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9
Probabilistic Inference and Bayesian Priors in Visual
Perception
Grigorios Sotiropoulos and Peggy Seriès

9.1
Introduction : The challenge of uncertainty

Throughout its life, an animal is faced with uncertainty about the external environ-
ment. There is often inherent ambiguity in the information entering the brain. In the
case of vision, for example, the projection of a 3D physical stimulus onto the retina
most often results in a loss of information about the true properties of the stimulus.
Thus multiple physical stimuli can give rise to the same retinal image. For example,
an object forming an elliptical pattern on the retina may indeed have an elliptical
shape but it may also be a disc viewed with a slant (Figure 9.1). How does the visual
system “choose” whether to see an ellipse or a slanted disc?
Even in the absence of external ambiguity, internal neural noise or physical lim-

itations of sensory organs, such as limitations in the optics of the eye or in retinal
resolution, may also result in information loss and prevent the brain from perceiv-
ing details in the sensory input that are necessary to determine the structure of the
environment.
Confronted with these types of uncertainty, the brain must somehow make a guess

about the external world; that is, it has to estimate the identity, location and other
properties of the objects that generate the sensory input. This estimation may rely
on sensory cues but also on assumptions, or expectations, about the external world.
Perception has thus been characterized as a form of “unconscious inference” – a hy-
pothesis first proposed by Hermann von Helmholtz (1821-1894). According to this
view, vision is an instance of inverse inference, whereby the visual system estimates

Figure 9.1 An elliptical pattern forming on the retina can be either an ellipse viewed
upright or a circle viewed at an angle. Image adapted from 20 with permission.
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the true properties of the physical environment from their 2D projections on the ret-
ina, i.e. inverts the process of the mapping of the visual inputs onto the retina, with
the help of expectations about the properties of the stimulus.
Helmholtz’s view of perception as unconscious inference has seen a resurgence

in popularity in recent years in the form of the “Bayesian brain” hypothesis [19, 21,
39]. In this chapter, we explain what it means to view visual perception as Bayesian
inference. We review studies using this approach in human psychophysics. As we
will see below, central to Bayesian inference is the notion of priors; we ask which
priors are used in human visual perception and how they can be learned. Finally, we
briefly address how Bayesian inference processes could be implemented in the brain,
a question still open to debate.

9.2
Perception as Bayesian inference

The “Bayesian Brain hypothesis” proposes that the brain works by constantly form-
ing hypotheses or “beliefs” about what is present in the world, and evaluates those
hypotheses based on current evidence and prior knowledge. These hypotheses can
be described mathematically as conditional probabilities: P(Hypothesis|Data) is the
probability of a hypothesis given the data (i.e. the signals available to our senses).
These probabilities can be computed using Bayes’ rule, named after Thomas Bayes
(1701-1761):

P (Hypothesis |Data) =
P (Data |Hypothesis)P (Hypothesis)

P (Data)
(9.1)

Using Bayes’ rule to update beliefs is called Bayesian inference. For example, sup-
pose you are trying to figure out whether the moving shadow following you in that
of a lion. The data available is the visual information that you can gather by look-
ing behind you. Bayesian inference states that the best way to form this probability
P(Hypothesis | Data), called the posterior probability, is to multiply two other prob-
abilities:

• P(Data | Hypothesis): our knowledge about the probability of the data given the
hypothesis (how probable is it that the visual image looks the way it does now
when you actually know there is a lion?), which is called the likelihood, times:

• P(Hypothesis), the prior probability : our knowledge about the hypothesis before
we could collect any information, here for example the probability that we may
actually encounter a lion in our environment, independently of the visual inputs,
a number which would be very different if you lived in Edinburgh rather than in
Tanzania.

The denominator, P(Data), is only there to ensure the resulting probability is between
0 and 1 and can often be disregarded in the computations. The hypothesis can be
about the presence of an object, as in the example above, or about the value of a
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given stimulus (for example, “the speed of this lion is 40 km/h” – an estimation task)
or anything more complex.
Bayesian inference as a model of how the brain works thus rests on critical assump-

tions that can be tested experimentally:

• The brain takes into account uncertainty and ambiguity by always keeping track of
the probabilities of the different possible interpretations;

• The brain has built (presumably through development and experience) an internal
model of the world in the form of prior beliefs and likelihoods that can be consulted
to interpret new situations;

• The brain combines new evidence with prior beliefs in a principled way, through
the application of Bayes’ rule.

