
A R T I C L E S

Many cortical neurons encode variables in the external world via bell-
shaped tuning curves. In this coding scheme, the mean firing rate of a
neuron is a gaussian function of some variable such as the orientation
of a bar, the speed of a moving object or the frequency of a tone,
among others. Of particular importance is determining how much
information is contained in a population of such neurons, because
this is a prerequisite to understanding how downstream neurons
compute efficiently with population activity.

For a single neuron, the information about a variable can be char-
acterized by the discrimination threshold, in other words, by the
smallest change in the variable that can be reliably detected on the
basis of single trial responses. The inverse of the threshold is pro-
portional to the square root of what is known as Fisher informa-
tion1,2. This information depends on two quantities: the noise in the
response and the slope of the tuning curve. Specifically, the infor-
mation is inversely proportional to the level of noise (the higher the
noise, the less information) and directly proportional to the slope of
the tuning curve (the larger the slope, the larger the change in the
neuronal response for a given change in the encoded variable, and
thus the easier the discrimination task).

For bell-shaped tuning curves, the slope increases as the width of the
tuning curve decreases, which has led to the notion that sharpening
always improves the quality of a code. The idea that ‘sharper is better’
has been invoked in many different contexts in neuroscience, includ-
ing orientation selectivity3, attention4–6, perceptual learning7–9 and
auditory processing10. For example, behavioral improvements in the
ability of monkeys to discriminate small changes in orientation have
been related to sharpening of orientation tuning curves in V1 (ref. 7).

From the point of view of Fisher information, populations of neurons
are very similar to single neurons: sharpening increases information and

noise decreases it, as long as the noise is independent among neurons2.
Spikes from cortical neurons are, however, not independent11,12. In par-
ticular, for a given stimulus, the trial-to-trial fluctuations in the spike
count of one neuron partially predict the spike count fluctuations of
another. In addition, the extent of these ‘noise’ correlations almost
always depends on the width of the tuning curves. This is because the
correlations arise primarily through common input, and the level of
common input is determined by connections from the thalamus and
other cortical areas, and from local intracortical lateral connections.
Because sharpening requires changes in at least one of these, it is gener-
ally accompanied by changes in correlations. Consequently, sharpening
in realistic networks does not guarantee an increase in information.

Here we address this issue in the context of orientation selectivity,
as it has been studied widely in this setting experimentally13–16.
Several orientation selectivity models have been proposed in the past
decade14,17, and these can be grouped into two main classes: sharp-
ening models and no sharpening models. In the no-sharpening
model, the selectivity of cortical cells is due primarily to the conver-
gence of lateral geniculate nucleus (LGN) afferences13,14, and cortical
lateral connections are used for amplification and/or contrast invari-
ance. In the sharpening models, the LGN afferences provide broad
tuning curves that are subsequently sharpened through cortical
interactions mediated by lateral connections3,16,18. In the sharpening
model, the assumption is that the broadly tuned input from the LGN
provides a poor representation of orientation. This problem is fixed,
in principle, by sharpening the tuning curves through the cortical
interactions in V1. Indeed, with sufficient sharpening the tuning
curves can be as narrow as those obtained in the no-sharpening
model, at which point one might expect the two models to provide
equivalent representations of orientation.
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Several studies have shown that the information conveyed by bell-shaped tuning curves increases as their width decreases,
leading to the notion that sharpening of tuning curves improves population codes. This notion, however, is based on
assumptions that the noise distribution is independent among neurons and independent of the tuning curve width. Here we
reexamine these assumptions in networks of spiking neurons by using orientation selectivity as an example. We compare two
principal classes of model: one in which the tuning curves are sharpened through cortical lateral interactions, and one in
which they are not. We report that sharpening through lateral interactions does not improve population codes but, on the
contrary, leads to a severe loss of information. In addition, the sharpening models generate complicated codes that rely
extensively on pairwise correlations. Our study generates several experimental predictions that can be used to distinguish
between these two classes of model.
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dictions that can be used to establish whether the cortex uses a
sharpening or no-sharpening architecture.

