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Previous work has established that 
schizophrenia risk increases in proportion to 
the degree of C4A expression10. To investigate 
whether the increased engulfment of synaptic 
structures by iMGs in the patient-derived 
cellular models was due to the risk variant in 
the C4 locus, the authors first determined the 
genotype and expression level of the C4 locus 
in the schizophrenia patient-derived lines. 
They then applied a complement activation 
assay to assess neuron-specific C4 expression. 
In the immune system, C4 induces C3 
activation, allowing the covalent attachment 
of C3 onto its targets and subsequently 
promoting the engulfment of targets by 
phagocytic cells. The authors therefore 
examined C3 deposition to evaluate the level 
of C4 activation. Since C4A expression is 
largely dependent on the copy number of 
the long form of C4A (C4AL), Sellgren et al. 
hypothesized that, if C4AL increases neural 
complement deposition through increased 
neural C4A expression, the C3 deposition 
should correlate with the C4AL copy number 
in their model13. That was indeed what 
the authors observed: the C3 complement 
deposition was strongly positively correlated 
with C4AL copy number in induced 
pluripotent stem cell-derived neural cultures 
from schizophrenia patients, but not with the 
copy number of the short or the long form of 
C4B13. Strikingly, the authors also identified an 
effect of C4AL copy number on complement-
dependent engulfment of synaptic structures 
by iMGs13. Taken together, these results show 
an association between increased synapse 
engulfment and the schizophrenia risk variant.

Minocycline, a broad-spectrum 
tetracycline antibiotic capable of penetration 
into the brain, has been speculated to have 
therapeutic potential in some neurological 
diseases through its anti-inflammatory 
effects14. The authors therefore asked 
whether minocycline could decrease 

synaptic pruning in their cellular model. 
They pretreated iMG cultures with 
minocycline in a series of clinically relevant 
doses and revealed a dose-dependent 
decrease in synapse engulfment13.

Sellgren et al. hypothesized that chronic 
exposure to minocycline or the similar 
brain-penetrant drug doxycycline during 
adolescence might decrease schizophrenia risk. 
Because these two medications are commonly 
prescribed for the treatment of acne vulgaris, 
the authors investigated electronic health 
records from two large academic medical 
centers with many years of follow-up and 
identified individuals between the ages of 10 
and 18 who received at least one electronically 
prescribed antibiotic from several similar brain-
penetrant drugs. This investigation revealed 
that minocycline or doxycycline exposure for at 
least 90 days was associated with significantly 
decreased risk of incident psychosis13.

Sellgren et al. raise the exciting 
possibility that minocycline may have a 
beneficial effect on the hyperactive synaptic 
pruning associated with schizophrenia, 
pointing to a potential early therapeutic 
intervention. More broadly, the results of 
the study highlight the power of coupling 
experimental results and clinical data. 
Altogether, these data support a novel 
point of view on microglia activation and a 
potential way to intervene early.

Several limitations of this intriguing 
story are worth noting. First, although the 
co-culture of microglia and neurons derived 
from schizophrenia patients provides a novel 
avenue to study synaptic pruning in addition 
to human clinical and animal studies, it 
remains unclear to what extent this method 
recapitulates the in vivo condition, given that 
the molecular signature of iMGs differs from 
that of human freshly isolated microglia15 
and that synaptic pruning in vivo requires 
motor or sensory inputs. Second, although 

this study has established a correlation 
between C4A copy number and synapse 
engulfment, further genetic-manipulation 
experiments are needed to clarify to what 
extent the C4 variant contributes to increased 
synaptic pruning. In addition, as the effect 
of C4 risk variant was observed in neural 
lines but not in iMG lines, the factors that 
cause an increased phagocytosis by microglia 
merit further exploration. Finally, future 
studies are needed to understand the effects 
of minocycline on microglial function and 
the use of minocycline as an early therapeutic 
intervention for schizophrenia. ❐
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COMPUTATIONAL PSYCHIATRY

Post-traumatic stress disorder as a disorder  
of prediction
Disproportionate reactions to unexpected stimuli and greater attention to perceived threat are cardinal symptoms 
of post-traumatic stress disorder. Computational psychiatry helps explain how these responses develop and result 
from abnormalities in learning and prediction during and after traumatic events.

Peggy Seriès

Following a terrifying event, such as 
military combat or rape, 5–30% of 
individuals1 will develop post-traumatic 

stress disorder (PTSD). For them, the 
intense fear they have experienced leaves 
a debilitating trace that will interfere with 

their future life. PTSD symptoms include 
flashbacks, nightmares, hyperarousal, and 
severe anxiety, as well as uncontrollable 
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thoughts about the event and behavioral 
strategies to avoid environments that may 
trigger the symptoms.