An observer who uses Bayesian inference is called an ideal observer.

Deciding on a single percept

The posterior probability distribution P (H|D) obtained through Bayes’ rule contains
all the necessary information to make inferences about the hypothesis,H , by assign-
ing a probability to each value of H . For example: the probability that we are being
followed by a lion would be 10% and that there is no lion, 90%. But we only perceive
one interpretation at a time (no lion), not a mixture of the two interpretations (90%
lion and 10% no lion). How does the brain chooses a single value of H, based on
the posterior distribution? This is not clearly understood yet but Bayesian Decision
Theory provides a framework for answering this question. If the goal of the animal
is to have the fewest possible mismatches between perception and reality, the value
of H that achieves this (call it H∗) should simply be the most probable value. This
is called the maximum a posteriori (MAP) solution:

H∗ = argmax
H

P (H|D) (9.2)

where D denotes the data. Another possibility is to use the mean of the posterior
(which is generally different to themaximum for skewed ormultimodal distributions).
This solution minimizes the squared difference of the inferred and actual percept,
(H −H∗)2.
Taking either the maximum or the mean of the posterior is a deterministic solution:

for a given posterior, this will lead to a solution H∗ that is always the same. In per-
ceptual experiments, however, there is very often trial-to-trial variability in subjects’
responses. The origin of this variability is debated.
One way to account for it with a Bayesian model is to assume that perception and/or

responses are corrupted by noise. Two types of noise can be included: i) perceptual
noise in the image itself or in the neural activity of the visual system and ii) decision
noise – an additional source of noise between perception and response - for example,
neural noise in motor areas of the brain that introduces variability in reporting what
was seen, even when the percept itself is noiseless.
Another way to model trial-to-trial variability is to assume a stochastic rule for

choosing H∗. The most popular approach is probability matching whereby H∗ is
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simply a sample from the posterior. Thus across trials, the relative frequency of a
particular percept is equal to its posterior probability. It can be shown that probab-
ility matching is not an optimal strategy under the standard loss criteria discussed
above. However, the optimality of a decision rule based on the maximum or the
mean of the posterior rests on the assumption that the posterior is correct and that the
environment is static; when either of these is not true, probability matching can be
more useful because it increases exploratory behaviour and provides opportunity for
learning. Probability matching and generally posterior sampling has also been pro-
posed as a mechanism to explain multistable perception [13], whereby an ambiguous
image results in two (or more) interpretations that spontaneously alternate in time.
For example, looking at Figure 9.2, right, we might see a vase at one time but two
opposing faces at another time. It has been proposed that such bistable perception
results from sampling from a posterior distribution which would be bimodal, with
two peaks corresponding to the two possible interpretations.

9.3
Perceptual Priors

As described above, the Bayesian Brain Hypothesis proposes that a priori knowledge
is used in the perceptual inference and represented as a prior probability. Recently,
a number of researchers have explored this idea: if the brain uses prior beliefs, what
are those? And how do they influence perception?
Intuitively, it is when sensory data is limited or ambiguous that we rely on our prior

knowledge. For example, if we wake up in the middle of the night and need to walk
in total darkness, we automatically use our prior knowledge of the environment, or
of similar environments, to guide our path. Mathematically, similarly, Bayes’ rule
indicates that prior distributions should have maximum impact in situations of strong
uncertainty. Thus, a good way to discover the brain’s prior expectations is to study
perception or cognition in situations where the current sensory inputs (the ‘evidence’)
is limited or ambiguous. Studying such situations reveals that our brain uses auto-
matic expectations all the time.