RESULTS
Models
The models consist of three stages: retina, LGN and V1. The retinal
stage corresponds to grids of ON and OFF ganglion cells modeled by
difference-of-gaussian filters. The output of each filter is passed
through a saturating nonlinearity and used to drive the LGN cells,
which generate Poisson spikes. The output of the LGN cells, which is
pooled by using Gabor function receptive fields, is used as input to
V1. The V1 stage, which represents a hypercolumn of layer IV simple
cells, consists of 1,260 conductance-based integrate-and-fire neurons,
80% of which are excitatory regular spiking cells and 20% of which

are inhibitory fast-spiking cells. These cells
are coupled through lateral connections.

The sharpening model is very similar to a
published model3 that we refer to here as
Slow

MH because its lateral connectivity follows
a Mexican hat (MH) profile and the thalamo-
cortical conductance is low (relative to the
other models). The no-sharpening network
implements a classical Hubel and Wiesel
model with feedforward inhibition based on
published work19,20. We refer to this network
as NShigh

∞I, where ‘high’ refers to the strength
of the thalamocortical connections, ‘I’ indi-
cates that the only active cortical connections
are from inhibitory to excitatory cells, and ‘∞’
indicates that the connections extend through-
out the network. For details, see Methods and
the Supplementary Note online. For definite-
ness, we initially focused on these two models.
To ensure that our results were not specific to
any one particular property, however, we con-
sidered several variations as described below.

We show here that this is not the case. We have implemented both
models in networks of spiking neurons and have estimated the informa-
tion in the population activity. Our results show that the sharpening
model conveys far less information than does the no-sharpening model.
Thus, the sharpening model does not lead to an increase in information,
but rather to a large loss. This loss can be traced to the pattern of correla-
tions generated by the sharpening process—a finding that illustrates the
effect of computation-induced correlations on population codes. In
addition, the code in the sharpening model contains correlations that
make it particularly inefficient for computing and learning.

Although our analysis focuses on orientation selectivity, the
results apply to sharpening in general (for example, in auditory cor-
tex or somatosensory cortex). Notably, the fact that correlations
depend on the extent of sharpening leads to two experimental pre-

Figure 1 Properties of V1 neurons in response to
a bar oriented at 90 deg. (a) Mean (each point
represents an average over 1,008 trials) pooled
LGN afferences for the sharpening model (blue)
and no-sharpening model (red). Neurons are
ranked by their preferred orientation, which was
assigned a priori to set up the thalamocortical
connectivity. The pooled LGN afferences of a
neuron is defined as the sum of thalamocortical
spikes converging on that neuron. As expected,
the orientation tuning of the pooled LGN
afferences is broader for the sharpening model.
(b) Mean population activity of the cortical
neurons, colored as in a. The slight shift of the
population patterns of activity away from 90 deg
is not due to noise; it is a systematic shift caused
by the heterogeneity of the network, which
induces a mismatch between the preferred
orientation assigned to each neuron and its
actual preferred orientation. The shift, however,
is taken into account by our estimator (which
effectively relabels neurons) and thus does not lead to biased estimates. (c) Circular normal functions fit to the data in b. The population patterns are
closely matched overall. For the purposes of comparison, the curves have been shifted so that the peaks are at the same place. (d,e) Contrast sensitivity (fit
of the data) for the sharpening (d) and no-sharpening (e) models. The patterns of activity are roughly invariant with respect to contrast in both models. 
(f) Log of the variance versus the log of the mean spike count over 1 s. Both models show statistics that are consistent with what has been reported for
actual V1 neurons: the log of the variance is proportional to the log of the mean, and the constant of proportionality is close to 1.

Figure 2 Information comparison across models. (a) Information in the cortical neurons recovered by a
locally optimal estimator (ILOLE) and by a decoder that ignores correlations (Idiag) for the sharpening
(Slow

MH) and no-sharpening (NShigh
∞I) models. The no-sharpening model recovers six times as much

