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3Neural Bioengineering Group, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
*Correspondence: karen.moxon@drexel.edu (K.A.M.), guglielmo.foffani@gmail.com (G.F.)
http://dx.doi.org/10.1016/j.neuron.2015.03.036

The field of invasive brain-machine interfaces (BMIs) is typically associatedwith neuroprosthetic applications
aiming to recover loss of motor function. However, BMIs also represent a powerful tool to address funda-
mental questions in neuroscience. The observed subjects of BMI experiments can also be considered as in-
direct observers of their own neurophysiological activity, and the relationship between observed neurons
and (artificial) behavior can be genuinely causal rather than indirectly correlative. These two characteristics
defy the classical object-observer duality, making BMIs particularly appealing for investigating how informa-
tion is encoded and decoded by neural circuits in real time, how this coding changes with physiological
learning and plasticity, and how it is altered in pathological conditions. Within neuroengineering, BMI is
like a tree that opens its branches into many traditional engineering fields, but also extends deep roots
into basic neuroscience beyond neuroprosthetics.
Introduction
The synergistic interactions between traditional engineering and

basic science represent an important path toward the advance

of scientific hypotheses and theories, which is supported by

the continuous development of novel techniques. In turn, this

development fosters the emergence of novel ideas by allowing

old questions to be solved and by opening avenues for new

questions to be addressed. Within neuroengineering, a good

example of this path is the field of brain-machine interfaces

(BMIs).

A BMI can be defined as an artificial process that allows the

brain to exchange information directly with an external device.

This definition reflects technological innovation, and it is typically

associated with the goal of assisting, augmenting, or repairing

sensorimotor or cognitive function (Figures 1A and 1B). Without

entering into the nuances that differentiate between assisting,

augmenting, and repairing, this is essentially the neuroprosthetic

definition of BMI, in line with the utilitarian goal of improving qual-

ity of life in human beings. This neuroprosthetic definition and the

applications associated with it represent the common view of

BMI in both the neuroscience community and the general public.

In parallel to this view, however, novel ideas that challenge exist-

ing dogma and/or extend current understanding of neural sys-

tems are emerging within the BMI context that are distinctly

separate from the neuroprosthetic definition of BMI.

The unique aspect of BMI experiments is that they defy the

classical object-observer duality by not respecting the separa-

tion between the observer and the object of the observation

that is the hallmark of classical neuroscience. In classical neuro-

science, an experiment is designed with the goal of testing

a hypothesis. The experiment is then performed, and neuro-

physiological observations are made on the planned number of

subjects. Finally, the data are analyzed and the hypothesis is re-

jected or corroborated. In BMI experiments, animal or human

subjects are still objects of observation. However, subjects can

also be viewed as indirect observers of their own neurophysio-
logical activity because they need to interact with it, at some

conscious or subconscious level, during the execution of a task.

When the experimenter is ultimately concerned with maxi-

mizing the performance of the subject in the experiment, BMI

remains within the field of neuroprosthetics. When the experi-

menter is primarily concerned with how the subject interacts

with her/his own neurophysiological activity to achieve a certain

performance, then BMI takes a distinctly different tack from

the field of neuroprosthetics, with the emergence of novel ap-

proaches to more deeply address old questions (e.g., about

learning and neural plasticity) and/or to open new avenues

of inquiry (e.g., about neural coding in health and disease)

(Figure 1C). BMIs thus represent a paradigmatic example within

neuroengineering of the benefits of fully integrating engineering

with neuroscience to create a novel discipline.

Around the central thesis of BMI defying the classical object-

observer duality, in the next sections we will provide an historical

overview of the pioneering works that anticipated the BMI field,

discuss the two main aspects of the central thesis at the bound-

aries of neuroprosthetics, and then highlight its consequences

for investigating basic questions beyond neuroprosthetics.

Historical Background
Advancements in BMI were achieved after decades of basic sci-

ence research into the functioning of the CNS. As early as the

turn of the 20th century, hypotheseswere being formulated about

brain function based on insight gained from electrophysiological

and anatomical experiments. For example, Sherrington (1906)

and Kubie (1930) monitored the recurrent loops of excitatory

transmission between regions, initially referred to as circularities,

and suggested the possibility that large numbers of neurons

acted in concert and influenced each other to represent informa-

tion. This concept was further developed by Hebb (1949). While

Hebb famously introduced the Hebbian rule to describe how the

efficacy of synaptic function could be modulated by use, which

now forms the basis of synaptic plasticity, he also elegantly
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Figure 1. Invasive Brain-Machine Interface Applications
(A) Classical envisioned application of conscious BMI to extract motor information from the brain and bypass a spinal cord injury to restore voluntary motor
function.
(B) Example of subconscious BMI to perform closed-loop brain stimulation based on an electrophysiological biomarker; in this case it is adaptive deep brain
stimulation controlled by local field potentials to treat Parkinson’s disease. From Priori et al. (2013), with permission.
(C) BMI is like a tree that not only opens its branches toward neuroprosthetic applications, but also extends its roots outside the limits imposed by the classical
object-observer duality, allowing fundamental neuroscience questions to be answered beyond neuroprosthetics.
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outlined how populations of neurons could work together as as-

semblies of activity to represent and, ultimately, store informa-

tion. Hebb’s view of cell assemblies allowed him to postulate

that information was redundant, diffusely represented in com-

posite cortical regions, and that only a fraction of the entire as-

sembly needed to be active to recall the information.