9.3.1
Types of prior expectations

Visual illusions are a great example of this. Consider Figure 9.2 for example. The
ambiguous “Rubin’s vase” can be interpreted as either a vase, or two faces facing
each other. However, in figure 9.2, because of the spatial proximity of the ambigu-
ous image on the right with the photo of the vase on the left, you are more likely to
perceive first a vase on the right, which will then switch to a face. The same effect
would be observed with temporal proximity, such as when Rubin’s vase is presented
shortly after the unambiguous image of a vase. These types of expectations, induced
by cues that are local in space or time and have immediate and short-term effects,
have been recently dubbed “contextual expectations” [30]. There are several different
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Figure 9.2 Rubin’s vase. The black-and-white image on the right can be seen as a black
vase or as two opposing white faces. The image on the left provide the context that primes
the visual system to choose one of the interpretations for the ambiguous image: the vase,
before it switches to the faces.

types of contextual expectations that affect perception. Some experiments manipu-
late expectations by explicitly giving information regarding the visual stimulus, for
example telling participants about the number of possible directions of motion that
they are going to be exposed to. In yet other psychophysical experiments, expecta-
tions are formed implicitly and unconsciously, for example by exposing participants
to the association between the sense of rotation of a 3D cylinder and a particular sig-
nal, for example a sound [15]. When the sense of rotation is later made ambiguous
by removing 3D information, subjects’ perception will be modulated by the presence
of the sound.
Contextual expectations are not the only kind of expectations; another kind, con-

ceptually more akin to Bayesian priors, are expectations based on general, or prior,
knowledge about the world. These have been referred to as structural expectations
[30, 32]. The expectation that shapes are commonly isotropic is one such example:
when humans see an elliptical pattern such as that of Figure 9.1, they commonly as-
sume that it is a circle viewed at a slant rather than an ellipse because circles, being
isotropic, are considered more common than ellipses. Another well known effect is
that the human visual system is more sensitive to cardinal (horizontal and vertical)
orientations, the so-called "oblique effect". This is thought to be due to an intrinsic
expectation that cardinal orientations are more likely to occur than oblique orienta-
tions (see below). Another well-studied example of a structural expectation that has
been formalised in Bayesian terms is that light comes from above us. The light-from-
above prior is used by humans as well as other animals when inferring the properties
of an object from its apparent shading. Figure 9.3A, for example, is interpreted as
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one dimple in the middle of bumps. This is consistent with assuming that light comes
from the top of the image. Turning the page upside down would lead to the opposite
percept. In shape-from-shading judgements, as well as in figure-ground separation
tasks, another expectation also influences perception - that objects tend to be convex
rather than concave. For example, Figure 9.3B is typically interpreted as a set of black
objects in white background (and not vice versa) because under this interpretation the
objects are convex. A convexity prior seems to exist not just for objects within a scene
(e.g. bumps on a surface) but also for the entire surface itself: subjects are better at
local shape discrimination when the surface is globally convex rather than concave.
A related, recently reported expectation is that depth (i.e. the distance between figure
and ground) is greater when the figure is convex rather than concave. Other examples
of expectations are that objects tend to be viewed from above; that objects are at a
distance of 2-4 m from ourselves; that objects in nearby radial directions are at the
same distance from ourselves; and that people’s gaze is directed towards us (see [30]
and citations therein). Finally, an expectation that has lead to numerous studies is the
expectation that objects in the world tend to move slowly or to be still. In Bayesian
models of motion perception, this is typically referred to as the slow speed prior (see
below).
The distinction between contextual and structural expectations is not always clear-

cut. For example, when you see a dark, pistol-shaped object in the bathroom after
you’ve taken off your glasses and your vision is blurred, you will likely see that object
as a hairdryer (Figure 9.3C). The exact same shape seen in a workshop will evoke the
perception of a drill. The context, bathroom sink vs. workbench, helps disambiguate
the object - a contextual expectation. However, this disambiguation relies on prior
knowledge that hair dryers are more common in bathrooms and drills are more com-
mon in workshops; these are structural expectations. In a Bayesian context, structural
expectations are commonly described in terms of “priors”.