information as the sharpening model, despite identical tuning widths (Fig. 1c). The ratio Idiag/ILOLE is also
very small (7%) for the sharpening network. Because Idiag corresponds to the information recovered by a
decoder that ignores correlations, the small ratio of Idiag/ILOLE for the sharpening model indicates that the
code relies heavily on correlations. (b) Same as in a but for the pooled LGN afferences, that is, the input
onto the cortical layer. For both models, the information in the pooled LGN input is about the same,
despite very different tuning widths (Fig. 1a). Similar to the output code, the input code in the sharpening
model relies extensively on correlations, as indicated by the small value of Idiag /ILOLE.
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Single-cell properties
To make a fair comparison between the sharpening and no-sharpening
models, it is important that both show the same single-cell properties.
The parameters of the models were thus adjusted so that their
responses to oriented bars matched each other’s, as well as the response
properties of V1 neurons in vivo, as closely as possible. We found that
the input from the LGN was broader for the sharpening model (the half
width at half height of the population activity, averaged over 1,008 tri-
als, was 19.3 degrees (deg) for the no-sharpening models as compared
with 40.2 deg for the sharpening model; Fig. 1a). By contrast, the out-
put patterns—the population activity across the cortical neurons—had
nearly identical widths (18.1 deg for the no-sharpening models as com-
pared with 17.8 deg for the sharpening model; Figs. 1b,c). Both models
also showed approximate contrast invariant tuning curves, with con-
trast gain curves, similarly to ones reported in vivo21

(Figs. 1d,e). The variance of the spike count had a power law depend-
ence on the mean, with an exponent of 0.88 and a multiplier of 0.98 for
the no-sharpening model, and values of 0.85 and 1.04, respectively, for
the sharpening model (Fig. 1f). These values are close to what has been
reported in vivo and to what is expected for a near-Poisson process22.
The coefficient of variation (CV) of the interspike interval distribution
was also similar across the models (sharpening model, CV = 0.8 ± 0.23;
no-sharpening model, CV = 0.85 ± 0.17) and within biological range23.

Given how close these numbers are, it would essentially be impossi-
ble to distinguish between the sharpening and no-sharpening models
on the basis of the variance versus mean relationship, the CV of the
interspike interval distribution, or the mean activity.

Information from a locally optimal linear estimator
To determine which model is more efficient at encoding orientation,
we decoded the responses of each model to bar stimuli and analyzed
the amount of information that they provided about the stimulus ori-
entation. The information that we report here is ILOLE, a lower bound
on Fisher information obtained by using a locally optimal linear esti-
mator (LOLE; see Methods). We also considered several nonlinear
methods and found almost no improvement over ILOLE, indicating
that it is a tight bound (see Discussion and Methods).

The no-sharpening model extracted more than six times as much
information as the sharpening model (ILOLE = 5.88 deg−2 versus 
0.88 deg−2 respectively, corresponding to discrimination thresholds
of 0.56 deg versus 1.43 deg, respectively; Fig. 2a and see Methods,
equation (3)). It might be wondered whether this difference in infor-
mation is due to a difference in information conveyed by the LGN
afferences. Indeed, we found that the orientation tuning of the

pooled LGN afferences (the sum of the thal-
amocortical afferences onto each cell) is
broader for the sharpening network than for
the no-sharpening network (Fig. 1a). It is
therefore conceivable that the input to the
sharpening network is less informative than
is the input to the no-sharpening network.
To address this, we computed the informa-
tion in the pooled LGN afferences. We
found, in fact, that there is little difference in
information in the pooled LGN afferences
across models (Fig. 2b). The tuning curves
specified by the LGN afferences were broader
in the sharpening models, but the correla-
tional structure was such that there was very
little reduction in the information in com-
parison to the no-sharpening model. This

illustrates the importance of taking into account the correlations
among neurons when computing information.

Because the tuning curves are matched and there is essentially no
difference in information in the LGN input, the discrepancy in
information between the output of the two models can be due only
to the structure of the second order statistics of the cells; that is, the
covariance matrix. Examination of the covariance matrices showed
that there are indeed clear differences (Fig. 3). In the no-sharpen-
ing model, correlations tended to be mostly positive and restricted
to pairs of cells with similar orientation preferences. In the sharp-
ening model, there was much more structure to the covariance
matrix: both positive and negative correlations were seen, and
strong correlations existed even among cells with very different
preferred orientations. This is, indeed, the type of covariance
matrix that is expected for a sharpening model (see refs 18,24). We
next explored in greater detail the impact of these correlations on
the structure of the codes.

