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The 'Bayesian’ approach to perception,
cognition and disease (3)

Peggy Seriés,
IANC, University of Edinburgh

A Bayesian theory of the Brain

- 1990s- Purpose of the brain: infer state of the
world from noisy and incomplete data [G. Hinton, P.
Dayan, A. Pouget, R. Zemel, R. Rao, etc..]

- Perception often modelled using the framework of
Bayesian Inference

Reverend Thomas
Plelhy) P(h1) Bayes, 1702- 1761
P(e)

P(hile) =

. likelihood x prior
posterior= ——————————
normalizing constant

manipulating probabilities -- degree of belief.

"Instead of trying to come up with an answer to a question, the brain tries to come
up with a probability that a particular answer is correct,” Alex Pouget.

Behavioural studies: So what have we learned?

» Bayesian model offer elegant/ parsimonious description of behaviour
(descriptive tool)

* Transparent assumptions and emphasis on “why” question.

« Behaviour consistent with Bayesian hypothesis in that:
- Brains take into account uncertainty, and combine sources of
information combines information optimally (cue combination)
- Use priors that are constantly updated
- Those priors are consistent with (some approximation) of statistics
of environment at different time scales. --> increase accuracy.

* Deviations from optimality are possibly informative about underlying
biological constraints, or nature of approximations.

* Those priors (but also cost functions, likelihood) can be measured in
individuals -- Bayesian modelling as a tool to describe the internal
model used by individuals, possibly differentiating groups.

What does this tell us about the Brain ?
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Is the Brain “Bayesian”? Debates

Psychological Bullet
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A Bit of Philosophy

e Marr’s levels of analysis: computational /

algorithmic / implementation
Computational

e “Bayesian models are not intended to

provide mechanistic or process accounts of
Algorithmic

cognition” [Jacobs and Kruschke, 2010]

d

* only an approximation of Bayesian

Implementation

inference anyway.

*Bowers and Davis, 2012; O’Reilly et al., 2012

Debates: criticism

« Confusion about optimality
« Falsifiability: Flexible enough to account for everything
* Rarely compared with alternative (non-Bayesian) hypotheses

« Integration with previous research knowledge (just a new
vocabulary?)

* Lack of neurobiological predictions / evidence

Debates: some answers

¢ Optimality: claim is not the the system is optimally designed, but that
given a potentially bad design, the combination of noisy inputs is
optimal.

e Bayesian approach: a framework = typically not falsifiable
only models are falsifiable.

* Rarely compared with alternative hypotheses: should be compared
with hypotheses formulated at same level (computational).

* Not incompatible with mechanistic models, not even based on simple
heuristics.
“There need to be nothing intrinsically Bayesian about
algorithms that approximate Bayesian inference”

Griffith, Norris, Chater, Pouget (2012)




Neural implementation ?

* How do populations of neurons represent uncertainty ?

* Does neural activity represent probabilities? (log probabilities?)

» Can we distinguish stages where the likelihoods, priors, posterior
could be ‘measured’ experimentally ?

* Can networks of neurons implement optimal inference?

* How can we discover the priors used by the brain?

* How can a prior be implemented? ( baseline - spontaneous activity,
number of neurons, gain, connectivity?).

¢ Recently, active topic of theoretical research (e.g. A. Pouget, S.

Deneve, P. Dayan, R. Rao, J. Fiser, M. Lengyel).

1) A question about Representation:
how do neurons represent Probability Distributions?

Ideas (explicit representations):

* neural activity of a given neuron with preferred stimulus s represents
the probability that feature s is present

* or log probability

« or log probability that a feature takes on a particular value....

* probabilities are functions: neural activity represents the
parameters of that function, possibly parameter in basis function

parametrisation

Probabilistic population codes:
spiking rates could represent the coefficients of a basis function

parametrisation of the log probability

Log fiing rate
o

log p(s|r) = Y rih;(s) + constant
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° Probabilistic brains: known and unknown
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Optimal cue integration with PPC

A simple linear combination of the population patterns of activity guarantees

optimal integration if neural variability is Poisson-like.

ﬁ p(slra)
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p(s|rs) = p(s|ry) pis|ra)
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Current Opinion in Neurobiology

[Ma, Beck, Latham & Pouget, Nat Neuro 2006]




A question about Representation:
how do neurons represent Probability Distributions?

* very few plausible computational models proposed for a neural
implementation of probabilistic learning that would provide easily testable
predictions

* 2 categories :

1) Probabilistic Population Codes (Pouget, Latham, Deneve, ..) Neural
activities represent parameters of the probability distribution. A full
probability distribution is represented (implicitly) at any moment in time.

2) Sampling Hypothesis (Fiser, Lengyel, ..): Neural activities represent the

latent variables themselves, variability represents uncertainty.

Sampling Hypothesis: Experimental Evidence

e What makes certain stimuli bistable ? (Necker Cube,

Binocular Rivalry)

* Reflecting the fact that the posterior is bimodal?

* Hypothesis : the visual system draws a sequence of

samples from the posterior over scene interpretations
¢ Gershman, Vul, Tenenbaum NIPS 2009
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Neural Substrate of Priors

« Priors: Where in the brain ?