9.3.2
Impact of expectations

Expectations help us infer the state of the environment in the face of uncertainty. In
the “bathroom sink vs. workbench” example, expectations help disambiguate the dark
object in the middle of each image in Figure 9.3. Apart from aiding with object iden-
tification or shape judgements, expectations can impact perception in several other
ways. First, they can lead to an improvement in performances during detection tasks.
For example, when either the speed or the direction of motion of a random-dot stimu-
lus are expected, subjects are better and faster at detecting the presence of the stimulus
in a two-interval forced choice task [29]. More interestingly perhaps, in some cases,
expectations about a particular measurable property can also influence the perceived
magnitude of that property, that is: the content of perception. A recent study, for
example, showed that, when placed in a visual environment where some motion dir-
ections are more frequently presented than others, participants quickly and implicitly
learn to expect those. These expectations affect their visual detection performance
(they become better at detecting the expected directions at very low contrast) as well
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Figure 9.3 A. Expectation that light comes from above. This image is interpreted as one
dimple in the middle of bumps. This is consistent with assuming that light comes from the
top of the image. Turning the page upside down would lead to the opposite percept. Image
adapted from [1] with permission. B. Convexity expectation for figure-ground separation.
Black regions are most often seen as convex objects in a white background instead of
white regions being seen as concave objects in a black background. Image adapted from
[26] with permission. C. Interplay between contextual and structural expectations. The
black object on the left is typically perceived as a hair dryer because it has a pistol-like
shape (structural expectation), it appears to be in a bathroom (contextual expectation) and
we know that hair dryers are typically found in bathrooms (structural expectation). The
identical-looking black object on the right is perceived as a drill since the context implies
that the scene is a workshop. Image adapted from [3] with permission.
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as their estimation performances (they show strong estimation biases, perceiving mo-
tion directions as being more similar to the expected directions). Moreover, in situ-
ations where nothing is shown, participants sometimes incorrectly report perceiving
the expected motion directions – of form of “hallucinations” of the prior distribution
[8].
Another particularly interesting example of how expectations can affect the content

of perception is the aforementioned expectation of slow speeds which we describe in
more details in the next section.

9.3.3
The slow speed prior

Hans Wallach observed that a line moving behind a circular aperture, with its end-
points concealed such that its true direction cannot be recovered, always appears to
move perpendicularly to its orientation [41]. This is known as the “aperture prob-
lem”. Observing that the perpendicular direction corresponds to the interpretation of
the retinal image sequence which has slowest speed, he hypothesized that the reason
for this remarkably universal perception is an innate preference of the visual system
for slow speeds. This idea has been formalised by Yair Weiss, Eero Simoncelli and
Ted Adelson in 2002 [40]. These researchers showed that a Bayesian model incor-
porating a prior for slow speeds can explain not only the aperture problem but also a
variety of perceptual phenomena, including a number of visual illusions and biases.
One effect that this model explains is the “Thompson effect” - the decrease in per-

ceived speed of a moving stimulus when its contrast decreases [35]. In the model
of Weiss et al., the speed of a rigidly translating stimulus is determined by the in-
tegration of local motion signals under the assumptions of measurement noise and
a prior that favours slow speeds. Given the noisy nature of eye optics and of neural
activity, at low contrasts, the signal-to-noise ratio is lower than it is at high contrasts.
This means that the speed measurements that the visual system performs are more
noisy, which is reflected by a broader likelihood function. According to Bayes rule,
the prior will thus have a greater influence on the posterior at low contrasts than at
high contrasts, where the likelihood is sharper. It follows that perceived speed will be
lower at low contrasts (see Figure 9.4). A real-world manifestation of the Thompson
effect is the well-documented fact that drivers speed up in the fog [31]. It should be
noted that contrast is not the only factor that can affect uncertainty: similar biases
towards slow speeds can be observed when the duration of the stimulus is shortened
[42].
The slow speed prior affects not only the perceived speed but also the perceived

direction. The model of Weiss et al. accounts for the aperture problem as well as
the directional biases observed with the motion of lines that are unoccluded but are
presented are very low contrast. The rhombus illusion is a spectacular illustration of
this. In this illusion (Figure 9.5), a thin, low-contrast rhombus that moves horizontally
appears to move diagonally whereas the same rhombus at a high contrast appears to
move in its true direction. This illusion is well accounted by the model. Weiss et al.
make a convincing case that visual illusions might thus be due not to the limitations
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Figure 9.4 Influence of image contrast on the estimation of speed. a) At high contrast, the
measurements of the stimulus are precise, and thus lead to a sharp likelihood.
Multiplication of the likelihood by the prior distribution leads to a posterior distribution that
is similar to the likelihood, only slightly shifted towards the prior distribution. b) At low
contrast, on the other hand, the measurements are noisy and lead to a broad likelihood.
Multiplication of the prior by the likelihood thus leads to a greater shift of the posterior
distribution towards the prior distribution. This will result in an underestimation of speed at
low contrast. Reproduced from [34] with permission.

