Networks of Neurons

Models of Networks of Neurons

Readings: D&A, chapter 7.

* Neurons are organized in large networks. A typical neuron in cortex receives
thousands of inputs.

* Aim of modelling networks: explore the computational potential of such
connectivity.

- What computations? (e.g. gain modulation, integration, selective amplification
of some signal, memory etc..)

- What dynamics ? (e.g. spontaneous activity, variability, oscillations)

* Tools:
- models of neurons and synapses : spiking neurons (IAF) or firing rate
- analytical solutions, numerical integration

What'’s a network ?

What's a network ?

* In cortex, ~80% excitatory cells (pyramidal neurons), ~20% inhibitory

neurons (smooth stellate + large variety of other types)/ a.k.a interneurons.
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¢ Laminar Organization.
Cortex is divided into 6 layers.
Models usually pool all layers together.
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What’s a network ?

» Columnar Organization.
Neurons in small (30-100 micrometers) columns perpendicular to the layers
(across all layers) respond to similar stimulus features.

(Aus Gazzaniga et al ., 1998)

Connectivity

- Excitatory
- precise topographically
* debated how strong

¢ 3 types of connections: feed-forward, recurrent (lateral), feedback.
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* Excitatory + Inhibitory : lots !!
*<1mm

« connectivity depend on distance, not
preference.

I LGN

Network modeling strategies (1)

Long-range Horizontal
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* Excitatory - Modulatory
- 6-8 mm (cat, monkey) - Non overlapping RF
* specific/ preferences

¢ method 1: spiking neurons, e.g. integrate and fire neurons
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 up to 10,000 neurons.

* advantage: comparison with electrophysiology, a system where all
neurons can be ‘recorded’ at all times.

« difficulties: lots of parameters/assumptions, long simulations,
analysis difficult.

Network modeling strategies (2)
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Network modeling strategies (3)

¢ method 2: reduce the description to describe only rate of spiking r(t) (aiso
confusingly sometimes denoted v(t)), instead of Vm(t).
A B
dr;(t
)
dt

= —r;(t) + input(t)

Tisi (Hz)

Ie (nA)

¢ Interpretation: average over equivalent neurons or over time

rate = average over pool of equivalent nenrons

Firing rate model (1)

* each neuron is described at time t by a firing rate v(t).

dv;(t) =X
T = —uilt) + F(Z wij ;)
71=1
output ©
weights w
input  u

* In absence of input, the firing rate relaxes to 0 with a time constant t; - which
also determines how quickly the neuron responds to input.

* The input from a presynaptic neuron is proportional to its firing rate u

* The weight w; determines the strength of connection of neuron j to neuron i
» The total input current is the sum of the input from all external sources.

(several neorons, single ron) . rate = average over time spike count
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Firing rate model (2)
¢ each neuron is described at time t by a firing rate v(t).
j=N
d?)i (t)
j=1 dot-product

* F determines the steady state r as a function of input
* F is called the activation function
* F can be taken as a saturating function, e.g. sigmoid

« F is often chosen to be threshold linear
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Network Architectures

 A: Feedforward

dv;(t) al
T = —uilt) + F(Y Wiju,(t)
j=1
« B: Recurrent
dv; (t) al al
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Excitatory - Inhibitory Network

* Some models have a single population of neurons and the weights are
allowed to be positive and negative.

« Other models represent the excitatory and inhibitory population separately.

(more ‘biological’ + richer dynamics).
* 4 weight matrices, Meg, Mig, Mii, Mg

dv
‘L'Ed—tE = —vg + Fg (hg + Mgg - vg + Mg - vp)
and
dVI
=i +Fy(hy + Mg - vg + My - vy) .

Example:

Orientation selectivity as a model problem:
spiking networks and ring model

LGN neurons are not selective to orientation, V1’s are:
Origin of Orientation selectivity ?
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* Example of a computation, emergence of a new property.

Model of Hubel and Wiesel (1962)

« Hubel and Wiesel (1962) proposed that the oriented fields of V1 neurons could
be generated by summing the input from appropriately selected LGN neurons.

* The model accounts for selectivity in V1 on the basis of a purely feedforward
architecture.
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Feedforward vs Recurrent models of Orientation Selectivity
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/ \ Connectivity achieves
contrast invariance through

feedforward inhibition

L)) . the tuning curve

Due to the precise
organization of the thalamic
afferents, input to V1 is
sharply tuned
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Somers, Nelson and Sur 1995;

Hubel and Wiesel, 1962;
Sompolinsky and Shapley, 1997

Troyer, Krukowski,
Priebe and Miller, 1998

The Recurrent/ Ring Model of orientation selectivity (1)

« If the input from LGN is broadly tuned, can orientation selectivity be achieved
within V1, through recurrent interactions between neurons?