ILOLE versus Ishuffled
To relate our work to experimental studies25, we computed the infor-
mation in the population patterns of activity generated by the corti-
cal layer of our model after shuffling the data across trials to remove
correlations (denoted Ishuffled; see Methods). Ishuffled corresponds to
the information that would be measured by a neurophysiologist
making several single-cell recordings, because such recordings are
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Figure 3 Covariance matrices of the V1 cells in both models. (a) In the no-sharpening network,
correlations are mostly positive and confined to cells with similar preferred orientations. (b) In the
sharpening model, correlations tend to be longer range and are both negative and positive.
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necessarily uncorrelated. A comparison of Ishuffled and ILOLE indicates
the extent to which single-cell recordings over- or underestimate the
true information contained in a population of neurons. In theoreti-
cal studies11,26,27, whether Ishuffled is greater or less than ILOLE
depends crucially on the structure of the covariance matrix.

We found that Ishuffled vastly overestimates ILOLE; in other words,
the correlations induced by the computation in both of our models
are the kind that reduce the overall information (Fig. 4). This result is
not unexpected when the number of neurons is large: in the output
layer of a multilayer architecture, the information is guaranteed to
saturate at or below the information available in the input layer,
regardless of the number of neurons in the output layer (this explains
why ILOLE saturates with the number of neurons in Fig. 4). By con-
trast, the information for independent neurons (which is what Ishuffled
computes) is proportional to the number of neurons, even when the
input information is fixed and finite. Consequently, Ishuffled is guaran-
teed to be larger than ILOLE for a sufficiently large number of neurons.
Notably, we found that it is larger even for a small number of neurons,
suggesting that the correlations in our models always decrease the
information contained in the population.

Note that for both models, Ishuffled is roughly five times larger than
ILOLE. This is unexpected for the no-sharpening model because the
correlations seem weak in Figure 3a. With such weak correlations,
shuffling might be expected to have little effect on information. This
is clearly not the case: these weak correlations add up to a large effect
on the structure of the code. The fact that Ishuffled is necessarily larger
than ILOLE for a sufficiently large number of neurons might seem to
contradict previous studies that found that the relative magnitude of
Ishuffled versus ILOLE depends on the covariance matrix and, in partic-
ular, that Ishuffled can be less than ILOLE (refs 26,27). In those studies,
however, ILOLE was allowed to grow indefinitely with the number of
neurons. This cannot happen in the networks that we are considering
here, or in realistic networks in general, because ILOLE cannot be
greater than the information provided by the LGN, regardless of the
number of cortical neurons.

Diagonal approximation
In the cortex, orientation-selective neurons project to downstream
neurons involved in tasks such as shape analysis and sensorimotor
transformations. The computations associated with these tasks are
efficient only if the downstream neurons have some knowledge of
the statistics of the activity generated by the orientation-selective
neurons. Given the strong impact of correlations on the informa-
tion of population codes, as measured by comparing ILOLE to
Ishuffled, it is tempting to conclude that correlations must be known
by the downstream neurons if these computations are to be carried
out efficiently. In fact, this is not necessarily true. It is possible for
codes to have high correlations and still be decoded optimally with-
out knowledge of those correlations28,29. This is a crucial issue,
because it affects the kind of computations that must be performed
by downstream neurons; in particular, it affects how complex those
computations must be.

To determine whether knowledge of correlations is necessary to
decode the V1 responses in our networks, we computed the informa-
tion when ignoring correlations, a quantity that we call Idiag. This
quantity is less than or equal to ILOLE, because it corresponds to the
information recovered by an LOLE trained on the shuffled data but
tested on the actual data (as opposed to ILOLE, which is obtained by
training and testing an LOLE on the actual data; see Methods).

We found that for the no-sharpening model Idiag was 75% of
ILOLE, whereas it was 7% for the sharpening model (Fig. 2a). In

other words, 93% of the information is embedded in the pairwise
correlations in the sharpening model as compared with 25% in the
no-sharpening model. The code generated by the no-sharpening
model therefore conveys more information than does the sharpen-
ing model, and it does not rely heavily on correlations. The fact that
correlations can be largely ignored implies that the no-sharpening
code is efficient for learning, because algorithms based on varia-
tional approximations in which correlations are ignored—a com-
mon approach to intractable learning problems—are closer to being
exact30. In addition, we found that learning through gradient
descent was slower when the ratio Idiag/ILOLE was small: it took more
than six times as long to train the LOLE on the output of the sharp-
ening model than on the output of the no-sharpening model. This
slower learning is related to the fact that, for the sharpening model,
pairwise correlations must be known to recover more than 7% of
the information available; this involves estimating more than
500,000 parameters (for 1,008 neurons).