of a collection of imperfect hacks that the brain would use, as commonly thought, but
would be instead ‘a result of a coherent computational strategy that is optimal under
reasonable assumptions.’ See also Chapter 12 of this book for related probabilistic
approaches to motion perception.

9.3.4
Expectations and environmental statistics

If our perceptual systems are to perform well, that is, if the interpretation of an am-
biguous or noisy scene is to match the real world as closely as possible, our expect-
ations need to accurately reflect the structure of the real world. In Bayesian terms,
this means that our priors must closely approximate the statistics of the environment
(see Chapter 3 of this book). Using the previous “bathroom sink vs workbench” ex-
ample, we need to have a prior that favours the presence of drills in workshops. If
that were not the case, we might interpret the object in the workshop as a hair dryer,
which would lead to an incorrect inference more often than not because, statistically
speaking, drills are more common in workshops that hair dryers are.
Our visual input - the images forming on the retina - although very varied, is only a

small subset of the entire possible image space. Natural images are highly redundant,
containing many statistical regularities that the visual system may exploit to make
inferences about the world. If expectations are to facilitate vision, they should ap-
proximate environmental statistics and, indeed, there is considerable evidence that
in many cases they do so. For example, as described above, it is known that, when
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Figure 9.5 Influence of contrast on the perceived direction of a horizontally moving
rhombus. A. With a high-contrast rhombus the signal-to-noise ratio of the two local
measurements (only two are shown for clarity) is high and thus the likelihood for each
measurement in velocity space is sharp, tightly concentrated around a straight line, and
dominates the prior, which is broader. The resulting posterior is thus mostly dictated by the
combination of the likelihoods and favours the veridical direction (since the point where the
two likelihood lines intersect has vy = 0). B. With a low-contrast rhombus, the constraint
line of the likelihood is fuzzy, i.e. the likelihood is broad and the prior exerts greater
influence on the posterior, resulting in an posterior that favours an oblique direction. Image
adapted from [40], with permission.
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assessing the orientation of visual lines, human participants show strong biases to-
wards cardinal orientations (vertical and horizontal), indicating a tendency to expect
cardinal orientations in the world. Moreover, this bias is known to depend on the
uncertainty associated with the stimulus [37]. This expectation is consistent with
natural scene statistics : FFT analysis, for example, shows stronger power at cardinal
compared with oblique orientations in a variety of natural images [17, 25]. The link
between natural images statistics and the use of Bayesian priors in behavioural tasks
was demonstrated recently by [14]. Girshick et al. studied the performances of par-
ticipants comparing different orientations, and found that participants were strongly
biased toward the cardinal axes when the stimuli were uncertain. They further meas-
ured the distribution of local orientations in a collection of photographs and found that
it was strongly non-uniform, with a dominance of cardinal directions. Assuming that
participants behaved as Bayesian observers, and using a methodology developped by
[34], they could extract the Bayesian priors that participants used in the discrimin-
ation task and found that the recovered priors matched the measured environmental
distribution (Figure 9.6).
Similarly, a study measured the pairwise statistics of edge elements from contours

found in natural images and found that the way humans group edge elements of oc-
cluded contours matches the performance of an ideal observer Bayesian model, i.e.
a model with a prior reflecting the statistics of the natural image database [12]. This
suggests that perceptual mechanisms of contour grouping are closely related to nat-
ural image statistics. The influence of the convexity expectation in figure-ground
separation may also have a basis in natural scene statistics. As mentioned above, it
was found that subjects expect greater distances between convex figures and back-
ground than between concave ones and background [6]. These expectations were in
accord with the statistics of a collection of luminance and range images obtained from
indoor and outdoor scenes.
As far as the slow speed prior is concerned, research related to the statistical struc-

