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1 Summary of model assumptions

In order to make concrete predictions about how attention should alter visual neuron re-
sponses, we made had to make certain assumptions about the neural code, agent’s internal
model, and the modulatory effects of attention. Here we summarize the assumptions that
are critical for our results, providing a brief theoretical justification, and outlining how each
assumptions influences the results of our simulations.

• Neural code. We assume a very simple neural code, in which the firing rate of each
visual neuron is directly proportional to the posterior probability that a single latent
variable is active. This choice of code is important for our simulations, as it leads to
an expression for neural firing rates which has a similar functional form to previous
divisive normalization models of neural responses [1, 2]. In these models, neural fir-
ing rates are evaluated by dividing their feedforward excitatory drive by a suppressive
factor that depends on the summed activity nearby neurons. In our model, divisive
normalization emerges from Bayes’ law, due to the fact that the posterior probability
for a hidden variable to be active (p(y

i

= 1|xxx)) is evaluated by dividing the joint distri-
bution over hidden and observed variables (p(y

i

= 1,xxx)) by the marginal probability
for the observed sensory input (p(xxx)).

• Sparse stimulus statistics. We assume that the agent learns a ‘sparse’ internal model,
in which there is a small prior probability for any particular hidden cause to be ac-
tive (i.e. p(y

i

= 1|q)⌧ 1). The theoretical justification for this comes from natural
image statistics, which are well accounted for by sparse models [3, 4]. In our simu-
lations, the sparse prior produces strong competition between different explanations
of the received sensory input, which is reflected in the divisive suppression of neural
responses.

• Non-linear combination rule. The agent learns an internal model in which stimuli
are assumed to combine non-linearly, according to a ‘max’ combination rule. While
many previous generative models of visual processing have assumed a linear combi-
nation rule, arguably, a nonlinear ‘max’ combination rule provides a better descrip-
tion of how features combine in natural images [5]. In our simulations, a nonlinear
combination rule was required to produce neural responses that saturated below their
maximum values when the stimulus contrast was high (see figure 7). In contrast, a
linear rule results in contrast response plots that go towards 1 when the strength of
the sensory input is increased (supplementary figure 1).

To see why this is the case consider what happens when the agent receives a high
amplitude sensory input (i.e. components of x have high values). A high amplitude
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Figure 1: Contrast response plots, obtained using a model in which stimuli combine linearly
to activate the sensory inputs. All other simulation details are identical to figure 7 in the
main text.

sensory input can be well explained by a linear model (where x

i

= Â
j

A

i j

y

j

+ g
i

) if
multiple hidden units are active. Thus, if the agent uses a linear internal model, they
will ascribe a high posterior probability for multiple hidden to be active simultane-
ously (i.e. the posterior probability, p(y

i

= 1|xxx), will saturates at ⇠ 1). However,
with a nonlinear ‘max’ rule (x

i

= max
j

{A

true

i j

y

j

}+ g
i

), multiple hidden variables do
not combine to produce a higher amplitude sensory input. Thus, different hidden
variables compete to explain the data. Thus, if the agent uses an internal model with
a ‘max’ combination rule, the posterior probability that they ascribe to individual
hidden units will remain below 1, even when the amplitude of the sensory input is
high.

• Internal model structure. The agent learns a hierarchical internal model, in which
high-level hidden variables (zzz), that correspond to the global structure of the sensory
input, are assumed to determine the state of low-level hidden (yyy), that correspond to
the local features of the sensory input. This model structure is designed to reflect the
structure of natural images, in which complex objects are made up of simple image
features, which give rise to the observed sensory input [6, 7]. The agent assumes
that only the high-level latent variables determine the reward that will be received for
performing different actions. This model structure could allow the agent to quickly
adapt to new behavioural contexts, as the action that they should perform in any
given task will depend on a limited number of high-level hidden variables. However,
in our simulations, we investigate a situation when this internal model structure is
suboptimal: when the image features that are relevant to the task are more spatially
localized than the high-level features in the agent’s internal model. In our work, it is
this mismatch between the structure of the agent’s internal model and the behavioural
task that drives attentional modulation of visual neuron responses.

Note that while we assumed a small number of high-level variables (n
z

= 5), our
qualitative results are not highly sensitive to the number of z-units. For example,
supplementary figure 2 shows that qualitatively similar are obtained with twice the
number of z-units (n

z

= 10). However, in some cases, increasing the number of z-
units will lead to slower learning of the task, as the agent must learn a mapping
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Figure 2: Results obtained with 10 z-units (all simulations in the main text have only 5 z-
units). (a) Prior probability assumed by the agent that each of the hidden causes are active,
with or without attention. (b) Model neuron response, versus the amplitude of a sensory
input centred on the neuron’s preferred location.

between a larger number of high-level variables, and the reward that they receive for
performing an action.

