
Reinforcement Learning in the Brain

• Reading: Y Niv, Reinforcement learning in the brain, 2009.
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Reinforcement learning (RL): 
 
- an area of machine learning inspired by behaviorist 
psychology, concerned with how software agents ought to 
take actions in an environment so as to maximize some 
notion of cumulative reward.  

- thought to be a good model of how learning is occurring in 
the brain. 

Maximizing reward as a guide to decision-making

• Decision making at all levels 
• Reinforcement learning : maximize reward and minimize punishments; 
Sutton 1978; Sutton & Barto, 1990, 1998.  
• Why is this hard: (1) rewards/ punishment may be delayed; (2) outcome 
may depend on series of actions (credit assignment problem)  
• Need learning of predictions of events and actions

the problem we all face in our daily life
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Animals learn predictions -- Pavlovian conditioning

• Animals learn predictions 
• Classical conditioning: pairing of a CS with a US 
• example: conditioned suppression 

• autoshaping 

http://www.youtube.com/watch?v=ZlZekx1P1g4

http://www.youtube.com/watch?v=cacwAvgg8EA

Ivan Pavlov
(Nobel prize portrait)

1. Pavlovian conditioning: 

animals learn predictions
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Pavlovian conditioning examples 
(conditioned suppression, autoshaping)

22Credits: Greg Quirk, Dale Swartzentruber



Rescorla & Wagner model of classical conditioning (1972)

• Most influential model of animal learning, explains puzzling behavioural 
phenomena such as blocking, overshadowing and conditioned inhibition.   
• describe changes in associative strength (V) between a signal (conditioned 
stimulus CS) and subsequent stimulus (unconditioned stimulus US) 

•The idea: error-driven learning:  
Learning occurs only when events violate expectations.  
 
Change in value is proportional to the difference between actual and predicted 
outcome  
 
 

• learning only occurs when events not predicted 
• predictions due to different stimuli are summed to form the total prediction in a 
trial.

1 Reinforcement learning: Theoretical background

The modern form of RL arose historically from two separate and parallel lines of research. The
first axis is mainly associated with Richard Sutton, formerly an undergraduate psychology ma-
jor, and his doctoral thesis advisor, Andrew Barto, a computer scientist. Interested in artificial
intelligence and agent-based learning and inspired by the psychological literature on Pavlovian
and instrumental conditioning, Sutton and Barto developed what is today the core algorithms and
concepts of RL (Sutton, 1978; Barto et al., 1983; Sutton & Barto, 1990, 1998). In the second
axis, stemming from a different background of operations research and optimal control, electrical
engineers such as Dimitri Bertsekas and John Tsitsiklis developed stochastic approximations to
dynamic programming methods (which they termed ‘neuro-dynamic programming’), which led
to similar reinforcement learning rules (eg. Bertsekas & Tsitsiklis, 1996). The fusion of these
two lines of research couched the behaviorally-inspired heuristic reinforcement learning algo-
rithms in more formal terms of optimality, and provided tools for analyzing their convergence
properties in different situations.

1.1 The Rescorla-Wagner model

The early impetus for the artificial intelligence trajectory can be traced to the early days of the
field of ‘mathematical psychology’ in the 1950’s, within which statistical models of learning
were considered for the first time. In a seminal paper Bush and Mosteller (1951) developed
one of the first detailed formal accounts of learning. Together with Kamin’s (1969) insight
that learning should occur only when outcomes are ‘surprising’, the Bush and Mosteller ‘linear
operator’ model found its most popular expression in the now-classic Rescorla-Wagner model of
Pavlovian conditioning (Rescorla & Wagner, 1972). The Rescorla-Wagner model, arguably the
most influential model of animal learning to date, explained puzzling behavioral phenomena such
as blocking, overshadowing and conditioned inhibition (see below) by postulating that learning
occurs only when events violate expectations. For instance, in a conditioning trial in which two
conditional stimuli CS1 and CS2 (say, a light and a tone) are presented, as well as an affective
stimulus such as food or a tail-pinch (the unconditional stimulus; US), Rescorla and Wagner
postulated that the associative strength of each of the conditional stimuli V (CSi) will change
according to

Vnew(CSi) = Vold(CSi)+�

�
⇥US�⇤

i
Vold(CSi)

⇥
. (1)

In this error correcting learning rule, learning is driven by the discrepancy between what was
predicted (⇤iV (CSi) where i indexes all the CSs present in the trial) and what actually happened
(⇥US, whose magnitude is related to the worth of the unconditional stimulus, and which quantifies
the maximal associative strength that the unconditional stimulus can support). � is a learning
rate that can depend on the salience properties of both the unconditional and the conditional
stimuli being associated.

