can throughout. Try not to let your 
response to one statement influence your responses to other statements.  
 
There are no ‘correct’ or ‘incorrect’ answers. Answer according to your own 
feelings, rather than how you think ‘most people’ would answer.  
 
Using the scale below, write the appropriate number beside each statement.  
 
 
 

0 = strongly disagree 
1 = disagree 
2 = neutral 
3 = agree 
4 = strongly agree 

 
 
 
 

1) In uncertain times, I usually expect the best 
 
2) It’s easy for me to relax 

 
3) If something can go wrong for me it will 

 
4) I’m always optimistic about my future 

 
5) I enjoy my friends a lot 

 
6) It’s important for me to keep busy 

 
7) I hardly ever expect things to go my way 

 
8) I don’t get upset too easily 

 
9) I rarely count on good things happening to me 

 
10)  Overall, I expect more good things to happen to me than bad  

 
 
All data from this questionnaire will be kept in the strictest confidence. 
 
Name: 
Contact details: 

Optimism: a prior on the likelihood of future reward ?



Questions

• Are people usually biased in estimating probability of future reward?

• is this bias correlated with the LOT-R score?

• Can this bias be described as a Bayesian Prior?

[Stankevicius, Kalra, Huys, Seriès, Plos Comp Biol. in press]

Bayesian Model

• Assume subjects are Bayesian Optimal. Based on observed 
data D and their prior belief, they form the posterior p(c|D)

α β

p(c|D)

p(c|D) =
p(D|c)p(c)

p(D)

p(D) =
1

0
p(D|c) p(c) dc

p(D|c) p(c)

p(D) =
1

0
cn(1− c)N−n Γ(α + β)

Γ(α)Γ(β)
cα−1(1− c)β−1dc

p(D) =
1

0

Γ(α + β)
Γ(α)Γ(β)

c(n+α−1)(1− c)(N−n+β−1)dc

α, β)

1

0
f(c; α, β)dc = 1

1

0

Γ(α + β)
Γ(α)Γ(β)

cα−1(1− c)β−1dc = 1

α� = n + α β� = N − n + β. α β

α� β� Γ(α�+β�)
Γ(α�)Γ(β�)

• Parametrisation of prior p(c): Beta distribution, parameters α and β.

• Subjects form estimate of c using the mean of the posterior

• Subjects make decision based on comparing 
c with b = probability of reward of square.  

• Each subject is described by 3 parameters 
(α, β,γ ).

p(ci|Di) =
p(Di|ci)p(ci)

p(Di)

ĉi =

� 1

0
cip(ci|Di)dci

p(choose fractal) =
exp(γĉ)

exp(γĉ) + exp(γbt)

• 51 subjects

• People show significant bias in 
estimation of probability of future 
reward.  

• ML estimation --> estimation of the 
prior for each participant. 

• LOT-R scores correlate with mean 
of the prior (r=0.438, p<0.001).

Optimists overestimate probability of future reward
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LOT-R optimists

LOT-R pessimists

• a new quantitative & behavioural 
measure of some aspects of 
optimism

• applications in Depression

• applicable to other personality 
traits

Optimists overestimate probability of future reward
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LOT-R pessimists



Conclusion : Computational Psychiatry - new hopes

•  new hopes

• a new approach: seek a firmer foundation of the science of decision 
making

• pioneers : P. Dayan, Q. Huys, T. Braver., J. Cohen, M. Frank, S. Kapur, 
R. Montague, D. Pizzagali, K. Stephan, D. Steele, J. Williams, D. Redish 
and others ...

• “hope of a specific and quantitative anatomy of normal and abnormal 
function along with the prospect of rigorous tests for each underlying 
defect”.

• interesting times.
This is the end of CCN lectures 

Thanks  !

The idea of a continuum between health and disease

Dimensional Analysis of ADHD Subtypes in Rats
Candice Blondeau and Françoise Dellu-Hagedorn

Background: Attention-deficit/hyperactivity disorder is a heterogeneous disorder that is classified into three subtypes in which the main
symptoms, inattention, hyperactivity, and impulsivity, are expressed with various degrees of severity. The nature of the biological dysfunc-
tion sustaining each subtype (common or distinct) is unknown, and animal models encompassing different subtypes are needed.

Methods: A cluster analysis separated subgroups of rats on the basis of similarities in both impulsivity and attentional scores in the
five-choice serial reaction time task. These subgroups were characterized behaviorally and were compared for several aspects of spontane-
ous hyperactivity in different environmental contexts. The dose effects of two agents used clinically (methylphenidate and atomoxetine)
were tested on attention and impulsivity.