Hebb’s theory of cell assemblies combined with his theories

of synaptic plasticity opened up a plausible explanation for

how information could be represented with novel patterns of ac-

tivity and stored in structural synaptic changes. This addressed

a controversy at the time surrounding the physical underpin-

nings of learning and memory, namely whether all learning

requires plasticity (i.e., physical changes to the underlying anat-

omy) or can emerge as novel patterns of activity. Now, one

might suggest it is just a matter of degree, but strong arguments

were made on each side, with important contributions being

provided by lesion studies. For example, Lashley (1950) demon-

strated that any part of the region associated with a learned task

was equally effective in storing the memory for that task (theory

of equipotentiality) and that the more tissue devoted to a task,

the better the system could perform (theory of mass action).

Lashley concluded that information was diffusely represented,

with the particular set of cells that fired at a given time not being

nearly as important as their spatiotemporal relationships. The

idea was taken up by John (1972), who proposed that memory

traces are stochastically diffuse, redundant, and primarily re-

lated to function rather than anatomy, suggesting that a partic-

ular organized temporal pattern of activity in a population of cells

can represent a specific memory (convey information) regard-

less of the identity of the cells momentarily activated. This is in

contrast to more deterministic views of how information was

tied to specific connections between cells (McCulloch and Pitts

1943). Today, our understanding in the BMI field is somewhere

in between John’s purely statistical view and the purely deter-

ministic view. The implications of these theories are still being

argued today and are relevant for the complex relation between

BMI and neuroplasticity.
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In parallel, anatomical studies were addressing questions on

how information was represented in the brain. Predating Hebb,

Lorente de No (1939), building on the precise anatomical work

of cortical organization by the school of Ramón y Cajal, sug-

gested that although anatomical connections may form a sub-

strate upon which information can be represented, they do not

define the information. Lorente de No’s work discovered the

modular organization of the cortex and showed that cells were

grouped in patterns that repeated across large cortical areas.

Building on this and on the early work of Mountcastle (1957)

and others, Szentágothai (1975) defined a cortical column as

the basic functional block that could support the representation

of information. Eccles (1981), taking advantage of these earlier

works, suggested that the complexity and interconnectivity of

cortical modules allows them, rather than single cells, to act as

the functional unit of spatiotemporal patterns of activity repre-

senting information. Eccles goes even further, suggesting that

cortical modules rather than single neurons form the funda-

mental unit from which consciousness emerges, which could

be intriguingly relevant for BMI experiments.

Technology has also played a key role in the advances in our

understanding of the representation of information in the brain

and in the development of BMI. From simultaneous recordings

of multiple cells, John emphasized that ‘‘the response of a single

neuron to a specific stimulus was not reliable, but the average

response of many neurons to a single stimulus was as invariant

as the average response of a single neuron to multiple presenta-

tion of the same stimulus’’ (John, 1967), a fundamental premise

for BMI decoding algorithms. On the sensory side, investigators

were using neuronal activity simultaneously recorded from mul-

tiple neurons to examine the details of Hebb’s cell assemblies

(Gerstein and Perkel, 1969; Gerstein et al., 1978). On the motor

side, Evarts (1966, 1968) demonstrated a relationship between

specific limb movements under applied forces and the resulting

modulations in the spiking activity of single neurons in the motor

cortex of the monkey. These works are relevant for the develop-

ment of decoding algorithms for BMI experiments.



Figure 2. Historical Foundations of Invasive BMI
(A) By simultaneously recording small populations of neurons in the motor cortex while monkeys performed controlled arm movements (upper left) and properly
smoothing the recorded signals (upper right), it was possible to nicely predict both kinematic and dynamic aspects of movement execution. Adapted from
Humphrey et al. (1970) with permission.
(B) In the first demonstration of invasive BMI, rats (a) were trained to press a lever (b) that proportionally moved a robot arm (c) from a rest position (d) to a water
dropper (e) in order to receive a water reward. The task was then switched to neurorobotic control (f) so that the robot arm became controlled by the activity of
populations of motor cortex neurons (g), with the spike trains of multiple single units (h) being combined into a neural population function (NPF) (i) (j indicates the
switch frommovement control to neural control). Under neurorobotic control (lower panel), animals were able to successfully bring the NPF (and thus the robotic
arm) above a threshold T to receive water reward (asterisks). Adapted from Chapin et al. (1999) with permission.
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Around the same time, two key studies were performed that

define present-day BMI. First, Humphrey et al. (1970) demon-

strated that even small populations of simultaneously recorded

neurons in the motor cortex could predict displacement, veloc-

ity, or force produced by a monkey trained to grasp a handle

and alternatively flex and extend its wrist. The authors concluded

that ‘‘by simply weighting and summing the discharge fre-

quencies of each cell in the set we were able to predict the

time course of certain response measurements with unexpected

accuracy.’’ Even more relevant for recent BMI experiments, the

authors go on to speculate that their results suggest that the

neural substrates of information ‘‘may well depend not only on

the types of units observed, but also on whether or not they

are observed simultaneously so that the important temporal

relations between their discharge patterns can be taken into

account.’’

Second, Fetz (1969) used operant conditioning to train animals

to modulate their firing rate based on a reward. The monkeys

viewed their neural activity in real time and were rewarded if

they were able to increase their neuron’s firing rate above a
threshold. This work anticipated the potential of BMI to defy

the classic object-observer duality, demonstrating that the sub-

ject can interact with its own neurophysiology in a causal way.