Proc. Natl. Acad. Sci. USA
Vol. 92, pp. 3844-3848, April 1995
Neurobiology

Theory of orientation tuning in visual cortex

(neural networks/cross-correlations/symmetry breaking)

R. BEN-YISHAT*, R. LEV BAR-OR*, AND H. SOMPOLINSKYT

“Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Isracl; and TAT&T Bell Laboratories,

Murray Hill, NJ 07974

Communicated by Pierre C. Hohenberg, AT&T Bell Laboratories, Murray Hill, NJ, December 21, 1994 (received for review July 28, 1994)

ABSTRACT  The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the orientation of a visual stimulus. We analytically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross

pecific cortical i ing on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.
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The Recurrent/ Ring Model of orientation selectivity (2) The Recurrent/ Ring Model of orientation selectivity (3)

0.5
« N neurons, with preferred angle, g, ,evenly distributed * his input, can be tuned (Hubel Wiesel —
between —m/2 and /2 scenario) or very broadly tuned. 04 e
0.3

* Neurons receive thalamic inputs h.
+ recurrent connections, with excitatory weights between

h(0) = c[1 — € + € x cos(26)] £ 02

nearby cells and inhibitory weights between cells that are 0.1
further apart (mexican-hat profile) 0 _50 0 50
orientation 6
dv(Q) /2 30/ , ’
T, Pk —v(0) + | h(0) + - (—Ao + A1cos(2(0— 6 ))) v(0") * The steady-state can be solved analytically.
—m/2

Model analyzed like a physical system.

50
PN T S N * Model achieves i) orientation selectivity; ii) contrast invariance of tuning, even
z 50 if input is very broad.
% 100 * The width of orientation selectivity depends on the shape of the mexican-hat,
180 but is independent of the width of the input.
-200

-50 0 50
orientation 6

* Symmetry breaking /Attractor dynamics.




The Recurrent/ Ring Model of orientation selectivity (4)
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had Ay = 7.3, A; = 11, A = 40
Hz, and € = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)

Attractor Networks

¢ Attractor network : a network of neurons, usually recurrently connected, whose time
dynamics settle to a stable pattern.

* That pattern may be stationary (fixed points), time-varying (e.g. cyclic), or even
stochastic-looking (e.g., chaotic).
* The particular pattern a network settles to is called its ‘attractor’.

*The ring model is called a line (or ring) attractor network. Its stable states are also
sometimes referred to as ‘bump attractors’.
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The Ring Model (5): Sustained Activity

« If recurrent connections are strong enough, the pattern of population
activity once established can become independent of the structure of the
input. It can persists when input is removed.

* A model of working memory ?

A B 4
5
/N < 60
=
ho 2
20
0
180  -90 0 9 180 180 -90 0 9 180
0 (deg) 0 (deg)
C D 4
5
= 60
ho =40
20
s . 0
180 -90 0 9 180 180 90 0 9 180
6 (deg) 6 (deg)

Recurrent vs Feedforward models of orientation selectivity
with spiking neurons

~ 100, 000 synapses
output ‘Feedforward’ model

/\ vs ‘Recurrent’

~ 1250 conductance
349 mq 5 based IAF neurons
Wee, Wie, Wei,

Seriés, Latham and
Pouget - Nature
Neuroscience 2004




* Both models can generate tuned responses, contrast invariance, and realistic
variability of spike count

LGN input V1 responses
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Recurrent vs Feedforward models of orientation selectivity
with spiking neurons

* Explore physiological and anatomical
plausibility:

- cortical connectivity scheme,

- thalamocortical connectivity,

- properties of inhibition in Cx (inactivation)

(Sompolinsky and Shapley, 1997; Ferster and Miller, 2000).

« Variability

a
« Coding efficiency e ey
are these models making different predictions s
in terms of (Fisher) information transmission? ‘gz
(Yes). B

Network models - summary

* Network models: to understand the implications of connectivity in
terms of computation and dynamics.

¢ 2 Main strategies: Spiking vs Firing rate models.

* The issue of the emergence of orientation selectivity as a model
problem, extensively studied theoretically and experimentally.

- Two main models: feed-forward and recurrent.

- Detailed spiking models have been constructed which can be directly
compared to electrophysiology

- The same problem is also investigated with a firing rate model, a.k.a.
the ‘ring model’.