Codes in which correlations can be ignored are also easier to use for
computations. For example, it is possible to design biologically plau-
sible network architectures that can perform optimal Bayesian infer-
ences when the code is independent, or can be treated as such (such as
when Idiag is close to ILOLE), whereas no general biologically plausible
networks exist when the codes rely extensively on correlations31.

It might be argued that downstream neurons are not involved in
estimating orientation and, consequently, may not care about the
accuracy with which orientation can be estimated. The problem,
however, is that Fisher information provides a bound on estimating
not only orientation but also any function of orientation.
Therefore, regardless of what downstream neurons do with orien-
tation, a code with little information and a complicated format
imposes severe limitations on the accuracy with which downstream
computations are made.

We also computed Idiag in the pooled LGN afferences and found
the same result: much of the information (66%) was encoded in the
correlations for the sharpening model, but less (17%) was encoded
in the correlations for the no-sharpening model (Fig. 2b). Thus, the
problem with Idiag is, to a large extent, inherited from the thalamo-
cortical afferences.
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sharpening model with long-range inhibition and no cortical excitation.
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MH is a no-sharpening model with short-range excitation and long-
range inhibition. NShigh

∞EI is a no-sharpening model with long-range
excitation and long-range inhibition. Slow

MH is the same sharpening model
as in Fig. 2. Shigh

MH is very similar to NShigh
MH but receives a widely tuned

input from the LGN. Regardless of the details of the cortical connectivity,
the no-sharpening models outperform the sharpening models by a minimum
factor of five.
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Parametric study
To determine whether our results were robust to network parame-
ters, we varied the thalamocortical and intracortical conductances
one at a time by ±10% (see Methods) and recomputed the informa-
tion. We found that the no-sharpening network always outper-
formed the sharpening network, even though the tuning curve
amplitudes and response variabilities were no longer matched. This
was true even when we compared the best sharpening network
across all simulations to the worst no-sharpening network: here, the
sharpening network recovered only 22% of the information of the
no-sharpening network.

Given the differences in contrast sensitivity, we considered whether
our results depended on contrast. We found this not to be the case:
whether we compared the networks at 5% or 100% contrast, the no-
sharpening network was still better than the sharpening network
(ILOLE = 1.35 deg−2 versus 0.06 deg−2 at 5% contrast).

We also explored whether our results were due to differences in the
relative strength of the thalamocortical afferences or in the pattern of
the cortical connections. Indeed, both parameters varied across net-
works: the conductances of the thalamocortical afferences were larger
in the no-sharpening model, and the no-sharpening model contained
only inhibitory cortical connections. To address this issue, we imple-
mented new sharpening and new no-sharpening models with similar
thalamocortical conductances and cortical connectivity (NShigh

MH
and Shigh

MH in Fig. 5; see Supplementary Note). In the NShigh
MH

model, the width of the input from the LGN was 19.4 deg as com-
pared with 16.2 deg for the cortical output. In the Shigh

MH model,
these values were 40.12 deg and 18.36 deg, respectively. As above, the
models were tuned to generate near-Poisson spike trains. The results
were essentially the same as those from the original networks. Because
NShigh

MH and Shigh
MH share nearly identical connectivity, the poor

performance of the sharpening model is unlikely to be due to its con-
nectivity (Fig. 5). Rather, it would seem that the sharpening model is
unable to process the widely tuned input that it receives from the LGN
efficiently, a point that we discuss below.

To test further the influence of the cortical connectivity, we also
implemented a no-sharpening model with global excitatory and
global inhibitory connections (connections independent of the dif-
ference in preferred orientation), as opposed to the ‘Mexican hat’ con-
nectivity (short-range excitation and long-range inhibition) used for
NShigh

MH and Shigh
MH. This manipulation had no effect on our results

(NShigh
∞EI in Fig. 5).

Last, we tested the robustness of our results to changes in the cor-
relational structure of the inputs to V1. We constructed sharpening
and no-sharpening models in which all cortical cells received inde-
pendent inputs from the LGN, as opposed to the above studies in
which any pair of neighboring V1 cells shared significant common
inputs. We found that even in this extreme situation, the no-sharp-
ening model outperformed the sharpening model by a factor of 11
(ILOLE = 10.51 deg−2 versus 0.93 deg−2).

