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A recent article shows that the
brain automatically estimates the
probabilities of possible future
actions before it has even received
all the information necessary to
decide what to do next.
‘The future depends on what we do in the
present’, as Gandhi said. Each action we
take defines and constrains our possible
future. This is true for political action, but
also for everyday movements. If we are
running and our leg is fully stretched,
whatever we do next, the set of possible
motions is constrained: they need to
involve a flexion of the knee. An efficient
prediction system should take this into
account dynamically. It should continu-
ously update a representation of the pos-
sible future actions before they happen,
along with the associated uncertainty. Do
brains do this? Glaser et al. [1] present
evidence that indeed they do.

Predicting the future is often thought to be
what brains have evolved to do. An effi-
cient way to make predictions involving
uncertainty is to represent knowledge
with probability distributions and to
acquire new knowledge by following the
rules of probabilistic inference. It has thus
become popular to think that the brain
performs (an approximation of) probabi-
listic (a.k.a. ‘Bayesian’) reasoning. This
idea has already had a profound impact
in cognitive science and is consistent with
a large body of work in human and animal
behaviour [2,3].

However, the details of this hypothesis are
unclear. In particular, there remains a large
gap between the behavioural studies sup-
porting the Bayesian hypothesis and
uncovering the underlying neural substrate.
Is the brain truly representing probability
distributions? Where would those distribu-
tions live? Howwould theyberepresented?
How flexibly are those representations
updated, in particular when they should
be dynamically changing? Glaser et al. [1]
shed light on such issues.

In their experiment, three monkeys were
trained to reach for four targets on each
trial, one after the other, using their hand.
On each trial, the position of the next
target was conditioned on the current
hand position: targets were more likely
to appear approximately opposite the
current hand position, with a slight clock-
wise bias. Additionally, the farther the
hand position was from the centre of
the workspace, the more likely the
upcoming target was to be in the oppo-
site direction. The authors first measured
whether monkeys learned these probabil-
ity distributions by looking at their behav-
ioural performance. They found that
indeed their initial reaches were biased
by expectations about the target and their
uncertainty.

The monkeys were implanted with elec-
trode arrays in the primary motor cortex
(M1) and dorsal premotor cortex (PMd).
Neurons in the PMd are known to be active
during the preparation for thereach andalso
during the reach itself. They are broadly
tuned, responding best to one direction of
reach. Glaser and colleagues find that a
small population of PMd neurons, which
they call ‘potential response’ (PR) neurons,
are modulated before target presentation,
based on the anticipated possible target
locations. Moreover, the preferred direc-
tions of these neurons were distributed
approximately in proportion to how likely
upcoming movement directions were. The
authors also could decode the movement
that the PR neural population was planning
Tre
in the 100 ms before target presentation.
They findthat theplannedreaches decoded
before target onset were usually approxi-
mately to the position opposite to the cur-
rent hand position. This representation
contained information about the uncertainty
of the future positions, supporting the idea
that it is really a probability distribution that is
represented on single reaches, across the
population of neurons. Such representation
was not found in M1.

This line of work is important as it helps
bridge the gap between neural represen-
tations and probabilistic computations. It
also raises a number of questions. If PMd
neurons represent the probability distri-
bution of upcoming possible reaches, is
this encoded as a continuous function or
as samples of this distribution? At a the-
oretical level, there has been a longstand-
ing debate about whether the brain uses
probabilistic population codes (PPCs) [2]
versus sampling codes, where only a few
hypotheses would be represented with
frequencies proportional to their probabil-
ities, either across time or across the
population of neurons [3,4]. At present
Glaser et al.’s data seem compatible with
both explanations. In theory, PPCs and
sampling make different predictions, par-
ticularly about how the representation of
uncertainty depends on the number of
neurons involved in representation or
how it would evolve in time. However,
teasing them apart is proving difficult
[5]. By recording more neurons, system-
atically decoding the neural activity using
different codes, and comparing the pre-
dictions to behavioural performance,
extensions of this study could possibly
start answering such questions.

Other questions could be asked as well.
How and where is this ‘prior’ distribution
about likely future motion directions inte-
grated with the information provided
when the target appears (the ‘likelihood’)
and ‘read out’ to lead to the actual
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decision? This would address how
Bayes’ rule is implemented, a question
that has started to be investigated in vari-
ous other domains [6]. Of particular
importance will be to understand the
nature of the necessary approximations
used in these computations and how they
can explain suboptimal behaviour [7].

This work might also pave the way to new
neural theories of how the brain can build
complex representations on fast time-
scales in more cognitive domains. Similar
problems exist in speech processing; for
example, where, when hearing streams of
words, our brain needs to represent the
syntactic and semantic structure of the
sentence on the fly, anticipating future
words. Cognitive flexibility may also be
related to how fluidly the brain can repre-
sent likely future actions, contexts, or
thoughts.
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Ultimately, looking at individual differen-
ces in the flexibility of this representation
could have implications in the clinical
domain. It is often thought that mental
disorder, in particular autism and schizo-
phrenia, could be described as a failure
mode of the predictive system [8,9],
related either to the brain using wrong
or incompletely learned beliefs or to fail-
ures in how neural networks implement
approximate ‘Bayesian’ computations
[10]. The neural substrate underlying this
prediction system and the factors
involved in its fluidity or its possible impair-
ments, as well as the precise nature of the
‘code’, are still largely to be discovered.
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