The pioneering work of Humphrey et al. (1970) and Fetz (1969)

and accompanying technological advances laid the foundation

for the first demonstration of invasive BMI in rats (Chapin et al.,

1999), which documented that signals produced by an ensemble

of neurons could be recorded from the brain while the animal

was performing a motor task and be used to substitute for the

animal’s motor behavior to control a robotic arm (Figure 2B),

forming a direct causal link between neural activity and func-

tional outcome. Interestingly, the investigators found that, with

time, the neural activity became decorrelated from the actual

movements such that the animal no longer needed to move its

limb to produce a neural signal about the intention to move.

Demonstrating the feasibility of brain-driven control of robotic

arm and uncovering a surprising degree of plasticity in the neural

code, this early BMI anticipated both the neuroprosthetic appli-

cation of BMI and its potential to provide novel insights into basic

brain function.
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Brain-Behavior Causality in BMI
A critical limit of the classical object-observer duality in neuro-

physiological in vivo experiments is that observations are

always incomplete: both the neurophysiological activity and

the behavior performed by the subject are objects of observa-

tion, but the observed neurophysiological activity is only a small

fraction of the possible neurophysiological activity that could

cause the behavior. This implies an epistemological difficulty of

going beyond correlative evidence to establish genuinely causal

relationships between neurophysiological activity and behavior.

Within this framework, only indirect approximations to brain-

behavior causality can be achieved by disrupting neural activity

with an external intervention and observing the consequent

change in behavior. The very concept of BMI, even in its neuro-

prosthetic definition, offers a more direct path for overcoming

the epistemological difficulty: a key element of subjects being

indirect observers of their own neurophysiological activity is

that their observation is complete. Consequently, the relation-

ship between neurophysiological activity and BMI behavior can

be genuinely causal.

Muchof theearlyBMIwork focusedon the problemofmovinga

cursor on a computer screen, following the early work on operant

conditioning by Fetz. For example, Kennedy and Bakay (1998)

showed that neurons could be trained to control a cursor on a

computer screen in patients with amyotrophic lateral sclerosis,

in thehope this couldbeused toaccessacommunicationsystem.

Theauthorspresented their technologyas ‘‘an invasive alternative

to externally applied brain-computer interface (BCI) devices’’

(Kennedy et al., 2000), because relatively simple control of a

cursor on a computer screen was achieved with non-invasive

EEG recordings in humans at least since the early nineties (Wol-

paw et al., 1991). Non-invasive BCI continues to be an important

avenue of study, developing new options of communications and

rehabilitation for humans with severe disabilities (Wolpaw and

McFarland, 2004;Wolpaw, 2007;Millán et al., 2010; Ramos-Mur-

guialday et al., 2013; Chavarriaga et al., 2014).

A key advance of the work by Chapin et al. (1999), presented

above, was that the BMI controlled not a cursor on a computer

screen, but a physical robotic arm in real space: a completely

observed set of neurons causally controlled the behavior of

a physical object. This invasive neurorobotic BMI approach

opened a new avenue of possibilities and challenges for oper-

ating clinically relevant neuroprosthetic devices.

After the first demonstration of invasive BMI in the rat, the

technology was quickly translated to monkeys. Task complexity

of BMI studies rapidly advanced from 2D and 3D control of a

cursor on a computer screen (Serruya et al., 2002; Taylor et al.,

2002) to the control of more natural behaviors, such as reaching

and grasping (Carmena et al., 2003), self feeding (Velliste et al.,

2008), and bimanual arm movements (Ifft et al., 2013). These

remarkable increases in task complexity were achieved through

both advances in hardware from the technology industry and ad-

vances in the development of decoding and control algorithms

(Santhanam et al., 2006; Gilja et al., 2012; Hwang et al., 2013).

These advances are critical for ultimately bridging the gap be-

tween more traditional neuroprosthetics on healthy animals

and their translation to the clinical population (Hochberg et al.,

2006, 2012; Collinger et al., 2013).
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BMI control is typically achieved and optimized in well-con-

trolled experimental conditions, in which animals are trained to

perform a single task—or at most few different tasks—using

the activity of neurons recorded from the motor cortical areas.

The translation of neuroprosthetic BMIs to more everyday life

conditions, where extreme multitasking is the rule, represents

an important challenge (Orsborn et al., 2014). In this direction,

several studies have explored the potential of recording neurons

in different cortical areas for BMI applications (Wessberg et al.,

2000; Carmena et al., 2003). For example, the premotor cortex

can be targeted to separate movement planning frommovement

execution (Santhanam et al., 2006; Shanechi et al., 2012). Alter-

natively, the posterior parietal cortex can be targeted to decode

higher-level discrete control signals, such as the goals of move-

ments (Musallam et al., 2004), together with continuous control

signals related to movements themselves (Mulliken et al., 2008;

Hauschild et al., 2012). At the same time, resting—which is a

critical component of everyday life multitasking—can be directly

decoded in themotor cortex (Velliste et al., 2014). The concept of

multitasking in a BMI context thus brings the study of brain-

behavior causality to the multivariate level.