• Attention only alters ‘bias-terms’ in the internal model. We postulate that over the
short timescales associated with visual attention, the prior probability that individual
hidden variables are active can vary (determined by the bias terms, b

b

b0; although see
previous section), while the image features represented by the latent variables (deter-
mined by the basis functions) is fixed. As a result, attention modulates the responses
of model neurons to presented stimuli, but does not fundamentally change their stim-
ulus selectivity. Our assumption can be justified functionally from the fact that up-
dating the bias terms only requires estimating first-order statistics, which can be eval-
uated quicker and more reliably than the second-order statistics that are required to
update the basis functions. More generally, how much attention should alter different
aspects of the agent’s internal model will depend on several different factors, includ-
ing the rate at which different aspects of the world vary, and the trade-off between
short-term optimization in a specific task, and generalization across many different
tasks.

• Binary latent variable model. We modeled the stimulus statistics using a binary la-
tent variable model. We chose this form of model for simplicity, in order to simulate
a simple task where where subjects were rewarded for correctly detecting a stimu-
lus. Recent work suggests that a binary latent variable model also provides a good
description of natural scene statistics [8]. However, it is worth considering how this
choice of model could have affected our simulations of neural responses as a func-
tion of varying stimulus contrast. In figure 6 we plot the responses of model neurons
while continuously varying the amplitude of the sensory input. As stimulus contrast
is not represented by the agent, increasing the amplitude of the sensory input is in-
terpreted as increased evidence that a binary latent variable is ‘on’, and the model
neuron response (given by r

i

µ p(y
i

= 1|xxx)) increases towards a saturating value. In
a more sophisticated model, the agent could learn a joint distribution describing both
the probability that a stimulus is present and its contrast. Now, if we assume that the
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primary goal of the early visual system is to encode the components that make up
an image, we should integrate over all possible stimulus contrasts to recover the dis-
tribution p(y

i

= 1|xxx). Intuitively, such a model should produce qualitatively similar
results - a high amplitude sensory input will still indicate a high probability that a
stimulus is present. However, future theoretical work will be required to see whether
this is true, and thus whether our results generalize to an internal model that includes
contrast as a latent variable.

2 Gradient of the objective function

To update the parameters of the agent’s internal model, we need to compute the gradient of
the online objective function:

∂ l (q ,y) = ∂ log p(r|a,x,q ,y) .

The derivative of the objective function can be written as:

∂ l(q ,y) =
1

p(r|a,x,q ,y)
∂ p(r|a,x,q ,y)

=
1

p(r|a,x,q ,y)
∂ p(s,r|a,x,q ,y)ds.

Taking the derivative inside the integral,

∂ l (q ,y) =
1

p(r|a,x,q ,y)
∂ p(s,r|a,x,y,q)ds

=
1

p(r|a,x,q ,y)
p(s,r|a,x,y,q)∂ log p(s,r|a,x,y,q)ds

= p(s|r,a,x,q ,y)∂ log p(s,r|a,x,y,q)ds,

where we have used the identity, ∂ f (x) = f (x)∂ log f (x). Rearranging this expression
gives,

∂ l (q ,y) = p(s|r,a,x,q ,y)∂ log p(r,s|a,x,y,q)ds

= h∂ log p(r,s|a,x,y,q)i
p(s|x,r,a,q ,y)

= h∂ log p(r|s,a,x,y,q)i
p(s|x,r,a,q ,y) + h∂ log p(s|x,q)i

p(s|x,r,a,q ,y).

The second term in this expression can be expanded as:

h∂ log p(s|x,q)i
p(s|x,r,a,q ,y) = h∂ log p(s,x|q)i

p(s|x,r,a,q ,y)�∂ log p(x|q)
= h∂ log p(s,x|a,q)i

p(s|x,r,a,q ,y)�h∂ log p(s,x|q)i
p(s|x,q),

where we have used the identity, ∂ log p(x|q) = h∂ log p(s,x|q)i
p(s|x,q). Substituting this

back into the expression for the derivative of the objective function, gives:

∂ l (q ,y) = h∂ log p(r|s,a,y)i
p(s|x,r,a,q ,y)

+h∂ log p(s,x|a,q)i
p(s|x,r,a,q ,y)�h∂ log p(s,x|q)i

p(s|x,q).

Finally, taking the partial derivative with respect to either q or y returns the expressions
shown in the main text:

∂y l(q ,y) = h∂y log p(r|a,s,y)i
p(s|x,r,a,q ,y) (1)

∂q l(q ,y) = h∂q log p(s,x|q)i
p(s|x,r,a,q ,y)�h∂q log p(s,x|q)i

p(s|x,q). (2)
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