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- 1990s- Purpose of the brain: infer state of the 
world from noisy and incomplete data [G. Hinton, P. 
Dayan, A. Pouget, R. Zemel, R. Rao, etc..] 

- Perception often modelled using the framework of 
Bayesian Inference  

A Bayesian theory of the Brain

P (h1|e) =
P (e|h1)P (h1)

P (e)

Reverend Thomas 
Bayes, 1702- 1761

manipulating probabilities -- degree of belief.  

“Instead of trying to come up with an answer to a question, the brain tries to come 
up with a probability that a particular answer is correct,” Alex Pouget. 

Behavioural studies: So what have we learned?

• Bayesian model offer elegant/ parsimonious description of behaviour 
(descriptive tool)  

•  Transparent assumptions and emphasis on “why” question. 
• Behaviour consistent with Bayesian hypothesis in that:  

- Brains take into account uncertainty, and combine sources of 
information combines information optimally (cue combination) 
- Use priors that are constantly updated  
- Those priors are consistent with (some approximation) of statistics 
of environment at different time scales. --> increase accuracy. 

• Deviations from optimality are possibly informative about underlying 
biological constraints, or nature of approximations. 

• Those priors (but also cost functions, likelihood) can be measured in 
individuals -- Bayesian modelling as a tool to describe the internal 
model used by individuals, possibly differentiating groups. 

What does this tell us about the Brain ? 



Is the Brain “Bayesian”? Debates
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•  Marr’s levels of analysis: computational / 

algorithmic / implementation  

• “Bayesian models are not intended to 

provide mechanistic or process accounts of 
cognition”  [Jacobs and Kruschke, 2010] 

• only an approximation of Bayesian 
inference anyway.

•Bowers and Davis, 2012; O’Reilly et al., 2012  
 

A Bit of Philosophy

Debates: criticism

• Confusion about optimality  

• Falsifiability: Flexible enough to account for everything 

• Rarely compared with alternative (non-Bayesian) hypotheses 

• Integration with previous research knowledge (just a new 
vocabulary?) 

• Lack of neurobiological predictions / evidence

Debates: some answers

• Optimality: claim is not the the system is optimally designed, but that 
given a potentially bad design, the combination of noisy inputs is 
optimal. 

• Bayesian approach: a framework =  typically not falsifiable 
only models are falsifiable. 

• Rarely compared with alternative hypotheses: should be compared 
with hypotheses formulated at same level (computational).  

• Not incompatible with mechanistic models, not even based on simple 
heuristics. 

 “There need to be nothing intrinsically Bayesian about 
algorithms  that approximate Bayesian inference” 

Griffith, Norris, Chater, Pouget (2012)



• How do populations of neurons represent uncertainty ? 

• Does neural activity represent probabilities? (log probabilities?) 

• Can we distinguish stages where the likelihoods, priors, posterior 

could be ‘measured’ experimentally ?

• Can networks of neurons implement optimal inference?

• How can we discover the priors used by the brain? 

• How can a prior be implemented? ( baseline - spontaneous activity, 
number of neurons, gain, connectivity?).

• Recently, active topic of theoretical research (e.g. A. Pouget, S. 

Deneve, P. Dayan, R. Rao, J. Fiser, M. Lengyel).

Neural implementation ?

Ideas (explicit representations):

• neural activity of a given neuron with preferred stimulus s represents 

the probability that feature s is present

• or log probability

• or log probability that a feature takes on a particular value38–42. 

• probabilities are functions: neural activity represents the 
parameters of that function, possibly parameter in basis function 
parametrisation

1) A question about Representation:  
how do neurons represent Probability Distributions? 
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Pouget et al 2013, 
Probabilistic brains: known and unknown 

Probabilistic population codes:
spiking rates could represent the coefficients of a basis function 
parametrisation of the log probability

Optimal cue integration with PPC

Author's personal copy

reward [43!!]. The weight of the evidence and the
favored target were different for different shapes. It
was found that monkeys assigned subjective weights to
the shapes that were close to the shapes’ true weights.
Moreover, firing rates of LIP neurons varied linearly with
the log likelihood ratio in each epoch of a trial.

At first sight, these experiments suggest that neurons
respond in proportion to log likelihood ratios, or log
probabilities (see Box 2). There are, however, a variety
of arguments suggesting that this is unlikely to be the case
[22!!,44]; for instance, it is not always possible to recover
the log odds of a decision solely from LIP activity under
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Figure 3

Schematic of probabilistic population coding for perceptual computation. One or multiple stimuli elicit population patterns of activity. Each pattern
encodes a probability distribution over the stimulus through Bayes’ rule. In perceptual tasks like cue combination, decision making, or visual search,
these probability distributions have to be manipulated in specific ways to achieve optimality. Now the key problem is to establish a ‘dictionary’
between such probabilistic computations and neural operations on population patterns of activity, assuming a form of neural variability. Using those
neural operations, the brain will retain full probabilistic information about the variable(s) of interest at all intermediate stages of computation. Eventually,
a motor action is generated or a high-level judgment is made (for example, about target presence in a visual search task).

Figure 2

Optimal cue integration with probabilistic population codes [22!!]. The cues elicit activity in input populations r1 and r2, indicated by green and blue dots
(neurons are ordered by their preferred stimulus). A simple linear combination of the population patterns of activity, r3 =W1r1 +W2r2, guarantees optimal
cue integration, if neural variability is Poisson-like. The dialog boxes show the probability distributions over the stimulus encoded in each population
on a single trial. Optimal cue integration is characterized by a multiplication of probability distributions over the stimulus, p(sjr3) / p(sjr1)p(sjr2). The
synaptic weight matrices W1 and W2 depend on the statistics of the input populations, but do not have to be adjusted over trials.