In neurorobotic BMI, brain-behavior causality is not between

the brain and the body, but between the observed neurophysio-

logical activity within the brain and an external device outside the

body. In parallel to the impressive achievements obtained with

neurorobotic BMI, a number of studies have attempted to imple-

ment a neurosomatic BMI that, instead of actuating an external

device, stimulates back into the organism to reanimate the limbs

(Moritz et al., 2008; Ethier et al., 2012; Powers et al., 2013; Sha-

nechi et al., 2014). In particular, Miller and colleagues (Ethier

et al., 2012) performed a reach-to-grasp study inmonkeys where

the motor nerve was anesthetized, preventing limb movement,

and then the brain signal was used to intramuscularly stimulate

grasping in order for the animal to grab a ball and place it in a

tube (Figure 3A). In spinal cord injury studies, the limbs of para-

lyzed animals were reanimated when the brain signal was used

to activate epidural or intraspinal stimulation below the injury

(Nishimura et al., 2013; Powers et al., 2013; Figure 3B). These ap-

proaches will likely be improved by integrating recent advances

in the control of spinal sensorimotor circuits (Bamford andMush-

ahwar, 2011; Wenger et al., 2014).

Finally, in both neurorobotic and neurosomatic applications,

complementing causal brain-behavior control with explicit addi-

tion of somatosensory feedback (O’Doherty et al., 2011; Tabot

et al., 2013) will likely provide the subject with a more natural—

and thus more acceptable—experience. At the same time, novel

BMI experiments that modulate, perturb, or even disrupt the

feedback could be designed to start investigating the very nature

of brain-behavior causality.

Conscious versus Subconscious Self-Observation
in BMI
According to the classical object-observer duality, the observer

designs an experiment to manipulate the object of observation,

but the act of observing is not supposed to interfere with

the experiment. After obtaining the results of the observations,

the observer designs new experiments to manipulate the

object, and the process repeats. To say that in BMI experiments



Figure 3. Neuroprosthetic BMIs
(A) Example of neurosomatic BMI in monkeys, in
which themotor nerve was anesthetized to prevent
limb movement, and then the brain signals were
used for electrical muscle stimulation in order to
restore the animal’s ability to perform a functional
grasping task (grab a ball and drop it in a tube).
From Ethier et al. (2012), with permission.
(B) Example of neurosomatic BMI in rats in which
the spinal cord was transected and the intention to
press a pedal with the hindlimb (short or long
duration) was decoded from the hindlimb senso-
rimotor cortex and used to control epidural elec-
trical stimulation over the lumbar spinal cord below
the lesion to restore task-dependent hindlimb
movements.
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‘‘subjects can also be viewed as indirect observers of their own

neurophysiological activity’’ implies that the above process is

already occurring at the subject level. The key aspect is that it

is occurring in real time: when provided with some form of feed-

back of the brain-behavior causality, the subjects are continu-

ously using the results of their ‘‘observation’’ to manipulate their

own neurophysiological activity to improve BMI performance.

This concept of self-observation in BMI is tightly linked to the

well-known engineering concept of feedback in closed-loop

control. Indeed, neuroprosthetic control is almost always a

closed-loop control, even if no tactile/proprioceptive feedback

is explicitly provided to the brain. In fact, the subject is typically

provided with continuous visual feedback about its perfor-

mance. This visual feedback enhances the ability of the

observed neuronal populations to control the neurorobotic or

neurosomatic BMI by both activating physiological circuits

responsible for visuo-motor integration and inducing functional

and/or anatomical changes that modulate the encoding for

neural control. Even though the self-observation in neuropros-

thetic BMI is typically conscious, in the sense that the subject

is aware of the feedback, it is not a necessary condition. This

reflection about conscious versus subconscious self-observa-

tion allows inclusion within the BMI branches of two broad

experimental paradigms: neurofeedback and closed-loop brain

stimulation.

Neurofeedback is a special case of conscious BMI in which a

subject is trained to gain conscious control of otherwise subcon-

scious brain activity by receiving proper sensory feedback.

Neurofeeback is not only a special case, but also a precursor

of BMI, as we already acknowledged when we discussed Fetz’s

work with operant conditioning of neural firing rates in monkeys

(Fetz, 1969, 2007). At the same time, similar neurofeedback ex-

periments were being performed to train human subjects to

consciously control EEG alpha rhythms (Kamiya et al., 1969).

The potential of EEG-based neurofeedback was rapidly recog-

nized for both increasing normal cognitive performance (Beatty

et al., 1974) and improving mood disorders (Hardt and Kamiya,

1978) and is still being actively studied and applied today (Ros

et al., 2014). The recent resurgence of neurofeedback (Schafer

and Moore, 2011) has also been supported by the development

of fMRI-based protocols, which provide unprecedented spatial

resolution to non-invasively gain control of brain activity (Bray

et al., 2007; Shibata et al., 2011; Greer et al., 2014). With fMRI
technology, neurofeedback has again been investigated to im-

prove normal functions, such as visual attention (Scharnowski

et al., 2012), or to treat brain disorders, such as Parkinson’s dis-

ease (Subramanian et al., 2011). Of course, if the neurofeedback

itself is considered as an actuator (e.g., the classical cursor on a

computer screen), then the conceptual line between neurofeed-

back and BMI becomes very subtle (Birbaumer et al., 2009),

possibly depending only on the type of signal used to close the

loop.