ture of time-varying images is scarce. Inferring a distribution of object speeds from
image sequences is complicated by the fact that retinal motion (the motion of patterns
forming on the retina) does not correspond to object motion in a trivial way. One
problem is that object speed can be inferred from retinal speed (the rate of movement
of an object’s projection on the retina) only if the distance of the object from the ob-
server is known. Another problem is that retinal motion can be produced both by
the independent motion of objects in the view field and by self-motion, head and eye
movements. There are however some indications from studies looking at the prop-
erties of optical flow and the power spectrum of video clips that the distribution of
retinal speeds can be described by a log-normal distribution or a power-law distribu-
tion favouring slow speeds [10, 7].
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Figure 9.6 Expectations about visual orientations. a. Example natural scene, with strongly
oriented locations marked in red. b) Distribution of orientations in natural scene
photographs. c. Participants viewed arrays of oriented Gabor functions and had to
indicate whether the right stimulus was oriented counter-clockwise or clockwise relative to
the left stimulus. d. The recovered priors, extracted from participants’ performances, here
shown for subject S1 and mean subject, are found to match the statistics of orientation in
the natural scenes. Reproduced from [14] with permission.
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9.4
Outstanding questions

While expectations have been studied for more than a century, the formalization of
expectations as priors in Bayesian models of perception is relatively recent. Although
by now there is a considerable body of theoretical work on Bayesian models that
account for a wealth of perceptual data from human and non-human observers, there
are a number of outstanding questions.

9.4.1
Are long-term priors plastic?

Are long-term priors hard-wired, or fixed after long-term exposure, or are they con-
stantly updating through experience? This question was first addressed in the context
of the light-from-above prior. In 1970, Hershberger showed that chickens reared in
an environment illuminated from below did not differ from controls in their inter-
pretation of shadows and depth [16] . They thus suggested that the prior that light
comes from above is innate. This question was recently revisited in humans [2]. In
their experiment, the authors first asked participants to make convex-concave judg-
ments of bump-dimple stimuli at different orientations, and measured the light-from-
above prior based on their responses. During a training phase, they then added new
shape information via haptic (active touch) feedback, that disambiguated object shape
but conflicted with the participants’ initial interpretation, by corresponding to a light
source shifted by 30 deg compared to the participants baseline prior. When parti-
cipants were finally tested again on visual only stimuli, their light direction prior
had shifted significantly in the direction of the information provided during train-
ing. Adams et al. thus concluded that, unlike in chickens, the light-from-above prior
could be updated in humans. We recently investigated this question in the context
of the slow speed prior [33]. The aim of this study was to test whether expectations
about the speed of visual stimuli could be changed implicitly solely through expos-
ure to fast speeds and if so, whether this could result in a disappearance or reversal
of the classically reported direction biases. Using a field of coherently moving lines
presented at low contrast and short durations, this was found to be the case. After
about 3x1 hour exposure to fast speeds on 3 consecutive days, directional biases dis-
appeared and a few days later, they changed sign, becoming compatible with a speed
prior centered on speeds faster than 0 deg/s.

9.4.2
How specific are priors?

Another crucial issue that needs to be clarified concerns the specificity of expecta-
tions. For example, is there only one speed prior, which is applied to all types of visual
objects and stimuli? Or multiple priors specific to different objects and conditions?
When new priors are learned in the context of a task, do they automatically transfer to
different tasks? Adams et al. provided evidence that the visual system uses the same
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prior about light source position in quite different tasks, one involving shape and an-
other requiring lightness judgments [2]. Similarly, Adams measured the light-from-
above in different tasks: visual search, shape perception, and a novel reflectance-
judgment task [1]. She found strong positive correlations between the light priors
measured using all three tasks, suggesting a single mechanism used for “quick and
dirty” visual search behaviour, shape perception, and reflectance judgments. In the
context of short-term statistical learning, and using a familiarisation task with com-
plex shapes, Turk-Browne and Scholl (2009) provided evidence for transfer of per-
ceptual learning across space and time, suggesting that statistical learning leads to
flexible representations [38]. However, the generality of these findings is still unclear
and needs further exploration. A related question is to understand whether expecta-
tions learned in the laboratory can persist over time and for how long. Recent work
suggests that contextual priors persist over time, but may remain context-dependent,
with the experimental set-up acting as a contextual cue [18].

