
Supplementary Note 

 

Network architecture. The network we use in our simulations contains three stages: retina, LGN 

and V1. The retina consists of uncoupled analog units that are driven by the image; the output of 

each unit is an analog firing rate. The retina feeds into the LGN, which consists of a layer of 

uncoupled, spiking, excitatory neurons. And finally, the LGN feeds into V1, which also consists 

of spiking neurons, this time coupled through lateral connections. Unlike the LGN, V1 includes 

inhibitory as well as excitatory neurons. We describe each of these three layers below. 

 

Retina. The retina, which is modeled after Somers et al. (1995)1, contains two layers. One layer 

consists of ON center-surround cells and the other of OFF center-surround cells. Each layer 

contains 441 cells arranged in a 21 by 21 array, and the spacing between cells, expressed in 

degrees of visual angle, is 0.2º. 

 The firing rate of a cell at location (x,y) is determined by the firing rates of the associated 

center and surround subfields. Specifically, 
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where [·]+=max(·,0) denotes rectification and δ is a 3 ms delay between center and surround 

responses. The center and surround retinal subfield responses are generated by convolving the 

image with a spatio-temporal receptive field. Letting α={center, surround}, the subfield 

responses are given by 
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The center and surround receptive fields Fα(x,y) are modeled as circularly symmetric Gaussians, 
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and the temporal impulse response function, Gα(t), is modeled as a decaying exponential, 

 1



 

( ) 1= .
t

G t e ατ
α

ατ

−
         (4) 

 

We used σcenter =0.176º, σsurround=0.53º, Kcenter=17, Ksurround=16, τcenter=10 ms, τsurround=20 ms, and 

rbaseline=15 spk/s.  

The stimulus is a rectangular stationary bar of width w, length l and contrast c. The bar 

appears at time t=0 and forms an angle θ with respect to the x-axis. Without loss of generality, we 

center the bar at the origin, (0, 0). To compute rα(x,y,t) we first compute the response when the 

bar is parallel to the y-axis (θ=0), then rotate into a new frame. Denoting the response to a bar at 

orientation θ as rα(x,y,t|θ), we have, via equation (2), 
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where g(c) is the effective intensity of the stimulus at contrast c. Using 
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this can be rewritten as 
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Tilting the bar by θ with respect to the x-axis is equivalent to a coordinate rotation of -θ. Thus, 
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In all simulations, the bar’s dimensions in degrees of visual angle were w=1º, and l=4º. The 

effective intensity g(c) was defined to be 
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with β=3. This expression was chosen to account for the contrast dependence of LGN responses 

(see below).   

 

 

LGN.  Following Somers et al. (1995), we assume a one-to-one correspondence between retinal 

ganglion cells and LGN cells, so that the response of each ganglion cell is uniquely passed on to 

one LGN cell of the same center polarity. The firing rate of an LGN cell at location (x,y) in 

response to a bar at orientation θ is either rON(x,y,t-δsyn|θ) or rOFF(x,y,t-δsyn|θ), depending on 

whether the LGN is ON or OFF. Here δsyn is the synaptic delay between retinal and LGN cells; it 

is drawn from a Gaussian distribution with mean 3 ms and standard deviation 1 ms.  

Given the parameters listed above, the peak response of the LGN cells (that is, the LGN 

cell with the largest firing rate) versus contrast, denoted RLGN, is well fit by 
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where, as above, rbaseline=15 spk/s is the spontaneous firing rate. This relation is consistent with 

both Somers et al. (1995) and with experimental data2,3. 

Note that this LGN model is simplified in several ways. It does not account for the mild 

orientation bias that has been reported in LGN responses4, for the precise firing statistics and 

bursting in LGN5,6, or for is the strong temporal correlations that have been observed in LGN 

responses7. These properties are likely to influence the information available in the input to the 

cortex. However, it is unlikely that the fraction of this information that is transmitted to the 

cortical stage will depend critically on these assumptions.  