Closed-loop brain stimulation is a paradigmatic example of

subconscious BMI, which is being tested in at least two clinically

relevant settings that are not classically considered within

the BMI field: Parkinson’s disease and epilepsy. In Parkinson’s

disease, deep brain stimulation (DBS) has emerged as a

widely accepted non-pharmacological therapy in which elec-

trodes are neurosurgically implanted into specific subcortical

targets—typically in the subthalamic nucleus (STN)—and then

connected to a subcutaneous stimulator that continuously

delivers high-frequency stimulation, like a ‘‘brain pace-maker’’

(Limousin et al., 1995). Of course, standard DBS is not a BMI,

because the implanted electrodes are only used to deliver stim-

ulation without receiving any information from the brain. How-

ever, the same electrodes can also be used to record deep brain

activity (Brown et al., 2001; Levy et al., 2002; Foffani et al., 2003;

Priori et al., 2004). This opens the possibility of continuously

adapting the stimulation parameters (amplitude, frequency,

etc.) based on ongoing brain activity (Priori et al., 2013), thereby

effectively closing the loop similarly to neuroprosthetic BMI ap-

plications. However, in closed-loop DBS, the subject is not

aware of the feedback used to control the stimulation. Recent

works in animals (Rosin et al., 2011) and humans (Little et al.,

2013) suggest that closed-loop DBS could be more effective

than standard DBS for the treatment of Parkinson’s disease.

Given the range of disorders for which DBS is effective (Krack

et al., 2010), subconscious BMIs open a broad range of potential

new neuroprosthetic applications.

A second neurological disorder where subconscious neural

control of brain stimulation offers promising results is epilepsy

(Fountas and Smith, 2007; Stypulkowski et al., 2014). Epilepsy

is not a movement disorder, but a pathological state resulting

in periods of hyper-synchronous activity in the brain. Similar to

Parkinson’s disease, continuous delivery of high-frequency elec-

trical stimulation has provided some effectiveness at reducing
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 59
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symptoms (Salanova et al., 2015). But continuous stimulation

does not seem to be necessary (Bergey et al., 2015): if stimula-

tion is tied to neural signals recorded from the brain and only

applied when specific changes in the signal are identified, the

neural stimulation is at least as effective as continuous stimula-

tion. In this direction, recent studies are exploring the futuristic

variant of using closed-loop optogenetic stimulation protocols

to stop seizures (Armstrong et al., 2013; Krook-Magnuson

et al., 2013).

The distinction between conscious and subconscious self-

observation in BMI clarifies that future BMI applications are

not limited to the control of conscious actions but could be

extended to the control of subconscious functions, aiming to-

ward either functional repair or augmentation. For example, the

simple, yet fascinating, possibility of controlling cortical plasticity

by using action potentials recorded from one electrode to deliver

electrical stimulation at other cortical locations (Jackson et al.,

2006) has already been implemented to restore function in a

rat model of focal brain injury (Guggenmos et al., 2013). In

another example, a hippocampal neuroprosthetic (Hampson

et al., 2013) was used to facilitate memory via electrical stimula-

tion to improve performance on a delayed match to sample task.

Finally, auditory close-loop stimulation phase-locked to slow os-

cillations during sleep has been suggested to enhance memory

(Ngo et al., 2013). In general, the interplay between conscious

and subconscious BMIs is likely to play a primary role in the pre-

sent and future of neuroprosthetics (Jackson and Zimmermann,

2012; Potter et al., 2014).

BMI to Study Plasticity
The two foundational aspects of BMI discussed above, brain-

behavior causality and self-observation, offer the opportunity

not only to develop neuroprosthetic applications, but also to

gain basic insights into brain function beyond neuroprosthetics.

We stated above that in BMI experiments, ‘‘when provided with

some form of feedback of the brain-behavior causality, the sub-

jects are continuously using the results of their ‘observation’ to

manipulate their own neurophysiological activity to improve

BMI performance.’’ Where the classical engineer sees the op-

portunity to achieve futuristic neuroprosthetic performances,

the basic neuroscientist sees the opportunity to observe the

self-observation, to study how the causality between neurophys-

iological activity and behavior changes with learning: a unique

window into world of brain plasticity.

The definitions of brain plasticity have changed over the years

as experimental technology has allowed greater insight into the

underlying mechanisms. Plasticity had been defined by the level

at which it operates (Buonomano and Merzenich, 1998): (i)

synaptic plasticity, which reflects changes in synaptic properties

at the sub-cellular level, (ii) cellular conditioning, which refers

to changes in receptive field or tuning properties of individual

neurons, and (iii) representational plasticity, which indicates

changes in representational maps across large neuronal pop-

ulations. However, with new understanding of the molecular

mechanisms underlying plasticity, the term plasticity can be

specifically applied to define structural changes at the synap-

tic-to-cellular level or more loosely used to describe changes

in receptive field or tuning properties of neurons at the cellular-
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to-population level. This goes back to the fundamental questions

about the nature of plasticity raised by Hebb and John, reviewed

above. BMI experiments can spectacularly manipulate cellular-

to-population tuning curves, but the role of plasticity at the syn-

aptic-to-cellular level (i.e., physical changes in synaptic struc-

ture) in these manipulations largely remains to be investigated

(Legenstein et al., 2010; Koralek et al., 2012; Orsborn and Car-

mena, 2013; Orsborn et al., 2014).

In the first BMI study in the rat, already mentioned several

times (Chapin et al., 1999), it did not take long for the animals

to start dissociating BMI control from motor control, i.e., they

started controlling the robotic arm without any overt movement.