Results: Four distinct subgroups were demonstrated: efficient, middle, inattentive, and inattentive–impulsive. Hyperactivity expressed in
a cage, characterized the last subgroup. Subgroups were differentially sensitive to environmental and pharmacologic challenges. Methyl-
phenidate increased impulsivity mainly in the combined subgroup, whereas atomoxetine decreased impulsivity, neither with any effect on
the efficient subgroup and on accuracy.

Conclusions: This new approach is the first to demonstrate behavioral subtypes in rats that parallel those observed in human beings and
is a promising tool to clarify the biological bases of these behavioral subtypes and to explain therapeutic effects.

Key Words: Atomoxetine, attention, cluster analysis, hyperactivity,
impulsivity, methylphenidate

Attention-deficit/hyperactivity disorder (ADHD), the most
common behavioral disorder of childhood, is heteroge-
neous: symptoms of impulsivity, hyperactivity, and inat-

tention are expressed with various degrees of severity (American
Psychiatric Association 1994). Three subtypes of ADHD can be
distinguished: predominantly inattentive, predominantly hyper-
active and impulsive, and combined, which is the most prevalent
clinically. There currently is some disagreement as to whether
subtypes of this disorder are aspects of the same disorder and are
sustained by common biological dysfunctions (Barkley 2001;
Hinshaw 2001; Lahey 2001; Milich et al. 2001; Pelham 2001),
which is a crucial question for the targeting of pharmacologic
treatments. Pharmacologic therapy acts on the norepinephrine
and dopamine systems, leading to the long-standing hypothesis
of catecholamine dysfunction in ADHD. The most commonly
administered treatments are the psychostimulants, methylpheni-
date and D-amphetamine. Although these drugs are highly
effective, it is estimated that at least 30% of individuals do not
respond adequately to treatment (Barkley 1977; Spencer et al.
1996). A nonstimulant agent, atomoxetine, a potent noradrener-
gic reuptake inhibitor (Bolden-Watson and Richelson 1993),
rapidly has gained recognition as an alternative treatment (Mich-
elson et al. 2001; Spencer and Biederman 2002; Spencer et al.
2002). However, the efficacy of these pharmacologic agents in
relation to the subtypes of ADHD is largely unknown, and their
mechanisms of action on each of the symptoms have yet to be
clarified. For these reasons, a new experimental approach to

ADHD addressing the main symptoms and reflecting distinct
subtypes of the disorder could be of great interest.

Several animal models of ADHD have been developed,
mainly on the basis of selected strains or experimentally modi-
fied animals, each reflecting either separate or combined symp-
toms of impulsivity, inattention, and hyperactivity (Davids et al.
2003; Sagvolden et al. 2005). However, these models fail to
simultaneously reflect different subtypes of the disorder and do
not encompass the dimensional aspects (differences in degree
along a continuum) of the processes involved. Behavioral traits
or capacities existing spontaneously in rats can be assessed
(Dellu et al. 1996; Dellu-Hagedorn 2005; Dellu-Hagedorn et al.
2004), and selecting animals showing extreme behaviors (e.g.,
highly impulsive vs. nonimpulsive) could be of great interest in
the modeling of psychopathologies. This strategy clearly would
be in line with a dimensional view of psychopathology that
proposes that common mental disorders can be conceptualized
as extreme manifestations of normal dimensions. Such an ap-
proach has been successful in identifying impulsive, inattentive,
and hyperactive individuals with neurobiological characteristics
relevant to ADHD (Barbelivien et al. 2001; Puumala and Sirvio
1998; Puumala et al. 1996). This promising approach (Sagvolden
et al. 2005), however, did not explore various expressions of
hyperactivity and only modelized the combined subtype of the
disorder. One method by which interindividual behavioral dif-
ferences can be used to categorize individuals is through cluster
analysis. This analysis classifies individuals into groups by using
a measure of similarity between scores to produce typologies of
individuals with similar behavioral profiles. This has been used in
ADHD and nonclinical children to identify individuals with
similar patterns of performance (Marsh and Williams 2004) but
never has been exploited for the same purpose in animals.

By the use of a differential behavioral approach in rats, a
population of rats was studied on the basis of premature
responding and response accuracy, which were presumed to be
basic parameters of ADHD. Four subgroups of rats could be
identified by using a cluster analysis, according to their perfor-
mances on both parameters. These subgroups were further
characterized by testing their adaptation to more challenging
conditions and on hyperactivity. Clinical and neuropsychologic
data in human beings indicate that the expression of hyperactiv-
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- decision making in rats
- There is a variability of performance comparable to that in humans -- 
extreme behaviour could correspond to disorder 
- no need for dedicated animal model
- electrophysiology