 

V1: feedforward connectivity. The cortical simple cell receptive field structure is established by 

segregation of ON and OFF LGN inputs into 3 main subfields (OFF-ON-OFF). Thalamocortical 

connections are defined in a 2 stage process: 

 

1. First, we model the receptive field of each cortical cell with respect to the LGN using a 

Gabor function, G(x,y,θ), defined by 
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The parameters σx and σy determine the size of the receptive fields. The anisotropy of the 

receptive fields is controlled by the parameter 2 2
y xγ σ σ= . The parameter k determines 

the preferred spatial frequency of the receptive fields and was fixed at 0.5 cycles/deg. The 

receptive fields of all cortical cells are centered at the same position in space; they differ 

only by their orientation, θ. Positive regions of the Gabor function correspond to ON 

subfields; negative regions correspond to OFF subfields. 

2. The LGN afferents of each cortical cell were randomly chosen within the subfield 

boundaries, with ON-subfields yielding connections from ON center LGN cells and OFF 

subfields yielding connections from OFF-center LGN cells. The probability of a 

connection from an ON-center LGN cell (resp. OFF-center) at position (x,y) to a cortical 

cell with preferred orientation θ was denoted P+(x,y,θ) (resp. P-(x,y,θ)). The connections 

probabilities, P±(x,y,θ), have the form 
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Each excitatory cortical cell received 24 LGN ON afferents and 24 OFF afferents; each 

inhibitory cell received 16 of each. These connections were drawn without replacement 

from the probability distribution given in equation (11). The strength of a connection, 

once one is made, is set to |G(x,y,θ)|.  

 

Two sets of parameters were used: (i) In the sharpening model, the parameters of the Gabor 

function were such that the initial receptive field structure is weakly anisotropic and the inputs are 

broadly selective to the orientation of the stimulus (σx=0.70, σy=0.47 ⇒ γ=0.44). (ii) In the no-

sharpening model on the contrary, the parameters of the Gabor function were such that the 

subfields are very elongated and the input to the cortex is highly selective to orientation (σx=1.09, 

σy =2.45 ⇒ γ=5). 
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V1: Neurons. The V1 layer contains 1008 excitatory neurons and 252 inhibitory neurons. 

Excitatory neurons are modeled as regular spiking conductance-based integrate-and-fire neurons, 

while inhibitory neurons are modeled as conductance-based fast-spiking neurons. The neuron 

model and parameters were taken from Somers et al. (1995). Each cortical neuron is modeled as a 

single voltage compartment in which the membrane potential is given by 
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The sum over j does not include all presynaptic cells; instead, the presynaptic cells are drawn 

probabilistically according to a scheme described below. The parameter τij is a delay, and gij(t), 

the synaptic conductance generated at post-synaptic cell i by the spiking of pre-synaptic cell j, is 

given by an alpha-function, 
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Here tl
j is the time of lth spike from presynaptic cell j. When the membrane potential exceeds the 

spike threshold (-55 mV), a spike is emitted, the spike threshold is elevated mimicking a relative 

refractory period (see Somers et al. (1995) for details), and a K+ mediated after-hyperpolarization 

(AHP) conductance was activated. The AHP conductance, gAHP(t), obeys the same equation as 

(13) except that the prefactor is AHPg and the sum is over the index i (the cell’s own spikes) rather 

than over j (presynaptic spikes). The values of the peak synaptic conductances, ijg , are given 

below. Conductance changes reached their maximal values at τpeak, which was 1 ms for excitatory 

synapses, 2 ms for inhibitory synapses, and 2 ms for after-hyperpolarization. The small values of 

τpeak means that we are effectively modeling AMPA and GABAA synapses; NMDA and GABAB 

were not included in this model.  

The neuron parameters were as follows. For the reversal potentials we used EEXCIT=0 mV, 

EINHIB=-70 mV, EAHP=-90 mV, and ELEAK=-65 mV. The membrane capacitance, leakage 

conductance and after-hyperpolarization conductance of regular spiking (excitatory) neurons 

were given by Cm= 0.5 nF, gLEAK=25 nS and AHPg =40 nS. Fast spiking (inhibitory) neurons had 
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parameter values of Cm= 0.2 nF, gLEAK=20 nS and AHPg =20 nS. See Somers et al. (1995) for 

more details on the parameters and choice of parameter values. 