This relatively fast dissociation between BMI control and motor

control was confirmed in subsequent studies in non-human pri-

mates (Taylor et al., 2002; Carmena et al., 2003). It is important to

acknowledge that a similar dissociation between the activity of

motor cortex cells and arm muscles was previously observed

during control of neural activity achieved with operant condition-

ing (Fetz and Finocchio, 1975). The dissociation might suggest

some form of plasticity, but the same neurons could in principle

be coding for both movement imagination and execution, so the

animal could be progressively switching from execution to imag-

ination without changing the tuning properties of the recorded

cells. However, BMI studies suggest that this is not necessarily

the case (Lebedev et al., 2005) because the tuning properties

of neurons remarkably change during training and execution of

BMI tasks (Taylor et al., 2002; Carmena et al., 2003; Manohar

et al., 2012; Figures 4A and 4B). Furthermore, experimental per-

turbations of the task, such as changing from controlling cursor

to controlling a robot (Carmena et al., 2003) or rotating the tuning

functions of the decoding model (Jarosiewicz et al., 2008), lead

to drops in performance that are quickly compensated for with

subsequent training. Overall, these findings establish that BMI

learning is associated with changes in tuning properties at the

cellular-to-population level, but they do not clarify whether these

changes are associated with physical plasticity at the synaptic

level.

Studying changes in neuronal tuning properties during

learning is complicated by the fact that there is an implicit

assumption that neuronal tuning properties remain stable in

the absence of learning. However, this point is controversial. In

themotor cortex, it is not clear whether tuning properties are sta-

ble at the level of single cells (Chestek et al., 2007), stable at the

level of neuronal ensembles (Serruya et al., 2003; Carmena et al.,

2005), or relatively unstable (Rokni et al., 2007), continuously

changing as demand for specific tasks increases or decreases.

The ability of BMI experiments to retain brain-behavior causality

allows for novel avenues of exploration. For example, BMIs with

constant decoders were used in monkey studies to demonstrate

that new neural representations can consolidate into stable

cortical maps for neuroprosthetic control (Ganguly and Car-

mena, 2009). Moreover, this consolidation was not limited to a

single cortical map: a second map could be learned and stored,

allowing for either map to be recalled, pointing toward the possi-

bility to investigate the dynamics of motor memories (Ganguly

and Carmena, 2009). Recent work clarified that this ability to

consolidate new cortical maps for neuroprosthetic control is

constrained by the existing network structure (Sadtler et al.,



Figure 4. BMI to Study Plasticity
(A) Monkeys were trained to use a pole to control a robot arm whose position was translated into cursor position on a computer screen. In a task in which the
monkeys had tomove the cursor to a visual target appearing at random locations (upper right), the directional tuning curves of cortical neurons (three examples in
lower plots) were different in pole control (blue) versus brain control with armmovements (red) versus brain control without armmovements (green). Note that the
left cell was directionally tuned only when the animal moved the arm, particularly in pole control, the central cell was similarly tuned in the three conditions,
whereas the right cell was better tuned during brain control. Adapted from Carmena et al. (2003).
(B) Rats were trained to press a pedal with the hindlimb after hearing a chime to obtain a water reward, while the activity of populations of neurons were recorded
in the hindlimb sensorimotor cortex. Animals were rewarded either for the appropriate press (behavioral control) or based on the neural activity during the task
(neural control). The information about the kinematics of hindlimb movement was actually higher under neural control compared to behavioral control. Adapted
from Manohar et al. (2012).
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2014). BMI experiments are therefore particularly helpful for

shedding light into the relative role of stable cortical maps versus

cellular/population plasticity during motor learning.

An intriguing aspect of cortical plasticity at the cellular/popula-

tion level is its spatial scale. By using only a subset of the re-

corded neurons to perform BMI control and monitoring changes

in tuning properties of the other neurons, it was possible to show

that changes in tuning curves extended to neurons beyond those

that are causally involved in BMI control (Ganguly et al., 2011),

suggesting that BMI-induced changes in tuning properties

have a certain level of global impact. However, it is clear that

neurons involved in BMI control (Arduin et al., 2013) or selectively

perturbed during BMI control (Jarosiewicz et al., 2008) undergo

greater modifications during BMI learning, suggesting that BMI-

induced changes in tuning properties are also locally selective. In

agreement with this view, recent BMI experiments with two-

photon imaging in mice showed that learning is associated

with alterations of correlated activity at fine scales (Clancy

et al., 2014).

To further investigate the relationships between changes in

tuning properties and plasticity, it is feasible to propose new
paradigms that combine BMI with other techniques that modu-

late cortical plasticity at a more global level, such as pharmaco-

logical interventions (Maya Vetencourt et al., 2008; Ganzer et al.,

2013), exercise (Cotman et al., 2007; Graziano et al., 2013), or

electromagnetic neuromodulation with either direct current stim-

ulation (Bindman et al., 1964; Márquez-Ruiz et al., 2012; Filmer

et al., 2014) or static magnetic field stimulation (Oliviero et al.,

2011; Aguila et al., 2014). With these combined paradigms, the

causality of BMI could be exploited to clarify the mechanisms

by which interventions inducing changes in plasticity at a broad

population level can affect tuning properties at the cellular level

and ultimately behavior.

BMI to Study Neural Coding
In addition to plasticity, the brain-behavior causality and self-

observation that characterizes BMI paradigms can provide

invaluable insights into the basic principles of neural coding.

Many important questions remain open to fully understand how

the brain encodes sensory information from the outside world

into an internal language, how it integrates external and internal

information to produce cognitive/emotional representations,
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and how it generates and executes motor programs. In this area,

BMI research made critical contributions to the maturity of the

ideas about population coding that were introduced by Hebb

50 years earlier (Nicolelis, 2003; Nicolelis and Lebedev, 2009).

Theoretical concepts like distributed coding (i.e., information is

distributed among large populations in various cortical areas),

multiplexing (i.e., the same population of neurons can perform

different tasks, serially or simultaneously), and redundancy

(i.e., different populations of neurons can perform the same

task) were transformed from theoretical possibilities into test-

able realities during BMI experiments (Nicolelis and Lebedev,

2009). The key aspect is that any BMI decoder employed to

establish the causal relationship between the neurophysiological

activity and behavior necessarily assumes one or more neural

codingprinciples. This very concept allowsnewBMIexperiments

to be designed to address specific questions about neural

coding.