*+ Top down inputs (predictive coding)

« Increase or decrease of activity ? [e.g. Summerfield & Egner 2009]
* in Tuning of neurons? [Gershick et al 2011; Fischer & Pena 2011]

« in Baseline activity? [Berkes et al 2010]

» The representation or the read-out?

+ different time scale // different mechanisms

Experimental investigation of expectations

* is problematic, due to confounds between expectations and attention,
adaptation and learning.

* Attention = enhancement of responses

* expectations expressed as suppression of activity?

[Summerfield & Egner, 2009]

* e.g. mismatch negativity: response to odd stimulus in a sequence --

consistent with predictive coding.




Can the effect of prior expectations be observed in fMRI ?

October9,2013 - 33(41): 16275

Behavioral/Cognitive

Prior Expectations Bias Sensory Representations in Visual

Cortex

Peter Kok,' Gijs Joost Brouwer,> Marcel A.J. van Gerven,' and Floris P. de Lange'

'Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6500 HE Nijmegen, Neth

Department of Psychology and Center for Neural Science, New York, New York 10003
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Can the effect of prior expectations be observed in
MRI ?

fMRI decoding

- Decoding from visual cortex : Does activity in visual cortex (V1, V2, V3, V4, MT)
correspond to real stimulus or percept ? A: percept.

- Integration of prior expectations and sensory information in population activity is
observed at the level of BOLD signals as early as in V1
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2. Neural Implementation of probabilities and priors?

* It has also been proposed that the selectivities of neurons could be a

way by which priors are implemented.

Interpreting Orientation: A prior on Cardinal Directions.

¢ Girshick and Simoncelli, Nat Neuro 2010.

« Orientation judgments are
more accurate at cardinal
(horizontal and vertical)
orientations.

* Biased toward cardinal
orientations.

* Prior towards cardinal
orientation match orientation
distribution measured in
photographs.

is L stimulus CW or CCW
compared to H?
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Spontaneous activity represents the prior

Spontaneous Cortical Activity Reveals
Hallmarks of an Optimal Internal
Model of the Environment

Pietro Berkes,t Gergd Orban,>> Mété Lengyel,>* Jozsef Fiser'*>*

The brain maintains internal models of its environment to interpret sensory inputs and to prepare
actions. Although behavioral studies have di d that these internal models are optimally
adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown.
Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous
neural activities to inferences and prior expectations in an internal model and predicted that they
should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical
activity of awake ferrets during development. Similarity between spontaneous and evoked activities
increased with age and was specific to responses evoked by natural scenes. This demonstrates the
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Spontaneous activity is the statistical prior:
Berkes et al, Science 2011

progressive adaptation of internal models to the statistics of natural stimuli at the neural level.
Our percepts rely on an internal model of  our senses, and thus their veracity critically hinges

the environment, relating physical pro-  upon how well this internal model is adapted to 470 whom correspon
cesses of the world to inputs received by the statistical properties of the environment. For  berkes@brandeis.edul

www.sciencemag.org SCIENCE VOL 331 7§ANUARY 2011

University, Waltham,
Institute for Advanced
H-1014, Hungary.
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Spontaneous activity is the statistical prior:
Berkes et al, Science 2011

¢ Measured population activity within visual
cortex of awake, freely viewing ferrets in
response to natural scene movies and in
darkness at different stages in development
(postnatal P29, P44 and mature P83 and P129)
¢ Found that divergence between Evoked
Activity and Spontaneous Activity decreases witt
age

« Similarity between EA and SA is specific to
natural scenes

e Temporal correlations similar as well.

bits/sec)

divergence (KL.
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* Evoked activity should represent the posterior for a given input image
¢ Spontaneous activity should represent the posterior for a blank stimulus

* This posterior should converge to prior distribution.
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Neural Variability and Sampling-Based Probabilistic
Representations in the Visual Cortex

Highlights Authors
e Stochastic sampling links perceptual uncertainty to neural Gergd6 Orban, Pietro Berkes,
response variability Jozsef Fiser, Maté Lengyel

e Model accounts for independent changes in strength and

Correspondence
variability of responses

orban.gergo@wigner.mta.hu

e Model predicts relationship between noise, signal, and

spontaneous correlations In Brief
Orban et al. show that linking perceptual
e Stimulus statistics dependence of response statistics is uncertainty to neuronal variability
explained accounts for systematic changes in

variability and covariability in simple cells
of the primary visual cortex. The theory
also establishes a formal relationship
between signal, noise, and spontaneous
correlations.

2016




3. How could approximate inference be implemented

Machine learning informs us about possible approximate inference
schemes:

e Sampling, Gibbs and MCMC

* Deterministic approximation methods:

Laplace approximation and variational approximations

On type of variational approximation: predictive coding.

Priors as top-down inputs : Predictive Coding

¢ perceptual inference as an iterative matching proces of top-down predictions against
bottom-up evidence, along the visual cortical hierarchy.

* expectations or ‘representational units’ that encode prediction, and error units that
encode mismatch between sensory evidence and prediction and forward it to higher
level.