Why does PTSD develop for a fraction 
of but not all individuals submitted to 
similar experiences? Is there a biological 
vulnerability for the disorder or a biological 
signature of its consequences that could  
be used as a diagnostic marker and  
guide the development of new therapies? 
Recent studies by Homan et al.2 and  
Brown et al.3 in combat-exposed veterans 
show how computational psychiatry can 
help answering those questions. As with 
other mental disorders4, the key might 
be to model PTSD as resulting from 
(subconscious) inferential biases and 
impaired belief updating.

Common theories propose that PTSD 
results from abnormalities in learning 

during and after the traumatic event5. Fear 
conditioning could explain why neutral 
stimuli (people, places, sounds, etc.) that 
have been associated with the traumatic 
event acquire the capacity to trigger and 
maintain anxiety long after the trauma 
itself. Why this association doesn’t weaken 
over time has been attributed to either the 
fact that it was abnormally strong in the 
first place or—more likely—to deficits in 
extinction processes, i.e., a failure for the 
association to weaken when the same cues 
are encountered without leading to the 
traumatic event. This could be a result of 
patients’ avoidance strategies: individuals 
with PTSD avoid encountering such cues 
again and thus may never experience them 
as being safe. Other theories assume, on 
the contrary, that PTSD is related to basic 
deficits in acquiring associations between 

specific cues and the traumatic event.  
This would result in associating the  
trauma with the environment as a whole, 
causing heightened contextual anxiety  
and/or overgeneralization of fear to all  
cues resembling the initial cues. In 
environments not related to the traumatic 
event, PTSD patients have also robustly 
been found to exhibit reduced habituation 
of responses to repeatedly presented novel, 
intense, or fear-relevant stimuli, as well 
as greater sensitization of fear-related 
autonomic responses. Despite the popularity 
of those theories, the specific components  
of anomalous learning in PTSD  
remain unclear.

Computational modeling is ideally 
placed to help formalize and quantitatively 
test hypotheses regarding such potential 
abnormalities. In the laboratory, we can 
explore how individuals learn to predict  
the association between different cues  
and threats (such as electric shocks) and 
their flexibility in using, updating, or 
forgetting those predictions. Computational 
modeling can then reveal interindividual 
differences in internal learning and 
evaluation processes that are otherwise 
inaccessible to raw-data analysis4.

Homan et al.2 used a fear-conditioning 
task with a group of combat-exposed 
veterans presenting a wide range of PTSD 
symptoms (Fig. 1). Participants had to 
passively learn the pairing between two  
face images and mild electric shocks.  
Face A was paired with an electric shock 
in one third of the trials, while Face B 
was never paired with the shock. The 
acquisition phase was immediately followed 
by a reversal phase. After reversal, face B 
was now likely to lead to the shock, while 
face A was no longer paired with the 
shock. To assess conditioning, the authors 
measured skin conductance response (SCR). 
Interestingly, PTSD severity had no effect  
on the acquisition of the conditioned 
response before or after the reversal: all 
participants seemed to learn equally well. 
However, a modeling approach uncovered 
subtle differences.

Homan et al. used a basic reinforcement-
learning (Rescorla–Wagner) model and a 
Pearce–Hall hybrid model to fit the SCR data. 
Both types of reinforcement models compute 
a ‘value’ for each face cue, iteratively updated 
at each trial, based on the discrepancy 
between the expected and obtained outcome, 
i.e., the prediction error. However, the 
hybrid model replaces the constant learning 
rate of the Rescorla–Wagner model with a 
dynamic ‘associability’ parameter, which 
reflects attention allocation to cues that had 
been previously accompanied by surprise. 
Associability dynamically modulates value 
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Fig. 1 | a computational psychiatry approach to investigating possible learning anomalies in PtSD. a, 
Homan et al.2 recorded SCR during a fear-conditioning experiment in combat-exposed veterans. Face A 
was first paired with a mild electric shock. After reversal, Face B was paired with the shock while Face 
A was no longer associated with it. b, They then modeled the SCR data using various reinforcement 
models which compute a value, V, for each face cue, x, iteratively updated at each trial, n, based on the 
discrepancy between the expected (Vn(xn)) and obtained outcome rn, i.e., the prediction error δn. The 
best fitting model was found to be a hybrid Pearce–Hall model, which includes an associability variable 
(αn) that reflects attention allocation to cues previously accompanied by surprise. They determined the 
best-fitting parameters of the model for each individual and found that PTSD severity was associated 
with increased prediction error weight, η. c, The model-based time-series was then convolved with the 
hemodynamic response function and then regressed against functional MRI data with a focus on regions 
known to be involved in PTSD, i.e., the amygdala, the striatum, the hippocampus and the dorsal anterior 
cingulate cortex (dACC). They found that the neural computations that were shaped by these altered 
prediction-error weights contributed to the symptoms of PTSD: aversive value encoding in the amygdala 
and striatum; and associability computations in the striatum, dACC, and hippocampus. They also found 
that the right amygdala computations contributed to the symptomatology above and beyond the effects 
of smaller amygdala volumes, suggesting additive effects of right amygdala volume and function.
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learning by accelerating it for cues whose 
predictions are poor (large prediction  
errors) and decelerating it when predictions 
become reliable.

