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Abstract 
Expectations are known to greatly affect our experience of the world. A growing theory in 
computational neuroscience is that perception can be successfully described using Bayesian 
inference models and that the brain is 'Bayes-optimal' under some constraints. In this context, 
expectations are particularly interesting, because they can be viewed as prior beliefs in the 
statistical inference process.  
 
A number of questions remain unsolved, however, for example: How fast do priors change over 
time? Are there limits in the complexity of the priors that can be learned? How do an 
individual’s priors compare to the true scene statistics? Can we unlearn priors that are thought 
to correspond to natural scene statistics? Where and what are the neural substrate of priors?  
 
Focusing on the perception of visual motion, we here review recent studies from our 
laboratories and others addressing these issues. We discuss how these data on motion perception 
fit within the broader literature on perceptual Bayesian priors, perceptual expectations, and 
statistical and perceptual learning and review the possible neural basis of priors. 
 
Keywords: Expectations, Bayesian priors, statistical learning, perceptual learning, probabilistic 
inference. 
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1. Introduction 
 
 Our perceptions are strongly shaped by our expectations. In ambiguous situations, 
knowledge of the world guides our interpretation of the sensory information and helps us recognize 
objects and people quickly and accurately, although sometimes leading to illusions (Bar, 2004; 
Summerfield and Egner, 2009). Expectations are formed at various levels of sensory processing and 
appear to be continuously updated. Indeed, statistical and perceptual learning studies show that the 
visual system continuously extracts and learns the statistical regularities of the environment, and 
can do so automatically and without awareness. This knowledge is then used to modulate 
information acquisition and interpretation (e.g. Perruchet and Pacton, 2006; Fiser et al, 2010). 
 In parallel to the experimental study of expectations, a growing body of theoretical work 
suggests that visual perception is akin to Bayesian Inference (e.g. Knill and Pouget 2004; Fiser et al, 
2010; Colombo and Seriès, 2012; Friston, 2012). This idea, which is thought to find its origins in 
Helmholtz’s notion of ‘unconscious inference’ (see e.g. Westheimer, 2008), provides an ideal 
theoretical framework for the study of expectations. Bayesian models propose that, at each moment 
in time, the visual system uses implicit knowledge of the environment to infer properties of visual 
objects from ambiguous sensory inputs. This process is thought to be automatic and unconscious. In 
mathematical terms, to say that a system performs Bayesian inference is to say that it updates the 
probability P(H|D) that a hypothesis H is true given some data D by executing Bayes’ rule: 
 

 
 
In visual perception, the hypothesis H could correspond to the presence of a visual target (detection 
task) or a value of a given stimulus (estimation task), while D describes the visual input. P(D|H) 
measures how compatible the data is with the hypothesis and is called the “likelihood”. The “prior” 
P(H) corresponds to one’s prior expectations about the probability of the hypothesis, and serves to 
interpret the data in situations of uncertainty. The more uncertain the data, the more the prior 
influences the interpretation. Optimal priors should reflect previous experience with the sensory 
world. Together, the likelihood P(D|H) and the prior P(H) make up the “generative model.” 
 The study of expectations, of statistical and perceptual learning, and the so-called “Bayesian 
Brain hypothesis” have developed somewhat independently. However it is very fruitful to consider 
how these fields can inform each other and potentially be unified. A number of questions remain 
unsolved, in particular: How fast do prior expectations change over time? Are there limits in the 
complexity of the priors that can be learned? How do priors compare to the true stimulus statistics 
in individuals? Can we unlearn priors that are thought to correspond to natural scene statistics? We 
here review work from our lab and others investigating these questions. Section 2 begins with an 
effort to define and classify perceptual priors and their influence on perception. Focusing on visual 
perception (and even more particularly, motion perception), we review how perceptual priors can be 
measured in individuals and the relation between internal priors and “true” environment 
distributions.  Section 3 focuses on learning of new priors. Section 4 addresses whether there is a 
limitation to the complexity of the priors that can be learned. Section 5 asks whether long-term 
priors are fixed or whether they can be updated. Section 6 is a review of the potential neural 
substrate of perceptual priors. We conclude with outstanding issues (Section 8) and promising 
research directions (Section 9).  
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2. Expectations and visual priors 
 
Contextual and structural expectations 
 
 While visual expectations likely originate from diverse mechanisms, we propose that they 
fall into two broad categories, “contextual” and “structural”, based upon the extent to which they 
generalize across environmental circumstance. Briefly, “contextual” expectations have impact in 
isolated spatial or temporal situations, whereas “structural” expectations impact all perceptions of 
the stimulus features to which they relate. 