Current Opinion in Neurobiology 2008, 18:217–222 www.sciencedirect.com

A simple linear combination of the population patterns of activity  guarantees 

optimal integration if neural variability is Poisson-like.

[Ma, Beck, Latham & Pouget, Nat Neuro 2006]



• very few plausible computational models proposed for a neural 

implementation of probabilistic learning that would provide easily testable 

predictions

• 2 categories :  

1) Probabilistic Population Codes (Pouget, Latham, Deneve, ..)  Neural 

activities represent parameters of the probability distribution. A full 

probability distribution is represented (implicitly) at any moment in time. 

2) Sampling Hypothesis (Fiser, Lengyel, ..): Neural activities represent the 

latent variables themselves, variability represents uncertainty.

A question about Representation:  
how do neurons represent Probability Distributions? 

•  What makes certain stimuli bistable ? (Necker Cube, 

Binocular Rivalry)

• Reflecting the fact that the posterior is bimodal?

• Hypothesis : the visual system draws a sequence of 

samples from the posterior over scene interpretations

• Gershman, Vul, Tenenbaum NIPS 2009

Sampling Hypothesis: Experimental Evidence

Figure 1: (A) Necker cube. (B) Binocular rivalry stimuli. (C) Markov random field image model with lattice
and ring (D) topologies. Shaded nodes correspond to observed variables; unshaded nodes correspond to hidden
variables.

which is expected to be extremely high-dimensional and complex. The visual system might be
able to evaluate only relative probabilities of two similar hypotheses (as in Metropolis-Hastings),
or to compute local conditional posteriors of one scene variable conditioned on its neighbors (as
in Gibbs sampling). We also do not make extra assumptions about weighting samples based on
memory decay, or require that conscious perceptual decisions be based on a memory for samples;
consciousness has access to only the current state of the Markov chain, reflecting the observer’s
current brain state.

Here we show that several characteristic phenomena of multistability derive naturally from applying
standard MCMC inference to Markov random fields (MRFs) – high dimensional, loosely coupled
graphical models with spatial structure characteristic of many low-level and mid-level vision prob-
lems. Specifically, we capture the classic findings of Gamma-distributed mode-switching times in
bistable perception; the biasing effects of contextual stimuli; the situations in which fused (rather
than bistable) percepts occur, and the propagation of perceptual switches in traveling waves across
the visual field. Although it is unlikely that this MCMC scheme corresponds exactly to any process
in the visual system, and it is almost surely too simplified or limited as a general account of percep-
tual multistability, our results suggest that MCMC could provide a promising foundation on which
to build rational process-level accounts of human perception and perhaps cognition more generally.

2 Markov random field image model

Our starting point is a simple and schematic model of vision problems embodying the idea that
images are generated by a set of hidden variables with local dependencies. Specifically, we assume
that each observed image element xi is connected to a hidden variable zi by a directed edge, and each
hidden variable is connected to its neighbors (in set ci) by an undirected edge (thus implying that
each hidden variable is conditionally independent of all others given its neighbors). This Markov
property is often exploited in computer vision [8] because elements of an image tend to depend on
their adjacent neighbors, but are less influenced by more distant elements. Formally, this assumption
corresponds to a Markov random field (MRF). Different topologies of the MRF (e.g., lattice or ring)
can be used to capture the structure of different visual objects (Figure 1C,D). The joint distribution
over configurations of hidden and observed variables is given by:

P (z,x) = Z�1 exp

�
�

⇤

i

R(xi|zi)� V (zi|zci)

⇥
, (1)

where Z is a normalizing constant, and R and V are potential functions. In a Gaussian MRF, the
conditional potential function over hidden node i is given by

V (zi|zci) = µi � �
⇤

j⇥ci

(zi � zj)2, (2)

where � is a precision (inverse variance) parameter specifying the coupling between neighboring
hidden nodes; when � is large, a node will be strongly influenced by its neighbors. The µi term
represents the prior mean of zi, which can be used to encode contextual biases, as we discuss below.

We construct the likelihood potential R(xi|zi) to express the ambiguity of the image by making it
multimodal: several different hidden causes are equally likely to have generated the image. Since
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Neural Substrate of Priors

• Priors:  Where in the brain ? 

• Top down inputs (predictive coding)

• Increase or decrease of activity ?  [e.g. Summerfield & Egner 2009]


• in Tuning of neurons?  [Gershick et al 2011; Fischer & Pena 2011]

• in Baseline activity? [Berkes et al 2010]


• The representation or the read-out?


 

• different time scale // different mechanisms

Experimental investigation of expectations

•  is problematic, due to confounds between expectations and attention, 

adaptation and learning.   

• Attention = enhancement of responses

• expectations expressed as suppression of activity?  
[Summerfield & Egner, 2009]

• e.g. mismatch negativity: response to odd stimulus in a sequence -- 

consistent with predictive coding.



Can the effect of prior expectations be observed in fMRI ?
Can the effect of prior expectations be observed in 
fMRI ?

- Decoding from visual cortex : Does activity in visual cortex (V1, V2, V3, V4, MT) 
correspond to real stimulus or percept ? A: percept.

- Integration of prior expectations and sensory information in population activity is 
observed at the level of BOLD signals as early as in V1

2. Neural Implementation of probabilities and priors? 

• It has also been proposed that the selectivities of neurons could be a 

way by which priors are implemented. 
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Interpreting Orientation: A prior on Cardinal Directions.