At the basis of the Rescorla-Wagner model are two important (and innovative) assumptions or
hypotheses: 1) learning happens only when events are not predicted, and 2) predictions due to
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How do we know that animals use an error-correcting rule ?

•  blocking 
•  interpretation: the bell fully predicts the food and the presence of 
the light adds no new predictive information -- therefore no 
association develops to the light.
How do we know that animals use an 

error-correcting learning rule?

25

+

Phase 1 Phase II

Blocking
(NB. Also in humans)

Limitations of Rescorla & Wagner (1972)

• does not extend to 2d order conditioning. 
A->B->reward; where A gains reward predictive value 

• Basic unit of learning = conditioning trial as discrete temporal object 
 fails to account for the temporal relations between CS and US stimuli 
within a trial 

• Temporal Difference (TD) learning as a means to overcome these 
limitations = extension of Rescorla-Wagner to take into account timing of 
events. 

Temporal Difference (TD) learning (1)

• Consider a succession of states S, following each other with P(St+1|St)  
• Rewards observed in each state with probability P(r|St) 
• Useful quantity to predict is the expected sum of all future rewards, given 
current state St, = value of state S, V(St)

In order to formally introduce TD learning, let us depart for the moment from animal condition-
ing and human decision-making. Consider a dynamic process (called a Markov chain) in which
different states S 2 S follow one another according to some predefined probability distribution
P(St+1|St), and rewards are observed at each state with probability P(r|S). As mentioned, a
useful quantity to predict in such a situation is the expected sum of all future rewards, given the
current state St , which we will call the value of state St , denoted V (St). Thus

V (St) = E
⇥

rt + ⇥rt+1 + ⇥2rt+2 + ...
��St

⇤
= E

"
⌅

⇧
i=t

⇥i�t ri

�����St

#
(2)

where ⇥  1 discounts the effect of rewards distant in time on the value of the current state.
The discount rate was first introduced in order to ensure that the sum of future rewards is finite,
however, it also aligns well with the fact that humans and animals prefer earlier rewards to later
ones, and such exponential discounting is equivalent to an assumption of a constant ‘interest
rate’ per unit time on obtained rewards, or a constant probability of exiting the task per unit
time. The expectation here is with respect to both the probability of transitioning from one state
to the next, and the probability of reward in each state. From this definition of state values it
follows directly that

V (St) = E [rt |St ]+ ⇥E [rt+1|St ]+ ⇥2E [rt+2|St ]+ ... = (3)
= E [rt |St ]+ ⇥ ⇧

St+1

P(St+1|St)(E [rt+1|St+1]+ ⇥E [rt+2|St+1]+ ...) = (4)

= P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1) (5)

(assuming here for simplicity that rewards are Bernoulli distributed with a constant probability
P(r|St) for each state). This recursive relationship or consistency between consecutive state
values lies at the heart of TD learning. The key to learning these values is that the consistency
holds only for correct values (ie, those that correctly predict the expected discounted sum of
future values). If the values are incorrect, there will be a discrepancy between the two sides of
the equation, which is called the temporal difference prediction error

�t = P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1)�V (St). (6)

This prediction error is a natural ‘error signal’ for improving estimates of the function V (St). If
we substitute this prediction error for the ‘surprise’ term in the Rescorla-Wagner learning rule,
we get

V (St)new = V (St)old +⇤ · �t , (7)

which will update and improve the state values until all prediction errors are 0, that is, until the
consistency relationship between all values holds, and thus the values are correct.