The neurons were organized into 252 orientation columns, spanning the length of the 

cortical patch. Each column consists of 4 excitatory neurons and 1 inhibitory neuron. Preferred 

orientations vary monotonically across columns, with neighboring columns differing by 0.71º 

(=180º/252) in orientation.  

  

V1: Connectivity. We implemented two models: sharpening and no-sharpening. In the 

sharpening model, the pattern of the connections between neurons versus the difference in their 

preferred orientations is chosen so that the connection strengths form, on average, a “Mexican 

hat” function1,8. Specifically, the probability of a connection between two cells is a Gaussian 

function of the difference in their preferred orientations. The width (standard deviation) of this 

Gaussian is 7.5º for excitatory projections and 60º for inhibitory ones (note that the numbers refer 

to degrees in the orientation domain, not visual angle). All cells (both excitatory and inhibitory) 

receive input from 40 excitatory V1 cells and 30 inhibitory V1 cells. The synaptic conductances 

are fixed and identical for all connections of the same type: E Eg →  =1.1 nS, I Eg → =1.5 nS, E Ig → = 

1.5 nS and I Ig → =1 nS.

In the no-sharpening model, the only cortical connections that are active are inhibitory to 

excitatory. This model thus implements a pure “feedforward inhibition” 9. For simplicity, we 

assumed that inhibition has no orientation specificity, so it comes equally from cells of all 

preferred orientations. All excitatory cells receive 30 inhibitory inputs drawn from a uniform 

distribution, and the peak conductance is I Eg →  = 6.5 nS. 

Note that because the sharpening model leads to an amplification of the thalamic inputs, 

while the no-sharpening model suppresses them, the strength of the thalamocortical projections 

differs in the two cases. In the sharpening model, LGN Eg → = 5.5 nS; LGN Ig → =6 nS. In the no-

sharpening model, LGN Eg → = 20.5 nS ; LGN Ig → =14.8 nS. 

Each synapse has a randomly chosen synaptic delay, which represents the total soma-to-

soma time delay for spike evoked PSPs. The delays are drawn from a zero-bounded Gaussian 

distribution with mean τd and standard deviation σd. Following Somers et al. (1995), all cortical 

synapses (both excitatory and inhibitory) have τd=3 ms and σd=1 ms; LGN to excitatory synapses 

have τd= 10 ms and σd=7 ms, and LGN to inhibitory synapses have τd=5 ms and σd=3 ms. 
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No external noise was injected at the cortical stage. The variability of the cortical 

responses was due to the fact that (i) the LGN spikes were drawn from a Poisson distribution 

(with a seed that was varied from trial to trial) and (ii) at the cortical stage, inhibitory and 

excitatory inputs were approximately balanced10. 

 

Parametric study. We implemented one additional sharpening model (S2) and two additional 

no-sharpening models (NS2 and NS3; see Fig. 5),.  

The sharpening and no-sharpening models presented above (S, NS) make different 

assumptions about the strengths of the thalamocortical inputs. These are weak in the S model (and 

amplified by the cortex), whereas they are strong in the NS model (and suppressed by the cortex).  

The new sharpening model (S2) was constructed to explore the dependency of our results on this 

difference. In S2, like in NS, cortical suppression dominates  and the cortex no longer functions 

as an amplifier. The synaptic conductances are: E Eg →  = 1.7 nS, I Eg → = 3 nS, E Ig → =  1.1 nS and 

I Ig → = 0.5 nS.; LGN Eg → = 11 nS ; LGN Ig → =  12.8 nS. 