9.4.3
Inference in biological and computer vision

The Bayesian approach is not the first computational framework to describe vision,
whether artificial or biological, in terms of inverse inference. In a series of landmark
papers published in the 1980s, Tomaso Poggio and colleagues postulated that inverse
inference in vision is an ill-posed problem [27]. The term “ill-posed” was first used in
the field of partial differential equations several decades earlier to describe a problem
that has either multiple solutions, no solution or the solution does not depend con-
tinuously on the data. Poggio and colleagues suggested that to solve the problem of
inverse inference, the class of admissible solutions must be restricted by introducing
suitable a priori knowledge. The concept of a priori knowledge, or assumptions, had
been used earlier by [36] as a general approach to solving ill-posed problems in the
form of regularization theory. Let y be the data available and let z be the stimulus
of interest, such that f(z) = y, where f is a known operator. The direct problem is
to determine y from z; the inverse problem is to obtain z when y is given. In vision,
most problems are ill-posed because z is typically not unique. Regularization works
by restricting the space of solutions by adding the stabilizing functional, or constraint,
P(z). The solution is then found using:

z∗ = argmin
z

(‖f(z)− y‖2 + λ‖P (z)‖2) (9.3)

where z∗ is the estimate of the stimulus property (or properties) z of interest; and λ
is a constant that controls the relative weight given to the error in estimation versus
the violation of the constraints when computing the solution. Thus z∗ approximates
the inverse mapping f−1(y) under the constraints P .
Since the work of Poggio and colleagues, regularization has been widely used in

the computer vision community for a variety of problems, such as edge detection, op-
tical flow (velocity field estimation) and shape from shading. These endeavours were
met with success in many hard problems in vision – particularly problems that were
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hard to solve when the visual input were natural scenes rather than simplified artifi-
cial ones. This success lent popularity to the hypothesis, also central to the Bayesian
approach, that the brain perceives the world by constraining the possible inverse infer-
ence solutions based on prior assumptions about the structure of the world. Bayesian
inference and regularization have more in common than just this common concept,
however. This becomes more apparent by taking the logarithm of the posterior in
Bayes’ rule Equation (Eq 9.1):

logP (z|y) ∝ logP (y|z) + logP (z)− logP (y)

TheMAP solution of the log-posterior (which is the same as theMAP of the posterior,
since logarithms are monotonic functions) thus becomes

z∗ = argmin
z

(− logP (y|z)− logP (z)) (9.4)

where P (y) can been ignored as it does not depend on z, and z∗ is expressed in terms
of minimizing the sum of negative logarithms (instead of maximizing the sum of pos-
itive logarithms). The similarities between Equations 9.3 and 9.4 are striking: in both
equations the solution is derived by minimizing the sum of two quantities: one that
is based on a forward-inference model and another that is proportional to the devi-
ation of the solution from the one expected by prior knowledge/constraints. Bayesian
inference can thus be regarded as a stochastic version of regularization – the main
difference being that Bayesian inference is a more general and powerful framework.
This is due to two reasons. First, Bayesian inference, being a probabilistic estimation
theory, provides the optimal way of dealing with noise in the data (y in our case),
whereas regularization can be sensitive to noise. Second, in Bayesian inference, the
posterior also represents the reliability of each possible solution (whereas regulariza-
tion is akin to only representing the mode of a posterior). In other words, a Bayesian
approach makes use of all available information in situations of uncertainty (such as
noisy measurements) and evaluates the relative “goodness” of each possible solution,
as opposed to merely yielding the best solution.
Probabilistic approaches have been used in a number of ways in computer vision.