• Girshick and Simoncelli, Nat Neuro 2010.
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for each class of stimuli. For the low-noise stimuli, all subjects exhib-
ited better discrimination at the cardinals, a well-studied behavior 
known as the oblique effect15. As there was no noise in the stimuli, 
these inhomogeneities must arise from non-uniformity in the ampli-
tude of the internal noise at different orientations. This effect was 
diminished with the high-noise stimuli, for which the inhomogeneous 
internal noise is presumably dominated by external stimulus noise. 
As expected, discrimination thresholds were significantly higher 
for the high-noise stimuli than the low-noise stimuli for all subjects 
(98% of all just noticeable differences (JNDs) across orientations and 
subjects, sign test P  0). The cross-noise variability data (Fig. 3c 
and Supplementary Fig. 1b) show a moderate oblique effect whose 
strength lies between that of the low noise versus low noise and high 
noise versus high noise conditions (98% of high noise versus low noise 
JNDs are larger than low noise versus low noise JNDs, sign test P  0; 
73% of high noise versus low noise JNDs are smaller than high noise 
versus high noise JNDs, sign test P < 0.0005).

A non-uniform prior will cause a bias in estimation. Biases are 
not observable when comparing same-noise stimuli, as both stimuli 
presumably have the same bias. Cross-noise comparisons can be used 
to estimate relative bias13 (that is, the difference between the low- and 
high-noise biases) by computing the difference between the mean 
orientation of the two stimuli when they are perceived to be equal. 
This represents the counter-clockwise rotation that must be applied 
to the high-noise stimulus to perceptually match the orientation of 
the low-noise stimulus (Fig. 3d and Supplementary Fig. 1c). All 
subjects showed a systematic bimodal relative bias, indicating that a 
high-noise stimulus was perceived to be oriented closer to the nearest 
cardinal orientation (that is, vertical or horizontal) than the low-noise 
 stimulus of the same orientation. The relative bias was 0 at the cardinal 
and oblique orientations, and as large as 12 deg in between. These 
 relative biases suggest that perceived orientations are attracted toward  

the cardinal directions and repelled from the obliques, and that these 
effects are stronger for the high-noise stimuli (Fig. 4).

Estimation of observers’ likelihood and prior
If our human observers are performing Bayesian inference, what is 
the form of the prior probability distribution that they are using? We 
assume that our observers select the most probable stimulus accord-
ing to the posterior density p( |m) (known as the maximum a pos-
teriori estimate). We noted that the circular mean of the posterior 
produced similar estimates, as the posterior distributions are only 
slightly asymmetric (Supplementary Fig. 2). According to Bayes’ rule, 
the posterior is the product of the prior p( ) and the likelihood func-
tion p(m| ), normalized so that it integrates to 1. We assume that the 
decoder is based on the correct likelihood function, which is simply 
the measurement noise distribution, interpreted not as a probability 
distribution over measurements but as a function of the stimulus for 
a particular measurement. That is, we assume the observer knows 
and takes into account the uncertainty of each type of stimulus16 (see 
Online Methods).

Figure 3 Stimuli and experimental results. (a) Stimuli are arrays of 
oriented Gabor functions (contrast increased for illustrative purposes). 
Left, a low-noise stimulus (L). Right, a high-noise stimulus (H) with mean 
orientation slightly more clockwise. Observers indicated whether the right 
stimulus was oriented counter-clockwise or clockwise relative to the left 
stimulus. (b) Variability for the same-noise conditions for representative 
subject S1 (left) and the mean subject (right), expressed as the 
orientation discrimination threshold (that is, JND). Mean subject values 
are computed by pooling raw choice data from all five subjects. Error bars 
indicate 95% confidence intervals. Dark gray and light gray curves are 
fitted rectified sinusoids, used to estimate the widths of the underlying 
measurement distributions. Pale gray regions indicate  1 s.d. of 1,000 
bootstrapped fits. (c) Cross-noise (high noise versus low noise) variability 
data (circles). The horizontal axis is the orientation of the high-noise 
stimulus. (d) Relative bias, expressed as the angle by which the  
high-noise stimulus must be rotated counter-clockwise so as to be 
perceived as having the same mean orientation as the low-noise stimulus.
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Figure 4 Example cross-noise comparison. The vertical axis is the 
measured orientation, m( ), and the horizontal axis is estimated stimulus 
orientation, ˆ( ( ))m . Measurements corresponding to low-noise stimuli, 
mL( L) (dark gray), or high-noise stimuli, mH( H) (light gray), enter on 
the left. Each measurement is transformed by the appropriate nonlinear 
estimator (solid curves) into an estimate (bottom). The estimators 
correspond to those of the mean observer exaggerated for illustration 
as in Figure 2. The high-noise estimator exhibits larger biases than the 
low-noise estimator. The sensory noise of the measurements propagates 
through the estimator, resulting in estimator distributions (note these 
should not be confused with the posteriors). Comparison of these 
distributions produces a single point on the psychometric function.
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The observer model (Fig. 1) provides a link between the likelihood 
and prior and the two experimentally accessible aspects of percep-
tual behavior: bias and variability. Perceptual variability is caused by 
variability in the estimates, ˆ( ( ))m , which arises from variability in 
the measurements, m( ). Relative bias corresponds to the difference 
in orientation between two stimuli of different uncertainty, L− H, 
whose estimates are (on average) equal, ˆ ( ( )) ˆ ( ( ))H H H L L Lm m .  
Note that the two estimator functions, ˆ

H and ˆ
L, are dependent on 

noise level. These relationships allow us to estimate the likelihood 
width and prior (as functions of orientation) from the experimentally 
measured bias and variability13 (see Online Methods). Specifically, we 
obtained the likelihood functions directly from the same-noise vari-
ability data (Fig. 3b and Supplementary Fig. 1a). We represented the 
prior as a smooth curve and determined its shape for each observer by 
maximizing the likelihood of the raw cross-noise data. The recovered 
priors of all observers were bimodal, with peaks at the two cardinal 
orientations (Fig. 5 and Supplementary Fig. 3).