¢ Mumford 1992, Rao & Ballard 1999; Lee & Mumford 2003; Friston 2005.

¢ experimental evidence still unclear

i primary ( 'secondary association
) 2 ) (O 2 ) ( hlgher
'sensory; —~ B — [ E & ( o)
‘ input — ||| B—= Ligi%J

prior
| information

Predictive Coding:
Neural Implementation of Bayesian Inference

+ Learning involves making the predictions more and more similar to
the input: minimizing the prediction error.

prior p(h)
posteri or Predictions ,» ‘E

p(hle)=p(e|h)p(h)
Predictions ;EOB‘

* Prediction errors

QOB‘ (mismatch response)

‘ * Prediction errors
(mismatch response)
Sensory input

input p(e|h)

Predictive Coding:
Neural Implementation of Bayesian Inference

* Algorithms based on minimising prediction errors can approximate
Bayesian inference.

(A) Prediction error
i e

() Prediction

TRENDS in Cognitive Sciences

sensory signals: high (left) or low precision (right)
prior
posterior




Evidence for Predictive Coding

1516415169 | PNAS | November 12,2002 | vol.99 | no.23

Shape perception reduces activity in human primary

visual cortex

Scott O. Murray**, Daniel Kersten*, Bruno A. Olshausen*$, Paul Schrater*7, and David L. Woods/**

*Center for Neuroscience, “Department of Psychology, and IDepartment of Neurology, University of California, Davis, CA 95616; Departments of
+Psychology and TComputer Science and Engineering, University of Minnesota, Minneapolis, MN 55455; and *+Neurology Service (1276),
Department of Veterans Affairs Northern California Health Care System, 150 Muir Road, Martinez, CA 94553

Communicated by David Mumford, Brown University, Providence, RI, September 24, 2002 (received for review April 25, 2002)

Visual I

coherent patterns that reduce the descriptive complexity of a
visual scene. The physiological basis of this perceptual simplifica-
tion remains poorly understood. We used functional MRI to mea-
sure activity in a higher object processing area, the lateral occipital
complex, and in primary visual cortex in response to visual ele-
ments that i into objects y arranged.
We observed significant activity increases in the lateral occipital
complex and concurrent reductions of activity in primary visual
cortex when elements formed coherent shapes, suggesting that
activity in early visual areas is reduced as a result of grouping
processes performed in higher areas. These findings are consistent
with predictive coding models of vision that postulate that infer-
ences of high-level areas are subtracted from incoming sensory
information in lower areas through cortical feedback.

response to images of objects versus scrambled versions of the
same images and textures (9, 10). More recent studies have
shown that this area increases in activity whenever individual
features are grouped into an object or a coherent scene (11).
Thus, the LOC may subserve high-level grouping of low-level
image features. In the present study, we examined the effect of
perceived shape on activity in V1 and in the LOC in a series of
functional MRI experiments where visual elements were cither
perceived as coherent shapes or as random elements. We
observed reduced activity in V1 and increased activity in the
LOC when elements were grouped into coherent shapes, con-
sistent with the view that higher visual areas “explain away”
activity in lower arcas through feedback processes. "

Materials and Methods
Experiment 1. Drawings were presented of (i) random lines, (if)
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With or without you: predictive coding and Bayesian

inference in the brain

Laurence Aitchison' and Maté Lengyel'"? ()

Two theoretical ideas have emerged recently with the ambition
to provide a unifying functional explanation of neural population
coding and dynamics: predictive coding and Bayesian
inference. Here, we describe the two theories and their
combination into a single framework: Bayesian predictive
coding. We clarify how the two theories can be distinguished,
despite sharing core computational concepts and addressing
an overlapping set of empirical phenomena. We argue that
predictive coding is an algorithmic/representational motif that
can serve several different computational goals of which
Bayesian inference is but one. Conversely, while Bayesian
inference can utilize predictive coding, it can also be realized by
a variety of other representations. We critically evaluate the
experimental evidence supporting Bayesian predictive coding
and discuss how to test it more directly.

the input but must be inferred from context [6]. Overall,
there is much evidence that perception and, correspond-
ingly, neural responses in sensory cortical areas are as
influenced by predictions and expectations about stimuli
as by the actual stimuli themselves [7,8°]. Indeed, while
ascending feed-forward connections convey stimulus-
related information [9], long-range horizontal and feed-
back connections within and between different cortical
areas provide a natural anatomical substrate for conveying
such ‘contextual’ effects. The principles for how these
contextual signals are computed, integrated with sensory
information and represented in neural activities have
been formalised in two different, though closely related
theoretical frameworks: predictive coding and Bayesian
inference.

Predictive coding

Conclusion

Bayesian models successful at the behavioural level

« As as benchmark for performance, provide also constraints to more

mechanistically models

+ Much to do about: characterisation of internal models, and how they are
learned, and the limits of learning.

+ Applications to Psychiatry.

» some confusion about the claims -- what exactly makes a neural model

“Bayesian”

+ Neural implementation largely unknown.

+ Looking at update of priors / expectations for simple features (motion, speed)

might be a good way to start.