They typically consist of graphical models, whereby different levels of representa-
tion of visual features are linked to each other as nodes in a graph. Particle filter-
ing and Markov chain Monte Carlo [5] are two examples of techniques whereby a
probability distribution (rather than a single value) of a property is maintained and
used in subsequent computations (e.g. as more data is received). An example use of
such techniques in computer vision is the CONDENSATION algorithm, a particle
filtering approach for the tracking of dynamic, changing objects. Interestingly, elec-
trophysiological data from neurons in early visual areas (such as V1) has revealed
long latencies of responses, an indication that there are multiple levels of informa-
tion processing where low (early) levels interact with higher ones. Some authors have
suggested that these interactions can be modelled with the algorithms of particle fil-
tering and Bayesian belief propagation [22].
Prior assumptions in graphical models are most often modelled with Markov ran-

dom fields (MRF), which capture dependencies between neighbouring elements in an
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image (such as collinearity between adjacent line elements) and are flexible enough
to allow the specification of various types of prior knowledge.
As a final note, although Bayesian inference is a more general framework than

regularization, it is also more costly in computational resources. Furthermore, many
problems in vision can be solved without the need for a full probabilistic approach
such as Bayesian inference. Thus Bayesian inference is not always used in computer
vision and may not always be used in biological vision either – or may be used in an
approximate manner [4, 23], for example through the representation of approximate,
simpler versions of the true likelihood and prior distributions.

9.4.4
Summary and further avenues

Bayesian models and probabilistic approaches have been increasingly popular in the
machine vision litterature [28]. At the same time, they appear to be very useful for
describing human perception and behaviour at the computational level. How these
algorithms are implemented in the brain and relate to neural activity is still an open
question and an active area of research.
While its popularity has been steadily increasing in recent years, the Bayesian ap-

proach has also received strong criticism. Whether the Bayesian approach can ac-
tually make predictions for neurobiology, for example on which parts of the brain
would be involved, or how neural activity could represent probabilities, is debated.
It is yet unclear whether the Bayesian approach is only useful at the ‘computational’
level, to describe the computations performed by the brain overall, or whether it can
be also useful at the ‘implementation level’ to predict how those algorithms might
be implemented in the neural tissue [9]. It has also been argued that the Bayesian
framework is so general that it is difficult to falsify.
However, a number of models have been proposed that suggest how (approxim-

ate) Bayesian inference could be implemented in the neural substrate [11, 22]. Sim-
ilarly, a number of suggestions have been made about how visual priors could be
implemented. Priors could correspond to different aspects of brain organisation and
neural plasticity. Contextual priors could be found in the numerous feedback loops
present in the cortex at all levels of the cortical hierarchy [22]. A natural way in which
structural priors could be represented in the brain is in the selectivity of the neurons
and the inhomogeneity of their preferred features: the neurons that are activated by
the expected features of the environment would be present in larger numbers or be
more strongly connected to higher processing stages than neurons representing non-
expected features. For example, as discussed above, a Bayesian model with a prior
on vertical and horizontal orientations (reflecting the fact that they are more frequent
in the visual environment) can account for the observed perceptual biases toward car-
dinal orientations. These effects can also be simply accounted for in a model of the
visual cortex where more neurons are sensitive to vertical and horizontal orientations
than to other orientations. Another very interesting idea that has recently attracted
much interest is that spontaneous activity in sensory cortex could also serve to im-
plement prior distributions. It is very well known that the brain is characterised by
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ongoing activity, even in the absence of sensory stimulation. Spontaneous activity
has been traditionally considered as being just "noise". However, the reason the brain
is constantly active might be because it continuously generates predictions about the
sensory inputs, based on its expectations. This would be computationally advantage-
ous, driving the network closer to states that correspond to likely inputs, and thus
shortening the reaction time of the system.
Finally, a promising line of work is interested in relating potential deficits in

Bayesian inference with psychiatric disorders [24]. It is well known that the visual
experience of patients suffering from mental disorders such as schizophrenia and
autism are different from that of healthy controls. Recently, such differences have
been tentatively explained in terms of differences in the inference process, in par-
ticular regarding the influence of the prior distributions compared to the likelihood.
For example, priors that would be too strong could lead to hallucinations (such as in
schizophrenia), while priors that would be too weak could lead to patients being less
susceptible to visual illusions, and to the feeling of being overwhelmed by sensory
information (such as in autism).
A more detailed assessment of Bayesian inference as a model of perception at the

behavioural level, as well as a better understanding of its predictions at the neural
level and their potential clinical applications, are the focus of current experimental
and theoretical research.
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