Environmental orientation distribution
It has been suggested that the prevalence of vertical and horizontal ori-
entations in the environment is the underlying cause of the anisotropy 
of orientation discriminability (that is, the oblique effect)17. Orientation 
content in images is often studied by averaging the Fourier amplitude 
spectrum over all spatial scales18,19. For the purposes of our study, we 
defined the environmental distribution as the probability distribution 
over local orientation in an ensemble of visual images17, measured at a 
spatial scale roughly matched to peak human sensitivity (approximately 
the same as the scale of our experimental stimuli).

We obtained our measurements from a large database of photo-
graphs of scenes of natural content. We estimated the local image 
gradients by convolution with a pair of rotation-invariant filters20, 
identified strongly oriented regions, computed their dominant 
orientations (Fig. 6a) and formed histograms of these values. The 
resulting estimated environmental distribution indicates a predomi-
nance of cardinal orientations (Fig. 6b). This is consistent with the 
orientation priors that we recovered from our human subjects (Fig. 5  
and Supplementary Fig. 3), and therefore explains the cardinal 
biases in their perception. We chose the spatial scale that corres-
ponds most closely to our 4 cycles per deg experimental stimuli and 
human peak spatial frequency sensitivity of 2–5 cycles per deg21. We 
found that this choice did not have a strong effect on the results: the 
dominance of cardinal orientations was similar across spatial scales  
(Supplementary Fig. 4).

Observers  priors versus the environmental distribution
We compared the estimated human observers’ priors and environ-
mental distribution, both directly (as probability distributions) and 

in terms of their predicted perceptual effects (bias and variability in 
cross-noise comparisons). The observers’ prior probability distribu-
tions and the environmental distribution all had local maxima at the 
cardinals and minima at the obliques, and the heights of the peaks and 
troughs were quite similar (Fig. 7a). We computed perceptual predic-
tions of the trial-by-trial behavior of the Bayesian encoder-decoder 
model by comparing simulated responses to each pair of stimuli 
shown to our observers. We found that the relative variability (Fig. 7b 
and Supplementary Fig. 1b) and bias (Fig. 7c and Supplementary 
Fig. 1c) are similar for a model that uses either the environmental 
distribution or the human observer’s prior, and both closely resemble 
the human behavior.

To assess the strength of this result, we also considered the null 
hypothesis that observers use a uniform prior (equivalent to assum-
ing that observers perform maximum-likelihood estimation).  
A Bayesian-observer model with a uniform prior does not produce the 
distinct bimodal relative bias (Fig. 7c and Supplementary Fig. 1b). 
Instead, this model either produces no bias (for example, mean subject 
and subjects S1, S3, S4 and S5) or a small relative bias away from the 
cardinal orientations (for example, subject S2). This repulsive rela-
tive bias is a result of the asymmetrical shape of the likelihoods near  
the cardinals, which pushes the low-noise estimates toward the 
 cardinals more than the high-noise estimates. Furthermore, the 
uniform-prior observer predicts little or no oblique effect for the 
cross-noise condition, unlike the human observers (Fig. 7b and 
Supplementary Fig. 1c). This indicates that the human observers’ 
biases cannot arise purely from inhomogeneities in sensory noise but 
require a non-uniform prior.

We also compared the ability of Bayesian encoder-decoder  
models with different priors to explain the raw experimental data. 
We computed the log likelihoods of the two non-uniform prior 
models and linearly rescaled them so that a value of 0 corresponds 
to the uniform-prior model (degrees of freedom = 0) and a value 
of 1 corresponds to the raw psychometric fits (degrees of freedom 
= 24; Fig. 7d). In general, a Bayesian observer with the recovered 
observer’s prior (degrees of freedom = 6) performed quite well, 
often on a par with the raw psychometric fits to the data. For the 
mean observer, a Bayesian observer using the environmental dis-
tribution (degrees of freedom = 0) as a prior predicted the data 
even better than using the observer’s recovered prior and better  
than the psychometric fits. It is important to note that these  
models are not nested; the recovered observer’s prior is constrained 
to a family of smooth shapes (see Online Methods) and cannot fully 
capture the peakedness of the environmental distribution. These 
results provide strong support of the hypothesis that human obser-
vers use prior knowledge of the non-uniform orientation statistics 
of the environment.
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Figure 5 Recovered priors for subject S1 and mean subject. The control 
points of the piecewise cubic spline (see Online Methods) are indicated 
by black dots. The gray error region shows  1 s.d. of 1,000 bootstrapped 
estimated priors.

Figure 6 Natural image statistics. (a) Example natural scene from 
Figure 1, with strongly oriented locations marked in red. (b) Orientation 
distribution for natural images (gray curve).
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enhanced actin depolymerization at the mDia1-
bound barbed end. This inhibition occurs in the
submillimolar range of Pi, which is two orders of
magnitude lower than the dissociation constant of
Pi and G-actin (26). Thus, binding of Pi to F-actin
inhibits profilin-induced depolymerization (Fig. 4E).