However, returning to prediction learning in real-world scenarios, we note that this updating
scheme (which is at the basis of a collection of methods collectively called “dynamic program-
ming”; Bellman, 1957) has one major problem: it requires knowledge of the dynamics of the
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• Discount factor introduced to make sure that the sum is finite, but also 
humans and animals prefer earlier rewards to later ones 
• incorporating probabilities P(St+1|St) and P(r|St), we get recursive form 



Temporal Difference (TD) learning (2)

• prediction error is a natural signal for improving estimates V(St), giving

• When estimated values are incorrect, there is a discrepancy between 2 
sides of equation: prediction error:
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• = Optimal learning rule, basis of “dynamic programming”.  
• One problem:  assumes knowledge of P(St+1|St) and P(r|St) which is 
unreasonable in basic learning situations.  
• Model-free Approximation which can be formally justified (sampling):

environment, that is, P(r|St) and P(St+1|St) (the “world model”) must be known in order to
compute the prediction error �t in equation (6). This is clearly an unreasonable assumption
when considering an animal in a Pavlovian conditioning task, or a human predicting the trends
of a stock. Werbos (1977) in his “heuristic dynamic programming methods”, and later Barto,
Sutton, and Watkins (1989) and Bertsekas and Tsitsiklis (1996), suggested that in a “model-free”
case in which we can not assume knowledge of the dynamics of the environment, the environ-
ment itself can supply this information stochastically and incrementally. Every time an animal is
in the situation that corresponds to state St , it can sample the reward probability in this state, and
the probabilities of transitions from this state to another. As it experiences the different states
repeatedly within the task, the animal will obtain unbiased samples of the reward and transition
probabilities. Updating the estimated values according to these stochastic samples (with a de-
creasing learning rate or ‘step-size’) will eventually lead to the correct predictive values. Thus
the stochastic prediction error

�t = rt + ⇥V (St+1)�V (St) (8)

(where rt is the reward observed at time t, when in state St , and St+1 is the next observed state
of the environment) can be used as an approximation to equation (6), in order to learn in a
“model-free” way the true predictive state values. The resulting learning rule is

Vnew(St) = Vold(St)+⇤(rt + ⇥V (St+1)�V (St)). (9)

Finally, incorporating into this learning rule the Rescorla-Wagner assumption that predictions
due to different stimuli Si comprising the state of the environment are additive (which is not the
only way, or necessarily the most sensible way to combine predictions, see Dayan, Kakade, &
Montague, 2000), we get for all Si present at time t

Vnew(Si,t) = Vold(Si,t)+⇤

�
rt + ⇥ ⌅

Sk@t+1
Vold(Sk,t+1)� ⌅

S j@t
Vold(S j,t)

⇥
, (10)

which is the TD learning rule proposed by Sutton and Barto (1990). As detailed above, the
formal justification for TD learning as a method for optimal RL derives from its direct relation to
dynamic programming methods (Sutton, 1988; Watkins, 1989; Barto, Sutton, & Watkins, 1990).
This ensures that using TD learning, animals can learn the optimal (true) predictive values of
different events in the environment, even when this environment is stochastic and its dynamics
are unknown.

Indeed this rule is similar, but not identical, to the Rescorla-Wagner rule. As in the Rescorla-
Wagner rule, ⇤ is a learning rate or step-size parameter, and learning is driven by discrepan-
cies between available and expected outcomes. However, one difference is that in TD learning
time within a trial is explicitly represented and learning occurs at every timepoint within a trial.
Moreover, in the specific tapped delay line representation variant of TD learning described in
equation (10), stimuli create long-lasting memory traces (representations), and a separate value
V (Si,t) is learned for every timepoint of this trace (for instance, a stimulus might predict a reward
exactly five seconds after its presentation). A second and more important difference is in how
predictions, or expectations, are construed in each of the models. In TD learning, the associative
strength of the stimuli (and traces) at time t is taken to predict not only the immediately forth-
coming reward rt , but also the future predictions due to those stimuli that will still be available
in the next time-step ⌅S j@t+1V (S j,t+1), with ⇥⇥ 1 discounting these future delayed predictions.
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~ current reward+next prediction - current prediction

Temporal Difference (TD) learning (3)

• Resulting learning rule:

• Incorporating Rescorla-Wagner idea that predictions due to different 
stimuli are additive:
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•This is TD learning rule as proposed by Sutton & Barton (1990) 

Instrumental conditioning: adding control

• Animals not only learn associations between stimuli and reward but also 
between actions and reward 
• Learning to select actions that will increase the probability of rewarding 
events and decrease the probability of aversive events. 
• rat lever pressing in boxes -- operant conditioning (Skinner)

Example: Free operant 

conditioning (Skinner)

27

http://www.youtube.com/watch?v=I_ctJqjlrHA (Interview of Skinner)

Actor/Critic Methods

•  How can such action selection be learned?  