In the field of sensory coding, a classical debate is whether the

basic element of the neural code is the frequency of firing of in-

dividual neurons (rate coding) or the precise timing when spikes

occur (temporal coding) (Huxter et al., 2003; Kumar et al., 2010).

Even though one might argue that the problem is just a matter of

temporal scale, the very existence of the debate hides a more

fundamental methodological dilemma: it is relatively easy to

show that a particular element of the code (e.g., spike-timing)

conveys significant information about a set of external stimuli

(Panzeri et al., 2001; Foffani et al., 2009); it is much more chal-

lenging to experimentally demonstrate that the brain actually

uses that information. Correlative evidence can be collected,

but convincing causal evidence is lacking. Here is where the

brain-behavior causality of BMI could be useful: the question

‘‘is spike-timing information behaviorally relevant?’’ becomes

‘‘is spike-timing information sufficient to perform BMI control?’’

In other words, instead of asking ourselves whether the brain

uses spike-timing information based on analyses, we could

require the brain to directly use spike timing and evaluate the

outcome. Similar reasoning could be applied in a variety of clas-

sical neural coding problems, from the informational contribution

of variability at the cellular level (Scaglione et al., 2011), to the role

of correlations at the population level (Shamir, 2014), to the impli-

cations of theta-gamma oscillations (Lisman and Jensen, 2013;

Bieri et al., 2014) and synchrony at higher network levels (Singer,

1999; Ratté et al., 2013). A proof of principle of this approach is

already provided by the ability of monkeys to learn to generate

gamma oscillations associated with spike synchrony in the

motor cortex to control a BMI (Rouse et al., 2013; Engelhard

et al., 2013; Figure 5A), the ability of rats to separately increase

either firing rates and neural synchrony at cortico-hippocampal

level to obtain a reward during operant conditioning (Sakurai

and Takahashi, 2013) or, at non-invasive level, the ability of

human subjects to modulate EEG power, frequency, phase, or

even complexity in neurofeedback experiments (Brunner et al.,

2006; Angelakis et al., 2007; Wang et al., 2011; So et al.,

2014). The impact of these different coding schemes on behav-

ioral performance could provide important insight into their rela-

tive contribution to the neural code.

Another opportunity offered by BMI from a neural coding

perspective is the possibility to dissociate different aspects
62 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
of movement control from movement itself. For example, BMI

experiments in patients with spinal cord injury allowed the phys-

iology of movement intention in the primary motor cortex to be

studied without the confounding effects of somatosensory feed-

back (Truccolo et al., 2008). A more recent study used a BMI

paradigm in rats to demonstrate that information about a more

subtle aspect of movement, movement timing, is present in the

primary motor cortex in absence of motor output and despite a

loss of somatosensory feedback due to experimental spinal

cord injury (Knudsen et al., 2014; Figure 5B). With the fast

progresses being made in providing artificial somatosensory

feedback (O’Doherty et al., 2011; Tabot et al., 2013), it will

soon be possible to design sophisticated BMI paradigms to

dissociate and dissect the different components of sensorimotor

integration.

BMI to Study Pathophysiology
An exciting frontier is the possibility of exploiting the brain-

behavior causality and self-observation of BMI to investigate

basic pathophysiological questions about specific neurological

disorders.

In the field of spinal cord injury (and cortical deafferentation

in general), BMI experiments are particularly appealing for

rigorously investigating the impact that pathological alterations

of plasticity at the population level (Moxon et al., 2014) might

have on plasticity and coding at the cellular level. In addition,

BMI paradigms could be introduced to investigate and modu-

late cortico-spinal plasticity in order to dig into the mechanisms

underlying the variability of functional recovery independent of

spared fibers. An important issue in this case would be to

determine the possible contribution of plasticity above the level

of the lesion to recovery below the level of the lesion (Fagg

et al., 2007; Kao et al., 2009; Courtine et al., 2009; Graziano

et al., 2013).

In the fields of epilepsy and Parkinson’s disease, among

others, BMI protocols could be used to gain control over sup-

posedly pathological oscillatory neural activities, such as fast-

ripples (Foffani et al., 2007; Zijlmans et al., 2012) or beta oscilla-

tions (Brown et al., 2001; Priori et al., 2004), in order to search for

definitive answers about their possible causal role (i.e., beyond

the extensive correlative evidence) in the generation of certain

clinical symptoms. Gaining conscious control over subcon-

scious pathological activity might even be sufficient for patients

to learn to control their symptoms, without any stimulation

involved. Proof of concept of this idea is already provided by

the fMRI-neurofeeback study cited before (Subramanian et al.,

2011). In Parkinson’s disease, the self-observation character-

izing the BMI paradigm seems particularly appealing to experi-

mentally test the provocative hypothesis of a specific loss of

habitual control versus goal-directed control (Redgrave et al.,

2010) and to elucidate its underlying neural mechanisms. In ep-

ilepsy, the BMI paradigm could test the relative importance of

identified biomarkers that appear specific for seizure generation

(Grasse et al., 2013).