ADP-G-actin (5 mM) elongated mDia1-bound
F-actin faster in the presence of 20 mM Pi than in
its absence (Fig. 3C). This effect of Pi was more
prominent in the presence of profilin than in its
absence (Fig. 3C). The decrease in the actin off-
rate (Fig. 4D) corresponds well with the increase
in the ADP-actin elongation rate by 3 to 20 mM
Pi (Fig. 4E). We thus suggest that Pi cancels the
inhibitory effect of profilin on ADP-actin elon-
gation (Fig. 3C) by abolishing the enhanced
barbed end off-rate. The discrepancy of the effect
of 1 mM Pi on depolymerization and assembly
(Fig. 4, D, and E) is because slow dissociation of
Pi prebound to a fraction of the ADP-F-actin
subunits [dissociation constant (Kd) ≈1.5 mM]
may limit terminal subunit dissociation during de-
polymerization (26), but not dissociation of as-
semblingADP-actin, which ismostly free from Pi.
Profilin thus allows processive elongation of the
FH1-FH2–bound barbed end regardless of the
actin-bound nucleotide, but attenuates ADP-actin
elongation by increasing the barbed end off-rate.
Our results urge reconsideration of theATP-specific
acceleration mechanism for formin-associated
actin elongation.

Helical rotation of mDia1 was observed dur-
ing processive ADP-actin elongation in the pres-
ence of Pi (Fig. 4F and movie S7). The distance
per half-rotation was 35.8 nm (Fig. 4G).

Our data demonstrate continuous rotation of
mDia1-bound filaments during both elongation
and depolymerization. The distance per half-
rotation of F-actin is in the range of 34.6 to 36.8
nm regardless of the actin-bound nucleotide and
presence of Pi and profilin (Figs. 2 to 4). These

findings indicate that helical rotation of FH2 is an
intrinsic property derived from the helical struc-
ture of F-actin. Cellular actin filaments are highly
cross-linked as evidenced by single-molecule ob-
servations showing movement of actin subunits
with no change in their relative positions (29).
Therefore, formins must rotate in the cell. The
rotation speed of for3p at the cell tip and proces-
sivelymovingmDia1 can reach 250 and 1700 rpm,
respectively. If anchoring the growing end of
F-actin is the function of formins, the link be-
tween formins and cellular structures must be flex-
ible. Alternatively, formin-mediated actin elongation
may be regulated by torsional stress in F-actin.

Conversely, formins might modulate the sta-
bility of F-actin by helical rotation. Torsional stress
induces destabilization of the filament (30).
Cofilin, the major actin depolymerizing factor,
twists the strand of F-actin, which is thought to
contribute to actin disassembly (28). Our data
have opened up the possibility that actin elon-
gation and remodeling could be regulated by
axial torsion in the filament. Our findings should
help elucidate the actin turnover mechanism reg-
ulated by formins in the cell.
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Spontaneous Cortical Activity Reveals
Hallmarks of an Optimal Internal
Model of the Environment
Pietro Berkes,1† Gergő Orbán,1,2,3 Máté Lengyel,3* József Fiser1,4,5*

The brain maintains internal models of its environment to interpret sensory inputs and to prepare
actions. Although behavioral studies have demonstrated that these internal models are optimally
adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown.
Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous
neural activities to inferences and prior expectations in an internal model and predicted that they
should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical
activity of awake ferrets during development. Similarity between spontaneous and evoked activities
increased with age and was specific to responses evoked by natural scenes. This demonstrates the
progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

Our percepts rely on an internal model of
the environment, relating physical pro-
cesses of the world to inputs received by

our senses, and thus their veracity critically hinges
upon how well this internal model is adapted to
the statistical properties of the environment. For

example, internal models in vision are used to
extract the features, such as low-level oriented
edges or high-level objects, that gave rise to the
retinal image (1). This requires that the internal
model is adapted to the cooccurrence statistics of
visual features in the environment and the way
they jointly determine natural images. Several aspects
of perception (2, 3), motor control (4), decision
making (5, 6), and higher cognitive reasoning (7, 8)
are governed by such statistically optimal internal
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Spontaneous activity represents the prior 

•  Evoked activity should represent the posterior for a given input image

• Spontaneous activity should represent the posterior for a blank stimulus

• This posterior should converge to prior distribution.

Spontaneous activity is the statistical prior:  
Berkes et al, Science 2011

•  Measured population activity within visual 

cortex of awake, freely viewing ferrets in 

response to natural scene movies and in 

darkness at  different stages in development 

(postnatal P29, P44 and mature P83 and P129)

• Found that divergence between Evoked 

Activity and Spontaneous Activity decreases with 

age

• Similarity between EA and SA is specific to 

natural scenes

• Temporal correlations similar as well.

Spontaneous activity is the statistical prior:  
Berkes et al, Science 2011

2016



3. How could approximate inference be implemented

Machine learning informs us about possible approximate inference 
schemes:

• Sampling, Gibbs and MCMC

• Deterministic approximation methods:  
Laplace approximation and variational approximations 
 

On type of variational approximation: predictive coding.

•  perceptual inference as an iterative matching proces of top-down predictions against 
bottom-up evidence, along the visual cortical hierarchy.

• expectations or `representational units’ that encode prediction, and error units that 

encode mismatch between sensory evidence and prediction and forward it to higher 
level.

• Mumford 1992, Rao & Ballard 1999; Lee & Mumford 2003; Friston 2005.