• Barto (1983) shows that credit assignment 
problem can be solved by a learning system  
comprised of 2 neurons-like elements: 
- the critic, uses TD learning to construct values 
of states 
- the actor, learn to select actions at each state 
using prediction error. 

Idea: if positive prediction error is encountered, 
current action has improved prospects for the 
future and should be repeated. 
Learning of policies:

at each state. These two elements were the precursors of the modern-day Actor/Critic framework
for model-free action selection which has been closely associated with reinforcement learning
and action selection in the brain.

The insight in the ASE-ACE model, first due to (Sutton, 1978), is that even when the external
reinforcement for a task is delayed (as when playing checkers), a temporal difference predic-
tion error can convey, at every timestep, a surrogate ‘reinforcement’ signal that embodies both
immediate outcomes and future prospects, to the action just chosen. This is because, in the
absence of external reinforcement (ie,rt = 0), the prediction error �t in equation (8) becomes
⇥V (St+1)�V (St), that is, it compares the values of two consecutive states and conveys informa-
tion regarding whether the chosen action has led to a state with a higher value than the previous
state (ie, to a state predictive of more future reward) or not. This means that whenever a positive
prediction error is encountered, the current action has improved prospects for future rewards,
and should be repeated. The opposite is true for negative prediction errors, which signal that the
action should be chosen less often in the future. Thus the agent can learn an explicit policy –
a probability distribution over all available actions at each state ⌅(S,a) = p(a|S), by using the
following learning rule at every timestep

⌅(S,a)new = ⌅(S,a)old +⇤⌅�t (11)

where ⇤⌅ is the policy learning rate and �t is the prediction error from equation (8).

Thus, in Actor/Critic models, a Critic module uses TD learning to estimate state values V (S)
from experience with the environment, and the same TD prediction error is also used to train the
Actor module, which maintains and learns a policy ⌅ (Figure 1). This method is closely related to
policy improvement methods in dynamic programming (Sutton, 1988), and Williams (1992) and
Sutton et al. (2000) have shown that in some cases the Actor/Critic can be construed as a gradient
climbing algorithm for learning a parameterized policy, which converges to a local maximum
(see also Dayan & Abbott, 2001). However, in the general case Actor/Critic methods are not
guaranteed to converge on an optimal behavioral policy (cf. Baird, 1995; Konda & Tsitsiklis,
2003). Nevertheless, some of the strongest links between RL methods and neurobiological data
regarding animal and human decision making have been related to the Actor/Critic framework.
Specifically, Actor/Critic methods have been extensively linked to instrumental action selection
and Pavlovian prediction learning in the basal ganglia (eg. Barto, 1995; Houk et al., 1995; Joel
et al., 2002), as will be detailed below.

1.3.2 State-action values

An alternative to Actor/Critic methods for model-free RL, is to explicitly learn the predictive
value (in terms of future expected rewards) of taking a specific action at a certain state, that is,
learning the value of the state-action pair, denoted Q (S,a). In his PhD thesis, Watkins (1989)
suggested Q -learning as a modification of TD learning that allows one to learn such Q -values
(and brings TD learning closer to dynamic programming methods of ‘policy iteration’; Howard,
1960). The learning rule is quite similar to the state-value learning rule above

Q (St ,at)new = Q (St ,at)old +⇤�t (12)
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Q learning

•  Watkins (1989) 
• Alternative: explicitly learn the predictive value (future expected rewards) of 
taking an action at each state, = learn the value of state-action pairs Q(S,a) 
• learning rule:
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Figure 1: Actor/Critic architecture: The state
St and reinforcement signal rt are conveyed to
the Critic by the environment. The Critic then
computes a temporal difference prediction er-
ror (equation 8) based on these. The predic-
tion error is used to train the state value predic-
tions V (S) in the Critic, as well as the policy
⇤(S,a) in the Actor. Note that the Actor does
not receive direct information regarding the ac-
tual outcomes of its actions. Rather, the TD pre-
diction error serves as a surrogate reinforcement
signal, telling the Actor whether the (immedi-
ate and future expected) outcomes are better or
worse than previously expected. Adapted from
Sutton & Barto, 1998.