More in general, BMI experiments could address many other

interesting questions in neurological and neuropsychiatric con-

ditions. BMI experiments could even be used to define new

models of neurological and neuropsychiatric conditions by



Figure 5. BMI to Study Neural Coding
(A) Throughout sessions of operant conditioning, monkeys learned to increase cortical gamma activity to move a cursor to obtain a reward (upper and central
plots). Populations of neurons became evidently synchronized at gamma frequencies prior to reward delivery (red line in lower plot). Adapted from Engelhard et al.
(2013) with permission.
(B) Rats were trained to perform short or long pedal presses with the hindlimb to obtain a water reward. Animals were rewarded either for the appropriate press
(behavior) or based on the neural activity of the motor cortex during the task (neural reward paradigm, NRP), either with (NRP-b) or without the pedal (NRP-o),
before and after complete thoracic transection of the spinal cord (TX). Neurons were classified into four different time-scaling mechanisms (slope scaled,
response scaled, peak scaled, swing cell). Temporal scaling changed between behavior and NRP. NRP decoding accuracy dropped after TX but was recovered
with additional training. Movement timing information was still present in the primary motor cortex after the loss of motor output and of afferent feedback due to
spinal cord injury. Data are presented as mean values ± SD. Adapted from Knudsen et al. (2014) with permission.
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cleverly altering the self-observation or interfering with the brain-

behavior causality. The door is open.

Conclusions
The past 15 years have witnessed tremendous advancements in

the field of BMI with high impact not only in the development of

neuroprosthetics, but also in our basic understanding of brain

function. The BMI approach is expanding the landscape of

neuroscientific inquiry by defying the classical object-observer

duality in neuroscience. Specifically, the main characteristics

of self-observation and brain-behavior causality make the BMI

paradigm particularly appealing for investigating fundamental

questions on how information is encoded and decoded by neural
circuits in real time, how this coding changes with physiological

learning and plasticity, and how it is altered in pathological con-

ditions. Overall, BMI can be seen as a tree of neuroengineering

that not only opens its branches into traditional engineering,

but also extends deep roots into basic neuroscience beyond

neuroprosthetics.
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Combining Brain-Computer Interfaces and Assistive Technologies: State-of-
the-Art and Challenges. Front Neurosci 4.

Moritz, C.T., Perlmutter, S.I., and Fetz, E.E. (2008). Direct control of paralysed
muscles by cortical neurons. Nature 456, 639–642.

Mountcastle, V.B. (1957). Modality and topographic properties of single neu-
rons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434.

Moxon, K.A., Oliviero, A., Aguilar, J., and Foffani, G. (2014). Cortical reorgani-
zation after spinal cord injury: always for good? Neuroscience 283, 78–94.

Mulliken, G.H., Musallam, S., and Andersen, R.A. (2008). Decoding trajectories
from posterior parietal cortex ensembles. J. Neurosci. 28, 12913–12926.

Musallam, S., Corneil, B.D., Greger, B., Scherberger, H., and Andersen, R.A.
(2004). Cognitive control signals for neural prosthetics. Science 305, 258–262.

Ngo, H.V., Martinetz, T., Born, J., and Mölle, M. (2013). Auditory closed-loop
stimulation of the sleep slow oscillation enhances memory. Neuron 78,
545–553.

Nicolelis, M.A. (2003). Brain-machine interfaces to restore motor function and
probe neural circuits. Nat. Rev. Neurosci. 4, 417–422.

Nicolelis, M.A., and Lebedev, M.A. (2009). Principles of neural ensemble phys-
iology underlying the operation of brain-machine interfaces. Nat. Rev. Neuro-
sci. 10, 530–540.

Nishimura, Y., Perlmutter, S.I., and Fetz, E.E. (2013). Restoration of upper limb
movement via artificial corticospinal andmusculospinal connections in a mon-
key with spinal cord injury. Front Neural Circuits 7, 57.

O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H.,
and Nicolelis, M.A. (2011). Active tactile exploration using a brain-machine-
brain interface. Nature 479, 228–231.

Oliviero, A., Mordillo-Mateos, L., Arias, P., Panyavin, I., Foffani, G., and Aguilar,
J. (2011). Transcranial static magnetic field stimulation of the human motor
cortex. J. Physiol. 589, 4949–4958.

Orsborn, A.L., and Carmena, J.M. (2013). Creating new functional circuits for
action via brain-machine interfaces. Front. Comput. Neurosci. 7, 157.

Orsborn, A.L., Moorman, H.G., Overduin, S.A., Shanechi, M.M., Dimitrov, D.F.,
and Carmena, J.M. (2014). Closed-loop decoder adaptation shapes neural
plasticity for skillful neuroprosthetic control. Neuron 82, 1380–1393.

Panzeri, S., Petersen, R.S., Schultz, S.R., Lebedev, M., and Diamond, M.E.
(2001). The role of spike timing in the coding of stimulus location in rat somato-
sensory cortex. Neuron 29, 769–777.

Potter, S.M., El Hady, A., and Fetz, E.E. (2014). Closed-loop neuroscience and
neuroengineering. Front Neural Circuits 8, 115.

Powers,M.E., Knudsen, E.B., Moxon, K.A. (2013). BMI control of hindlimb after
complete spinal transection: Restoration of volitional control using epidural
stimulation Program No. 374.16, San Diego, CA: Society for Neuroscience.

Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A.M., Pellegrini, M., Lo-
catelli, M., Moxon, K.A., and Villani, R.M. (2004). Rhythm-specific pharmaco-
logical modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol.
189, 369–379.

Priori, A., Foffani, G., Rossi, L., and Marceglia, S. (2013). Adaptive deep brain
stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol.
245, 77–86.

Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O., Brasil, F.L.,
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