DISCUSSION
Our results challenge two commonly held notions about orientation
selectivity. The first is that narrow tuning curves convey more infor-
mation than do wide ones. We have shown that this is not necessarily
true: in our model, the information in the pooled LGN afferences
was similar whether the tuning was narrow or wide (Fig. 2b). The
second is that one can improve the quality of a code in a broadly
tuned population by transmitting it to a second population and then
sharpening it. We found the opposite: that is, that sharpening results
in a loss of information.

This second result implies that sharpening is not necessarily bene-
ficial—a fact that has implications well beyond models of orienta-
tion selectivity. Indeed, many models rely on the idea that
sharpening is necessarily better. For example, it has been proposed
that attention improves discrimination by sharpening tuning curves
in early visual areas5. A similar argument has been used by to explain
how discrimination improves after extensive training8. These models
assume, however, that the noise distribution is independent of the
tuning curve width. As we have shown in our simulations, and as we
argued initially, this assumption is very unlikely to hold with a realis-
tic noise model. As a result, sharpening does not have to be better. In
fact, because sharpening through lateral connections is a form of
postprocessing, it is guaranteed to lead to an information loss or at
best no change (because of the data processing inequality32). The
unexpected finding is the very large information loss over a wide
range of sharpening networks.

In our models, the information loss is related to the pattern of cor-
relations introduced by the sharpening process (Fig. 3b). It should
not be concluded, however, that the information in a population code
is low whenever correlations follow the overall pattern shown in
Figure 3b. In fact, correlations of this type can be associated with
optimal information transmission24. Therefore, it is the fine structure
of the correlations in Figure 3b that are responsible for the informa-
tion loss, not the overall profile. Several studies have already identified
some of the factors that are essential for determining the amount of
information in a population of neurons27,33, but more work is needed
in this area.

We emphasize that we are not arguing against sharpening in gen-
eral; our results only concern sharpening with lateral connections
within a hypercolumn, a feature that is commonly used in models of
orientation selectivity3. There might be other forms of sharpening
that are not subject to the problems that we report here. For example,
tuning curves can sharpen as a result of training on an orientation
discrimination task7,9. In this case, the sharpening might be due to
changes in the feedforward connectivity and could indeed result in
higher information transmission. Sharpening may also help when
the lateral connections connect cells processing nearby spatial loca-
tions (in our model, all units see the same patch of the LGN and
therefore the same spatial location). Notably, some data indicate that
when sharpening occurs, it involves such long-range interactions
(Xing, D., Shapley, R., Hawken, M. & Ringach, D., Soc. Neurosci.
Abstr. 910.4, 2003). In this case, it is possible that sharpening is not
crucial to orientation selectivity but might be involved in other tasks,
such as decorrelation across space34 or contour completion35–38.
Last, sharpening may be beneficial if significant noise is injected dur-
ing processing by downstream areas, although whether or not this is
so depends crucially on exactly how the noise is injected.

Here we have used the word ‘information’ to refer to a lower bound
on Fisher information: specifically, the information recovered by an
LOLE. If this bound is not tight, the differences that we have reported
across models may not reflect differences in actual information. In
particular, it is conceivable that the sharpening model has informa-
tion beyond what the LOLE recovers33. However, we do not think that
this is the case: we have tried several nonlinear methods and have
found at most a 9% increase in information (see Methods), suggest-
ing that our lower bound on Fisher information is in fact very close to
the true value.

In addition to our theoretical findings, our work makes two experi-
mental predictions. First, pairwise correlations differ across models
(Fig. 3). This prediction is consistent with what had been suggested by
simpler models based on analog units18,24 and stochastic spiking neu-
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rons39. Second, in the sharpening model a large fraction of the infor-
mation is in the correlations, whereas in the no-sharpening model
only a small fraction is in correlations. Both of these predictions can
be tested with multielectrode recordings. To our knowledge, current
data does not seem to support the sharpening model. For example,
correlations tend to be positive for units with similar stimulus prefer-
ences (ref. 11 and Kohn, A., Smith, M.A., Bair, W. & Movshon, J.A.,
Soc. Neurosci. Abstr. 557.14, 2002) and close to zero otherwise (which
is consistent with the covariance matrix of the non-sharpening
model; Fig. 3). In addition, Idiag is typically about 80–90% of the total
information in the retina and cortex40–43. Those studies, however,
often involved different information measures and were mostly
obtained outside V1. Therefore, it is too early to tell whether the
experimental data favors one model over the other.