albeit with a slightly different TD prediction error driving the learning process

�t = rt +max
a

⇥Q (St+1,a)�Q (St ,at) (13)

where the max operator means that the temporal difference is computed with respect to what is
believed to be the best action at the subsequent state St+1. This method is considered ‘off-policy’
as it takes into account the best future action, even if this will not be the action that is actually
taken at St+1. In an alternative ‘on-policy’ variant called SARSA (the acronym for state-action-
reward-state-action), the prediction error takes into account the next chosen action, rather than
the best possible action, resulting in a prediction error of the form:

�t = rt + ⇥Q (St+1,at+1)�Q (St ,at). (14)

In both cases, action selection is easy given Q -values, as the best action at each state S is that
which has the highest Q (S,a) value. That is, learning Q -values obviates the need for sepa-
rately learning a policy. Furthermore, dynamic programming results regarding the soundness
and convergence of ‘policy iteration’ methods (in which a policy is iteratively improved through
bootstrapping of the values derived given each policy; Howard, 1960; Bertsekas & Tsitsiklis,
1996) ensure that if the proper conditions on the learning rate are met and all state-action pairs
are visited infinitely often, both Q -learning and SARSA will indeed converge to the true op-
timal (in case of Q -learning) or policy-dependent (in the case of SARSA) state-action values.
Interestingly, recent electrophysiological recordings in non-human primates (Morris et al., 2006)
and in rats (Roesch et al., 2007) suggest that dopaminergic neurons in the brain may indeed be
conveying a prediction error that is based on state-action values (rather than state values, as in
the Actor/Critic model), with the former study supporting a Q -learning prediction error, and
the latter a SARSA prediction error. Whether these results mean that the brain is not using an
Actor/Critic scheme at all, or whether the Actor/Critic framework could be modified to use state-
action values (and indeed, the potential advantages of such a scheme) is still an open question
(Niv et al., 2006)

10

• TD prediction error: 

~ current reward+ prediction of next best action- current prediction

15

A recent application of Q-learning to deep learning, by Google DeepMind has 
been successful at playing some Atari 2600 games at expert human levels. 
Preliminary results were presented in 2014, with a paper published in 
February 2015 in Nature.

https://www.youtube.com/watch?v=V1eYniJ0Rnk 

Machine learning applications  
of Q learning

How does the brain do reinforcement learning ?

• “the largest success of computational neuroscience”,  
dopamine and prediction error

in comes computational 

neuroscience

15

• (relatively) New Idea:

• The brain is a computing device

• Computational models can help us talk about 

functions of the brain in a precise way

• Abstract and formal theory can help us 

organize and interpret (concrete) data 



What is Dopamine ?

Parkinson’s Disease

! Motor control / initiation?

Dorsal Striatum (Caudate, Putamen) 

Ventral Tegmental Area 
Substantia Nigra

Nucleus Accumbens
(ventral striatum) 

Prefrontal Cortex

31

What is dopamine and why do 

we care about it?
• Parkinson’s 
Disease : motor 
control/ initiation 
• addiction, 
gambling, natural 
rewards 
• also involved in : 
working memory, 
novel situations, 
ADHD, 
schizophrenia

the anhedonia hypothesis (Wise, ’80s)

• Anhedonia = inability to experience positive emotional 

states derived from obtaining a desired or biologically 

significant stimulus 

• Neuroleptics (dopamine antagonists) cause anhedonia

• Dopamine is important for reward-mediated conditioning

34

Former idea: Dopamine signals reward (Wise, ‘80s)

• Initial idea: dopamine might represent reward signals  
• antipsychotic drugs (dopamine antagonists) cause anhaedonia 
• brain self stimulation by rats 
• dopamine important for reward mediated conditioning

http://www.youtube.com/watch?v=7HbAFYiejvo

New idea: phasic dopamine signals prediction error 

• Schultz et al 90s 
• monkeys underwent simple 
instrumental or pavlovian 
conditioning 
• disappearance of 
dopaminergic response at 
reward delivery after learning 
• if reward is not presented, 
response depression below 
basal firing at expected time of 
reward.

Schultz, Dayan, Montague, 1997 36

DopamineResponse = 
RewardOccurred – RewardPredicted.