• experimental evidence still unclear

Priors as top-down inputs : Predictive Coding

Predictive Coding:  
Neural Implementation of Bayesian Inference

prior p(h)

input p(e|h)

posterior  
p(h|e)=p(e|h)p(h)

• Learning involves making the predictions more and more similar to 
the input: minimizing the prediction error.

Predictive Coding:  
Neural Implementation of Bayesian Inference

sensory signals: high (left) or low precision (right)

posterior
prior 

• Algorithms based on minimising prediction errors can approximate 
Bayesian inference.



Evidence for Predictive Coding

Shape perception reduces activity in human primary
visual cortex
Scott O. Murray*†, Daniel Kersten‡, Bruno A. Olshausen*§, Paul Schrater‡¶, and David L. Woods!**
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Visual perception involves the grouping of individual elements into
coherent patterns that reduce the descriptive complexity of a
visual scene. The physiological basis of this perceptual simplifica-
tion remains poorly understood. We used functional MRI to mea-
sure activity in a higher object processing area, the lateral occipital
complex, and in primary visual cortex in response to visual ele-
ments that were either grouped into objects or randomly arranged.
We observed significant activity increases in the lateral occipital
complex and concurrent reductions of activity in primary visual
cortex when elements formed coherent shapes, suggesting that
activity in early visual areas is reduced as a result of grouping
processes performed in higher areas. These findings are consistent
with predictive coding models of vision that postulate that infer-
ences of high-level areas are subtracted from incoming sensory
information in lower areas through cortical feedback.

One of the extraordinary capabilities of the human visual
system is its ability to rapidly group elements in a complex

visual scene, a process that can greatly simplify the description
of an image. For example, a collection of parallel lines can be
described as a single texture pattern without specifying the
location, length, and orientation of each element within the
pattern. Such grouping processes are reflected in the activities of
neurons at various stages of the visual system. For example, the
response of a neuron in primary visual cortex (V1) to a single
visual element can be suppressed if the element in its receptive
field shares the same orientation as surrounding elements, or
enhanced if orientations differ (1). These pattern context effects
in V1 are thought to be mediated by both local connections (2)
and interactions with higher areas (3).

In natural scenes, elements are often grouped when they are
perceived as belonging to the same object. This case is partic-
ularly interesting from a physiological perspective because object
shape is a feature that is represented only in higher stages of the
visual system, so any influence of perceived shape on lower areas
would require feedback processes. Although feedback is gener-
ally thought of as a process where activity in lower areas is
enhanced by activity occurring in higher areas, recent work on
probabilistic models has pointed to the importance of a phe-
nomenon termed ‘‘explaining away’’: a competition that occurs
between alternative hypotheses when attempting to infer the
probable cause of an event (4). When applied to models of visual
perception, perceptual hypotheses are thought to compete via
feedback connections from higher visual areas projecting their
predictions about the stimulus to lower stages, where they are
then subtracted from incoming data. According to such predic-
tive coding models, the activity of neurons in lower stages will
decrease when neurons in higher stages can ‘‘explain’’ a visual
stimulus (5, 6). These models can be contrasted with traditional
feature-detection models, which posit that visual features are
extracted in a largely sequential, feed-forward manner with little
influence from higher areas on lower areas (e.g., refs. 7 and 8).

Recent neuroimaging studies have shown that the lateral
occipital complex (LOC) is a higher visual area critical for object
shape perception. The LOC was first identified by its increased

response to images of objects versus scrambled versions of the
same images and textures (9, 10). More recent studies have
shown that this area increases in activity whenever individual
features are grouped into an object or a coherent scene (11).
Thus, the LOC may subserve high-level grouping of low-level
image features. In the present study, we examined the effect of
perceived shape on activity in V1 and in the LOC in a series of
functional MRI experiments where visual elements were either
perceived as coherent shapes or as random elements. We
observed reduced activity in V1 and increased activity in the
LOC when elements were grouped into coherent shapes, con-
sistent with the view that higher visual areas ‘‘explain away’’
activity in lower areas through feedback processes.††

Materials and Methods
Experiment 1. Drawings were presented of (i) random lines, (ii)
lines that formed 2D shapes, and (iii) lines that formed 3D
shapes (Fig. 1A). The stimuli were white lines on a black
background. The 2D shapes were generated by randomly select-
ing 4–7 vertices at a minimum distance from fixation and
connecting the vertices. The random lines were created by
breaking the 2D shapes at their intersections and shifting the
lines in the display. The 3D shapes were the same as the 2D
shapes, with the addition of small extensions that added per-
ceived depth. The lines in all three conditions were equated for
their retinotopic distribution, with each stimulus condition hav-
ing equivalent mean distance and variance from fixation (ran-
dom, mean ! 4.05° from fixation, SD ! 0.93°; 2D, mean ! 4.06,
SD ! 0.94; 3D, mean ! 3.94, SD ! 0.97; see Fig. 4, which is
published as supporting information on the PNAS web site,
www.pnas.org).

There were 40 different shapes in each condition. Each shape
was presented for 750 ms in blocks lasting 30 s. Subjects viewed
each condition a total of eight times over two imaging runs. To
independently define the area of V1 processing the line draw-
ings, a flickering (8 Hz) counterphase checkerboard ring with the
same mean eccentricity as the line stimuli was presented seven
times in 20-s blocks alternating with a gray screen. The area we
designated as the LOC was defined as active voxels in a
comparison between the 3D lines and random lines condition,
and located immediately posterior to motion-sensitive visual
area (MT").