Why should sharpening reduce information transmission? Our pre-
vious work with networks of analog units suggests an explanation. We
found that lateral connections in a recurrent network can be used to
embed expectations about the statistics of the input patterns44. The
network is most efficient when the input statistics match those expec-
tations. The same mechanism seems to be at work here; in other
words, the wide input to the sharpening model is simply suboptimal. If
this is correct, driving a sharpening model with a sharp input (as sharp
as the one used for the no-sharpening model) should improve per-
formance to a level comparable to the performance of the no-sharpen-
ing model. This is indeed what we found: NShigh

MH in Figure 5 is
essentially the second sharpening model (Shigh

MH) driven by a nar-
rowly tuned input, and its performance is very close to that of the orig-
inal no-sharpening network.

METHODS
Orientation models. The models simulate the circuits involved in one hyper-
column of primary visual cortex. They consist of three stages: retina, LGN and
V1. The retinal and LGN stages are identical in the sharpening and no-sharp-
ening models. These stages closely follow those described in ref. 3. In brief, the
retinal stage corresponds to grids of ON and OFF ganglion cells modeled by
difference-of-gaussian filters. The activity of the filters is passed through a sat-
urating nonlinearity to account for stimulus contrast sensitivity and is used at
the LGN level to generate spikes by a Poisson process.

The V1 stage represents a hypercolumn of layer IV simple cells. It comprises
1,260 conductance-based integrate-and-fire neurons, 80% of which are excita-
tory regular spiking cells and 20% of which are inhibitory fast-spiking cells.
The organization of the thalamo-cortical afferents controls the initial receptive
field structure and initial orientation selectivity13. This initial receptive field
structure is established by segregation of ON and OFF LGN afferences into
ON and OFF subfields, and is modeled using a Gabor function.

In the sharpening model, Slow
MH, the parameters of the Gabor function are

such that the LGN afferences are weakly anisotropic and broadly tuned to ori-
entation (Fig. 1a). The superscript ‘low’ refers to the strength of the thalamo-
cortical conductance. The subscript ‘MH’ indicates that the lateral connections
follow a Mexican hat profile, in which excitatory interconnections are strongest
among cortical cells with similar orientation preference, and inhibitory projec-
tions can target cells with more wide-ranging orientation preferences3,17. The
effect of these connections is to amplify and to sharpen the input tuning curves.

In the no-sharpening model, NShigh
∞I, the parameters of the Gabor func-

tion are such that the pooled LGN afferences are more selective to orientation
(Fig. 1a). The subscript ‘∞’ indicates that the cortical connections extend
throughout the network, regardless of the difference in preferred orientation,
and the subscript ‘I’ indicates that only the inhibitory to excitatory connec-
tions are active. The inhibition is assumed to be nonspecific with respect to
the preferred phase of the neurons16. This model thus implements a pure
‘feedforward inhibition’ that counteracts LGN afferences at non-preferred
orientations and produces contrast invariant orientation tuning curves14,19.

We implemented three other versions of this model, denoted Shigh
MH,

NShigh
MH and NShigh

∞EI. The superscripts and subscripts have the meaning

described above; the subscript ‘EI’ indicates that both excitatory and inhibitory
interconnections are active (see Supplementary Note online for more details).

Oriented bar stimuli were presented to the retinal cells for 500 ms. The models
were constrained so that the responses showed Poisson-like variability.Variability
was quantified in two ways: by plotting the variance of the spike count over 
500 ms versus its mean, and computing the slope and intercept; and by comput-
ing the CV, that is, the ratio of the standard deviation of the interspike interval to
its mean. The CVs were computed for all neurons simultaneously by presenting a
bar at an orientation of 90 deg for 10 s and by estimating the interspike interval
histogram. Neurons that fired fewer than two spikes were removed from this
analysis. Details of the implementation are given in the Supplementary Note.