Dopamine and Prediction 

• The idea: dopamine encodes prediction 
error (Montague, Dayan, Barto, 1996) 

• provided normative basis for 
understanding not only why dopamine  
neurons fire when they do, but also what 
the function of these firing might be. 

• evidence for dopamine dependent, or 
dopamine gated plasticity in synapses 
between cortex and striatum.

40

dopamine and synaptic plasticity

Wickens et al, 1996

• prediction errors are for learning…

• cortico-striatal synapses show 

dopamine-dependent plasticity
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Tobler et al, 2005

S
c
h

u
lt

z 
e

t 
a

l, 
1

9
9

3

37

prediction error hypothesis 

of dopamine

• checking that size of response at onset of CS is proportional to reward size
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low spontaneous activity levels. Conditioned
stimuli elicited the typical phasic activations
(8–10), with their magnitude increasing with
increasing reward probability (r 2 ! 0.80,
P ! 0.04 and r 2 ! 0.69, P ! 0.08 in
monkeys A and B, respectively) (Figs. 2, A
and E, and 3, A and B). In summary, the
phasic activations varied monotonically with
reward probability, although further conclu-
sions about the quantitative relations are not
warranted (13).

The present work revealed an additional,
previously unreported activation of dopamine
neurons. There was a sustained increase in
activity that grew from the onset of the con-
ditioned stimulus to the expected time of
reward (Fig. 3, A and B). At P ! 0.5, 29% of
188 neurons showed significant increases in
activity before potential reward, whereas 3%
showed decreases (P " 0.05, Wilcoxon test).
By contrast, at P ! 1.0, only 9% showed
significant increases, and 5% showed signif-
icant decreases. For the population response,
the sustained activation was maximal at P !
0.5, less pronounced at P ! 0.25 and 0.75,
and absent at P ! 0.0 and 1.0 (Fig. 3C and
fig. S3B). Statistical analysis revealed a sig-
nificant effect of uncertainty on the popula-
tion response (P " 0.005 in each of four data
sets) (11), indicating that the sustained acti-
vation codes uncertainty (14 ). Furthermore,
the peak of the sustained activation occurs at
the time of potential reward, which corre-
sponds to the moment of greatest uncertainty
(15). The particular function of uncertainty
signaled by dopamine neurons is not known
(13), but we note that common measures of
uncertainty (variance, standard deviation, and
entropy) are all maximal at P ! 0.5 and have
highly nonlinear relations to probability, be-
ing very sensitive to small changes in prob-
ability near the extremes (P ! 0 or 1).

The phasic and sustained activations dif-
fered not only in timing and relation to re-
ward probability, but also in their occurrence
in single neurons. In Fig. 3D, the magnitude
of the phasic and sustained activation is
shown for each neuron (n ! 241). First, a
substantial number of neurons had little or no
response of either type (13); however, the
magnitudes of each type of response fell
along a continuum, with no evidence for
subpopulations among dopamine neurons.
Second, the magnitude of the sustained ac-
tivation showed no consistent relation to
the magnitude of phasic activation across
neurons. This was the case both for the
phasic response to conditioned stimuli (r !
0.095, P # 0.10) and for the response to
unpredicted reward (r ! – 0.024) (Fig. 3D).
In contrast, there was a significant positive
correlation of phasic responses between
conditioned stimuli and reward (r ! 0.196,
P " 0.01) (fig. S4). Thus, the phasic and
sustained activations appear to occur inde-

pendently and within a single population of
dopamine neurons.

Although the sustained activation occurs
in response to reward uncertainty, it is impor-
tant to know whether it is specific to motiva-
tionally relevant stimuli or generalizes to all
uncertain events. We conditioned two visual
stimuli in a series, with the second following
the first in only half of the trials (P ! 0.5).
The stimuli were distinct but entirely analo-
gous to the other stimuli used for condition-
ing. Dopamine neurons showed neither
sustained (Figs. 3C and 4A) nor phasic re-
sponses (Fig. 2, D and E) to either the first or
second of these stimuli. Thus, the sustained
activation seems to be related to uncertainty
about motivationally relevant stimuli.