In the no-sharpening model presented above (NS), the only cortical connections that are 

active are the projections from inhibitory to excitatory cells (I E). This architecture was chosen 

because it represented the simplest implementation of the no-sharpening scheme. The two new 

no-sharpening models, NS2 and NS3, were constructed to examine the robustness of our results 

with respect to the connectivity pattern and number of cortical connections. In these new 

networks, the full set of cortical connections  is present (E E, E I, I E, I I) and the number 

of connections is chosen to be identical to that used in the sharpening model (40 excitatory and 30 

inhibitory synapses onto each cortical cell). NS2 is comparable to S2 in terms of cortical 

connectivity and strength of thalamocortical projections (but here the input orientation curve is 

narrow instead of broad, the other small connectivity differences between the two networks are 

due to the necessity of matching the output tuning curves and variabilities). The intracortical 

connectivity has a Mexican hat shape: the probability of an excitatory connection between two 

neurons separated by preferred orientation φ is Gaussian in φ with a width of 20º; the probability 

of an inhibitory connection between two neurons separated by preferred orientation φ is Gaussian 

in φ with a width of 60º. The synaptic conductances are: E Eg →  = 2.5 nS, I Eg → = 3.9 nS, E Ig → = 1 

nS and I Ig → =  0.5 nS.; LGN Eg → = 11 nS ; LGN Ig → = 13.8 nS.  In NS3, the excitatory and inhibitory 

projections are drawn from a flat distribution (each cell receives excitatory and inhibitory 

projections from neurons of all possible preferred orientations). The synaptic conductances are: 
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E Eg →  = 1 nS, I Eg → = 6.5 nS, E Ig → =  1.8 nS and I Ig → = 0.8 nS.; LGN Eg → = 19.5 nS ; 

LGN Ig → =14.8 nS.  

 To test the robustness of our results with respect to the correlational structure of the input 

to V1, we constructed sharpening and no-sharpening models in which all cortical cells received 

independent input from the LGN. In these models, the retinal and LGN stages described above 

are replaced by a much simpler scheme in which a V1 cell with preferred orientation φ receives 

independent Poisson spike trains from NK LGN neurons (K=E, I). The firing rate of each LGN 

neuron, denoted λK(c,φ-θ) where, as above, c is the stimulus contrast and θ is the stimulus 

orientation, is given by 
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The parameters in this expression have the following interpretation: AK controls the maximal 

spiking rate of each presynaptic LGN cell relative to spontaneous activity, σK  controls the width 

of the input orientation tuning curve, and εK controls the fraction of LGN inputs that depend on 

stimulus contrast but not on stimulus orientation. These parameters, along with NK, were chosen 

so that the strength of the input matched that used in the original sharpening and no-sharpening 

models. For both models, NE =24, NI =16, AE=AI=3.16, and εE= εI=0.2. In the sharpening model, 

σE=40º, σI=45º, LGN Eg → = 2.2 nS and LGN Ig → =5 nS. In the no-sharpening model, σE=σI=18º, 

LGN Eg → = 11.4 nS and LGN Ig → =15.8 nS. Intracortical conductances were the same as in the 

original sharpening and no-sharpening models. 

All networks were designed to have very similar tuning curve amplitude  (33.85 ±1.38 

spk/s) and width (σ =14.9º ± 0.82), as measured by fitting a Gaussian function on the population 

tuning curve averaged over 1008 trials (baseline= 3.1 spk/s ±1.49), and very similar degree of 

variability, as measured by the Fano Factor (mean Fano =  0.844 ±0.058) . 

 

Data Collection and Analysis 

 

The stimulus was a flashed bar at an orientation of either 89.5º or 90.5º. Stimulus evoked spikes 

were collected over 500 ms of stimulus presentation. Response statistics were computed after 

1008 repetitions of the same stimulus.  
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Simulation Software 

 

The model was implemented in C and run on an 8-node cluster of Linux machines. Our simulator 

uses published methods for fourth order Runge-kutta numerical integration of ODEs11, and a 

differential equation method for describing GABA and AMPA receptor channel kinetics12. The 

integration time step was 0.5 ms. 
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