ILOLE. To estimate the information contained in the V1 population activity,
we trained an LOLE of orientation for each model. The LOLE was trained on
the spike counts of the 1,008 excitatory neurons in response to an oriented bar
presented for 500 ms (inhibitory neurons were not decoded because they do
not project out of V1). This estimator has the form

(1)

where θˆ is the estimate of orientation, w and b are adjustable parameters, and
r is a vector containing the spike counts of all neurons on a given trial. We opti-
mized the weight w and the constant b to estimate two values of orientation
differing by a small angle: 89.5 deg and 90.5 deg. A LOLE is equivalent to a two
layer network in which the input layer encodes the spike counts of all neurons,
r, and the output layer consists of one unit trained to estimate the orientation
encoded by r. We did not test whether the timing of the spikes conveyed addi-
tional information.

For each model, 1,008 population patterns of activity were generated in
response to a bar oriented at 89.5 deg, and another 1,008 trials were done for a
bar oriented at 90.5 deg. Half of those trials (504 at 89.5 deg and 504 at 
90.5 deg) were used to train the weights of a LOLE; training was done by using
a gradient descent. Generalization performance was obtained by testing the
weights on the 1,008 trials not used for training (504 for each angle). To pre-
vent overfitting, we stopped the gradient descent when the generalization per-
formance started decreasing.

Once training was completed, we computed the mean and variance of the
estimates for both orientations (θ1 = 89.5 deg and θ2 = 90.5 deg) on the 504
test trials, denoted

to obtain an estimate of Fisher information,

(2)

where δθcorresponds to the difference between the two angles (1 deg). ILOLE is
a lower bound on the Fisher information (see below). From equation 2, one
can compute an upper bound on the discrimination threshold of an ideal
observer—that is, the change in orientation, ∆θ, that can be detected 75% of
the time45. This upper bound is

(3)

Instead of using a lower bound, we could have estimated Fisher information
directly. For neuronal responses characterized by tuning curves f(θ) and cor-
rupted by multivariate gaussian noise with covariance matrix Q(θ) (a good
approximation for our data), Fisher information is given by

(4)

                                                 
1

I(  ) = f´(  )T Q–1 (  ) f´(  )+     Tr[Q´(  ) Q–1(  ) Q´(  ) Q–1(  )]2θ θ θ θ θ θ θ θ

1.35∆   =
√ILOLE

θ

((                                                        ̂
         

 ̂                     2  –    1    /      
2

ILOLE =
      σ2

2 

+ σ2

1    

1/2
ˆ     ˆ

θ θ δθ

θ θ
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where f′(θ) and Q′(θ) are the derivatives of the tuning curves and covariance
matrix, respectively, with respect to θ (ref. 27). Estimating this expression
directly is difficult because it requires estimates of Q(θ) and Q′(θ), both of
which require a very large amount of data. Using a LOLE provides a way to
estimate the first term without estimating Q(θ) explicitly31. We have shown
previously that this term can be also recovered by a biologically plausible
architecture known as a line attractor network31,44. Occasionally the trace
term in equation (4) can be large, in which case our lower bound would be
different from the actual information. This does not seem to be the case for
our models. We have estimated Fisher information with several nonlinear
methods, including K nearest neighbors46, backpropagation47, support vec-
tor machine48 and another published method33. Support vector machine
was the only method that outperformed LOLE, resulting in, at most, an
improvement of 9%.

Ishuffled. We denote Ishuffled as the information available in an artificial data
set in which the activity of the units was shuffled over trials to remove all cor-
relations among cells. This shuffling operation is analogous to making single-
cell recordings and generating artificial population patterns of activity by
grouping the activity of the different cells collected under the same stimulus
conditions. To compute Ishuffled, we trained and tested a LOLE on the shuffled
data set using the same cross-validation technique described above.

Idiag. We denote Idiag as the information recovered from the actual popula-
tion patterns of activity when correlations are ignored (diag stands for the diag-
onal of the covariance matrix). We computed Idiag by first training a LOLE on
the shuffled data and then using the weights on the original (nonshuffled) data.

Note that Idiag cannot be greater than ILOLE. Indeed, the weights used to com-
pute ILOLE were designed to be optimal for the original data, whereas the
weights used to compute Idiag were obtained from the shuffled data. The latter
weights were thus suboptimal (or at best the same as the ILOLE weights); as a
result, the ratio Idiag/ILOLE, which is the fraction of the total information that
can be recovered when correlations are ignored, is always less than or equal to 1.

Note: Supplementary information is available on the Nature Neuroscience website.
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