The number of line segments, line orientation, retinotopic
distribution, and overall luminance were equated across stimulus
classes. Nevertheless, two minor differences in stimulus proper-
ties remained: there were line terminations in the random line
stimuli and more parallel lines in the 3D shapes. To evaluate the

Abbreviations: BOLD, blood oxygen level-dependent; LOC, lateral occipital complex; MT",
motion-sensitive visual area; ROC, receiver operating characteristic; ROI, region of interest;
SFM, structure-from-motion; V1, primary visual cortex.
†To whom correspondence should be addressed. E-mail: somurray@ucdavis.edu.
††This work was presented in part at Human Brain Mapping (June 22–26, 1999, Düsseldorf,
Germany), Association for Research in Vision and Ophthalmology (May 9–14, 1999,
Fort Lauderdale, FL), and Society for Neuroscience (November 10–15, 2001, San Diego)
conferences.
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visual scene. The physiological basis of this perceptual simplifica-
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sure activity in a higher object processing area, the lateral occipital
complex, and in primary visual cortex in response to visual ele-
ments that were either grouped into objects or randomly arranged.
We observed significant activity increases in the lateral occipital
complex and concurrent reductions of activity in primary visual
cortex when elements formed coherent shapes, suggesting that
activity in early visual areas is reduced as a result of grouping
processes performed in higher areas. These findings are consistent
with predictive coding models of vision that postulate that infer-
ences of high-level areas are subtracted from incoming sensory
information in lower areas through cortical feedback.

One of the extraordinary capabilities of the human visual
system is its ability to rapidly group elements in a complex

visual scene, a process that can greatly simplify the description
of an image. For example, a collection of parallel lines can be
described as a single texture pattern without specifying the
location, length, and orientation of each element within the
pattern. Such grouping processes are reflected in the activities of
neurons at various stages of the visual system. For example, the
response of a neuron in primary visual cortex (V1) to a single
visual element can be suppressed if the element in its receptive
field shares the same orientation as surrounding elements, or
enhanced if orientations differ (1). These pattern context effects
in V1 are thought to be mediated by both local connections (2)
and interactions with higher areas (3).

In natural scenes, elements are often grouped when they are
perceived as belonging to the same object. This case is partic-
ularly interesting from a physiological perspective because object
shape is a feature that is represented only in higher stages of the
visual system, so any influence of perceived shape on lower areas
would require feedback processes. Although feedback is gener-
ally thought of as a process where activity in lower areas is
enhanced by activity occurring in higher areas, recent work on
probabilistic models has pointed to the importance of a phe-
nomenon termed ‘‘explaining away’’: a competition that occurs
between alternative hypotheses when attempting to infer the
probable cause of an event (4). When applied to models of visual
perception, perceptual hypotheses are thought to compete via
feedback connections from higher visual areas projecting their
predictions about the stimulus to lower stages, where they are
then subtracted from incoming data. According to such predic-
tive coding models, the activity of neurons in lower stages will
decrease when neurons in higher stages can ‘‘explain’’ a visual
stimulus (5, 6). These models can be contrasted with traditional
feature-detection models, which posit that visual features are
extracted in a largely sequential, feed-forward manner with little
influence from higher areas on lower areas (e.g., refs. 7 and 8).

Recent neuroimaging studies have shown that the lateral
occipital complex (LOC) is a higher visual area critical for object
shape perception. The LOC was first identified by its increased

response to images of objects versus scrambled versions of the
same images and textures (9, 10). More recent studies have
shown that this area increases in activity whenever individual
features are grouped into an object or a coherent scene (11).
Thus, the LOC may subserve high-level grouping of low-level
image features. In the present study, we examined the effect of
perceived shape on activity in V1 and in the LOC in a series of
functional MRI experiments where visual elements were either
perceived as coherent shapes or as random elements. We
observed reduced activity in V1 and increased activity in the
LOC when elements were grouped into coherent shapes, con-
sistent with the view that higher visual areas ‘‘explain away’’
activity in lower areas through feedback processes.††

Materials and Methods
Experiment 1. Drawings were presented of (i) random lines, (ii)
lines that formed 2D shapes, and (iii) lines that formed 3D
shapes (Fig. 1A). The stimuli were white lines on a black
background. The 2D shapes were generated by randomly select-
ing 4–7 vertices at a minimum distance from fixation and
connecting the vertices. The random lines were created by
breaking the 2D shapes at their intersections and shifting the
lines in the display. The 3D shapes were the same as the 2D
shapes, with the addition of small extensions that added per-
ceived depth. The lines in all three conditions were equated for
their retinotopic distribution, with each stimulus condition hav-
ing equivalent mean distance and variance from fixation (ran-
dom, mean ! 4.05° from fixation, SD ! 0.93°; 2D, mean ! 4.06,
SD ! 0.94; 3D, mean ! 3.94, SD ! 0.97; see Fig. 4, which is
published as supporting information on the PNAS web site,
www.pnas.org).

There were 40 different shapes in each condition. Each shape
was presented for 750 ms in blocks lasting 30 s. Subjects viewed
each condition a total of eight times over two imaging runs. To
independently define the area of V1 processing the line draw-
ings, a flickering (8 Hz) counterphase checkerboard ring with the
same mean eccentricity as the line stimuli was presented seven
times in 20-s blocks alternating with a gray screen. The area we
designated as the LOC was defined as active voxels in a
comparison between the 3D lines and random lines condition,
and located immediately posterior to motion-sensitive visual
area (MT").