In line with previous studies3,6, Homan et 
al. found that the hybrid model accounted 
for the SCR data better than the basic 
model. Moreover, after fitting the model 
to individual participants’ data, they found 
that PTSD severity was associated with one 
particular model quantity: the prediction-
error weight, which can be seen as a learning 
rate for associability. In line with Brown et 
al.3, they found that highly symptomatic 
combat veterans were more influenced by 
prediction errors, weighting them more 
strongly as they adjusted trial-by-trial 
attention to cues.

Using model-based functional MRI,  
they went one step further and asked  
about the neural correlates of such 
differences: where and how strongly the 
computations of value, prediction errors, 
and associability are reflected in the 
neural activity. One of the main structures 
implicated in PTSD is the amygdala, 
considered as the threat-processing center 
and locus of associative learning1. The 
amygdala has been found to be smaller 
in size and hyperactive in PTSD. Other 
structures are also involved in providing 
context and meaning to the traumatic 
events, in particular, the prefrontal cortex 
and the hippocampus. PTSD patients 
typically show reduced activation of the 
prefrontal cortex and hippocampus, which 
is thought to correspond with reduced top-
down inhibitory control of the amygdala, 
possibly explaining the hyper-responsivity of 
the amygdala to fearful stimuli1.

Homan at al. found that neural activity 
in the amygdala was associated with the 
computation of value for the face images. 
PTSD was associated with lower neural 
tracking of value in the amygdala and the 
striatum, in addition to smaller amygdala 
volumes. Moreover, and departing from  
the findings of Brown et al.3, the authors 
found lower tracking of associability  
(and less so of prediction error) in the 

striatum, hippocampus, and dorsal  
anterior cingulate cortex in individuals  
with higher PTSD severity. They suggest  
that the higher weights assigned to 
prediction errors might be a compensatory 
adjustment for the decreased neural tracking 
of associability.

Computational psychiatry of PTSD is 
in its infancy, and quantifying individual 
differences in internal learning and 
evaluation processes is an important first 
step. By examining PTSD in a predictive-
coding framework, these recent findings 
may provide new keys to understanding 
the disorder: the increased weight given 
to surprising outcomes might explain the 
disproportionate reactions to unexpected 
stimuli or events, as well as heightened 
orienting and attentional biases toward 
negative information3. It could also explain 
the aberrant learning and synaptic plasticity 
long postulated to be at the core of PTSD1, 
that aversive outcomes could be experienced 
as less predictable and less avoidable, and 
the documented aversion to ambiguity in 
aversive environments in PTSD7.

The next steps will be to clarify how those 
results compare with previous findings5 
and whether they extend (or not) to other 
frameworks such as instrumental3 and 
reward8 learning. It will be crucial to verify 
that these individual differences correspond 
to vulnerabilities for the disorder (as 
opposed to its consequences) and how they 
relate to the different dimensions of PTSD 
symptoms (re-experiencing, avoidance, 
hyperarousal). It will be also important 
to show that they are specific to PTSD, as 
opposed to depression3 or other anxiety 
disorders9, which have also been found to 
relate to learning rates of associative learning 
in dynamic aversive environments10. 
Ultimately, computational studies will need 
to focus on developing models that can 
integrate theories of abnormal learning 
during and after traumatic events with the 
explanation of some or all symptom clusters 
into a single framework.

Importantly, such learning mechanisms 
are also at the core of the therapies that 

have shown to be effective in PTSD11: 
prolonged exposure, cognitive processing 
therapy, and trauma-focused cognitive–
behavioral therapy. These treatments all 
try to counteract avoidance strategies and 
to directly address—and update—the 
associations (memories, feelings, thoughts) 
made during the traumatic events. Despite 
the relative success of these techniques, the 
mechanisms behind both their strengths 
and their weaknesses are inadequately 
understood, and it has been suggested  
that up to 33% of people with PTSD 
are resistant to treatment12. We need to 
understand how those therapies work 
when they do, possibly by identifying the 
relationship between individual learning 
differences (such as increased attention 
to surprising outcomes) and treatment 
success. Ultimately we will need to design 
new therapies informed by a better 
understanding of the role of inference and 
learning in the genesis and maintenance of 
psychological distress13. ❐
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