If the sustained dopamine activation is re-
lated to the motivational properties of uncertain

rewards, it should vary with reward magnitude.
We used distinct visual stimuli to predict the
magnitude of potential reward at P ! 0.5 and
found that the sustained activation of dopamine
neurons increased with increasing reward mag-
nitude (n ! 84, P " 0.02 in each monkey) (Fig.
4A) (11). The sustained activation could reflect
the discrepancy in potential reward rather than
absolute reward magnitude. To address this is-
sue, we performed an additional experiment (53
neurons in monkey B) in which reward was
delivered in each trial but varied between two
magnitudes at P ! 0.5. One stimulus predict-
ed a small or medium reward, another pre-
dicted a small or large reward, and a third
predicted a medium or large reward. The
sustained activation was maximal after the
stimulus predicting the largest variation
(small versus large reward) (P " 0.01) (Fig.

Fig. 3. Sustained activation
of dopamine neurons pre-
cedes uncertain rewards. (A)
Rasters and histograms of ac-
tivity in a single cell with re-

ward probabilities ranging from 0.0 (top) to 1.0 (bottom). This neuron showed sustained activation
before potential reward at all three intermediate probabilities. Both rewarded and unrewarded
trials are shown at intermediate probabilities; the longer vertical marks in the rasters indicate the
occurrence of reward. Bin width! 20 ms. (B) Population histograms at reward probabilities ranging
from 0.0 (top) to 1.0 (bottom). Histograms were constructed from every trial in each neuron in the
first picture set in monkey A (35 to 44 neurons per stimulus type; 638 total trials at P! 0 and 1200
to 1700 trials for all other probabilities). Both rewarded and unrewarded trials are included at
intermediate probabilities. At P ! 0.5, the mean ($SD) rate of basal activity in this population was
2.5 $ 1.4 impulses per second before stimulus onset and 3.9 $ 2.7 in the 500 ms before potential
reward. (C) Median sustained activation of dopamine neurons as a function of reward probability.
In analogy, means ($SEM) are shown in fig. S3B for a subset of responsive neurons (11). Symbols
have the same meaning as in Fig. 2C. For monkey A, set 1, the points at P ! 0.25 and 0.75 may
underestimate the amount of sustained activation, as 11 cells with unusually high levels of
sustained activity at P ! 0.5 (median activation of 72%) were not tested at P ! 0.25 or 0.75. This
was because, at the time of those experiments, the novel form of activation cast doubt on the
dopaminergic identity of the neurons. For P ! 0 in monkey A, set 2, and in monkey B, set 1, there
was a 50% chance of a neutral stimulus following the conditioned stimulus. (D) Sustained
responses (at P ! 0.5) plotted against phasic responses to unpredicted reward (P ! 0) for all
neurons recorded in both monkeys (188 neurons, with an additional 53 neurons tested with
different reward magnitudes as in Fig. 4B; five outlying neurons, in both dimensions, are not
shown).
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• checking that size of response at onset of CS is proportional to reward 
probability (Fiorillo et al, Science 2003)

fMRI data

• fMRI to study the underpinnings of RL in the human brain 
• model driven analysis  -- search the brain for predicted hidden variables 
that should control learning and decision making, eg state values and 
prediction errors. 

• prediction errors signals found in nucleus accumbens and orbito frontal 
cortex, both major dopaminergic targets. 

• O Doherty et al (2004) show that FMRI correlates of prediction error 
signals can be dissociated in dorsal and ventral striatum according to 
whether instrumental conditioning vs pavlovian condition, -- supporting an 
Actor/Critic architecture.
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short aside: functional magnetic 

resonance imaging (fMRI)
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• Frontal cortex responses in the patient group were 
suggestive of disrupted prediction-error processing.  

• Across subjects, the extent of disruption was significantly 
related to an individual’s propensity to delusion formation

Application to Psychiatry

26

Model based vs Model Free

• debated how much human learning is “model-free” vs 
“model-based” 

• model free corresponds to habit, inflexible 
• possibly relevant to pathology

Summary

• Optimal learning depends on prediction and control 

• The problem: prediction of future reward 

• The algorithm: TD learning 

• Neural implementation: dopamine-dependent learning in cortico-
striatal synapses in basal ganglia 

• RL has revolutionised how we think of learning in the brain 
implications for the understanding of disorders, such as 
Parkinson’s and schizophrenia, as well as addiction.