The number of line segments, line orientation, retinotopic
distribution, and overall luminance were equated across stimulus
classes. Nevertheless, two minor differences in stimulus proper-
ties remained: there were line terminations in the random line
stimuli and more parallel lines in the 3D shapes. To evaluate the
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possible contributions of these stimulus differences to V1 acti-
vations, a control experiment was performed. Portions of the line
segments in the 3D shapes were eliminated (introducing line
terminations), but in two different ways: (i) in the nonshape
condition, the corners were deleted and the remaining line
segments were shifted and!or rotated slightly (usually less than
15°) to remove perceived shape, and (ii) in the shape condition
only the middle portions of lines were deleted introducing line
terminations without significantly disrupting shape perception
(see Fig. 5, which is published as supporting information on the
PNAS web site). As in the initial experiment, the shape and
nonshape stimuli were controlled to have the same mean dis-
tance and variance from fixation.

Experiment 2. A second experiment was performed using structure-
from-motion (SFM) stimuli. Random-dot displays were presented
under three conditions: (i) stationary dots, (ii) projections of

random-dot patterns onto moving 3D geometric shapes (SFM),
and (iii) velocity-scrambled moving dots (Fig. 2A).

The stimuli contained 450 dots and subtended 10°. The dots
in the SFM stimuli were projected onto rigid geometric shapes
including cube, cylinder, and ‘‘house-shaped’’ figures. Dots were
randomly selected from a uniform distribution on the object
surface and kept fixed relative to the rotating object surface and
orthographically projected onto the image plane. The dots were
rotated on a randomly chosen 3D axis for 40° in 1.5° increments.
Each stimulus presentation lasted 890 ms, followed by a 110-ms
blank-screen delay before the next stimulus presentation. The
velocity-scrambled stimuli were created by using the same
starting positions as the SFM stimuli, then randomly assigning
each dot’s SFM velocity (speed and direction) to that of another
dot. Thus, the velocity-scrambled stimuli had identical velocities
as the SFM stimuli, but lacked any perceived 3D structure. The
stationary dot condition presented randomly chosen frames
from the SFM stimuli.

Fig. 1. Experiment 1. (A) Examples of the three different stimulus conditions. (B Left) Areas of increased (red!yellow) and decreased (blue) activity comparing
3D figures to random lines for a representative subject on a flattened representation of occipital cortex. (B Right) A flickering ring stimulus matching the mean
eccentricity of the line drawings was used to independently locate the portion of V1 where the line drawing stimuli occurred. The reduced activity for the 3D
figures in V1 is restricted to the cortical area representing the stimuli. The solid line indicates the representation of the vertical meridian, marking the boundary
of V1. The location of MT! defined by random dot motion is included as a reference. Fig. 6 shows the relative location of the ROIs and the location of the ‘‘cuts’’
to flatten the cortex. (C) The average percent signal change from the mean for the three conditions averaged over six subjects. All pair-wise comparisons are
significant, P " 0.001. Error bars are SEM. (D) The average time course of the MRI signal in the LOC (solid line) and V1 (dashed line). Percent signal change is from
the mean activation across all three conditions. Periods corresponding to the three conditions, random (R, white), 3D (dark gray), and 2D (light gray), are shown.
The dissociation between the LOC and V1 is clearly evident: as activity increases in the LOC, activity in V1 declines.

Murray et al. PNAS " November 12, 2002 " vol. 99 " no. 23 " 15165

N
EU

RO
SC

IE
N

CE

possible contributions of these stimulus differences to V1 acti-
vations, a control experiment was performed. Portions of the line
segments in the 3D shapes were eliminated (introducing line
terminations), but in two different ways: (i) in the nonshape
condition, the corners were deleted and the remaining line
segments were shifted and!or rotated slightly (usually less than
15°) to remove perceived shape, and (ii) in the shape condition
only the middle portions of lines were deleted introducing line
terminations without significantly disrupting shape perception
(see Fig. 5, which is published as supporting information on the
PNAS web site). As in the initial experiment, the shape and
nonshape stimuli were controlled to have the same mean dis-
tance and variance from fixation.

Experiment 2. A second experiment was performed using structure-
from-motion (SFM) stimuli. Random-dot displays were presented
under three conditions: (i) stationary dots, (ii) projections of

random-dot patterns onto moving 3D geometric shapes (SFM),
and (iii) velocity-scrambled moving dots (Fig. 2A).

The stimuli contained 450 dots and subtended 10°. The dots
in the SFM stimuli were projected onto rigid geometric shapes
including cube, cylinder, and ‘‘house-shaped’’ figures. Dots were
randomly selected from a uniform distribution on the object
surface and kept fixed relative to the rotating object surface and
orthographically projected onto the image plane. The dots were
rotated on a randomly chosen 3D axis for 40° in 1.5° increments.
Each stimulus presentation lasted 890 ms, followed by a 110-ms
blank-screen delay before the next stimulus presentation. The
velocity-scrambled stimuli were created by using the same
starting positions as the SFM stimuli, then randomly assigning
each dot’s SFM velocity (speed and direction) to that of another
dot. Thus, the velocity-scrambled stimuli had identical velocities
as the SFM stimuli, but lacked any perceived 3D structure. The
stationary dot condition presented randomly chosen frames
from the SFM stimuli.
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Bayesian models successful at the behavioural level

• As as benchmark for performance, provide also constraints to more 

mechanistically models

• Much to do about: characterisation of internal models, and how they are 

learned, and the limits of learning.

• Applications to Psychiatry.

• some confusion about the claims -- what exactly makes a neural model 

“Bayesian”

• Neural implementation largely unknown.

• Looking at update of priors / expectations for simple features (motion, speed) 

might be a good way to start.

Conclusion