Structural expectations are the “default” expectations that human observers use based on 
implicit learning of the statistics of the natural environment. These expectations usually reflect 
long-term learning over the lifetime, or may be innate. For example, in Figure 1a, you’ll likely see 
one (concave) “dimple” among (convex) “bumps” due to structural expectation that light comes 
from above, and thus the top of bumps should be lit while the tops of dimples should be in shadow. 
A characteristic of structural expectations is that they apply broadly to how observers see the world, 
including novel images. 

Contextual expectations, on the other hand, can be manipulated rapidly, explicitly or 
implicitly, through instructions (e.g. Sterzer et al., 2008; “the same stimulus will be repeated”), 
sensory cues (e.g. Posner et al., 1980; an arrow indicating that a stimulus will appear on the right), 
or by the spatial, temporal, or stimulus context in which a stimulus is shown (Chun and Jiang, 1998; 
Haijiang et al., 2006). For example, the presence of the flock of ducks in Figure 1b (left) will 
increase the probability that you’ll perceive a duck in the bistable image on the right, rather than a 
rabbit. Conversely, you’d be more likely to interpret it as being a rabbit on Easter day than in 
October (Brugger and Brugger, 1993). Other interesting examples of contextual expectations can be 
found in the domain of figure-ground segregation. Convexity, for example, is known to be a 
powerful configural cue: convex shapes are more likely to be perceived as foreground objects (a 
structural expectation). However, this bias also varies with the number and color of the other 
convex and concave regions present in the visual scene (Peterson and Salvaggio, 2008). Such 
examples demonstrate that the spatial or temporal context can create expectations that greatly 
impact perceptual interpretation, but are typically short-lived and unlikely to impact all future 
experiences with similar objects.  

 
< Figure 1 around here > 
 

 
The distinction between contextual and structural expectations is not specific to vision but 

applies to all modalities and a broad range of cognitive processes. In speech perception, for example, 
expectation for certain words depends on the topic of the conversation, and on a shorter time scale, 
on the immediately preceding words in the same sentence (contextual expectations). However, it is 
also related to the overall frequency distribution of words in the language (structural expectations) 
(see e.g. Norris and McQueen, 2008).  

In practice, there are cases where the classification of expectations into discrete categories 
appears to be ambiguous. Based on our findings and others, we here propose that several factors 
enter into play. First, structural expectations can be modulated or masked by contextual 
expectations (Fig 1c) – but these modulations will remain specific to the context. For example, 
participants might learn that in a given environment, light doesn’t come from above but from a 
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slightly different source location (Kerrigan and Adams, 2013).  However, their estimation would 
remain unchanged in a different context. Moreover, if the context is broad or ambiguous enough, 
contextual expectations might appear to function like structural expectations. For example, a few 
trials of experience may lead to an expectation that a target may appear at a particular location in a 
particular context (e.g. taking into account that people drive on the left, when crossing the street in 
the UK). However, many thousands of such trials may lead to a structural expectation that will 
appear to generalize to different contexts (e.g. being confused about where to look when being back 
in the continent, see also §7).   

In this review, we focus on structural expectations (and their potential contextual 
modulation) and use the term “prior” when they have been studied or described with the Bayesian 
framework in mind. 
 
How do expectations impact perception? 
 
 Expectations generally can have two different types of effects on perception. First, 
expectations modulate perceptual performance; for example, by increasing participants’ speed and 
accuracy at detecting stimuli that are presented at an expected location (Posner et al., 1980; Sekuler 
and Ball, 1977; Downing, 1988), or by improving the recognition of objects that are expected 
within the context of a visual scene (Bar, 2004). Second, expectations can alter the subjective 
appearance of visual stimuli, i.e. the content of perception. These changes in perceptual appearance 
are strongest when the available sensory inputs are ambiguous or when there are multiple 
competing interpretations for the sensory input (Haijiang et al., 2006; Sterzer et al., 2008; Adams et 
al., 2004). Figure 1b illustrates this effect for contextual expectations. Visual illusions have long 
been used to yield insight into the structural prior assumptions that the visual system makes in 
interpreting the world. The expectation that light shines from above our heads, a.k.a. the “light-
from-above prior”, illustrated in Figure 1a, is often cited in this context. Although various aspects 
of this prior have been debated (Mamassian and Goutcher, 2001; Morgenstern et al, 2011), it is 
commonly thought to determine shape interpretation and visual search performances for shaded 
objects. Similarly, it has been shown that human observers have a priori expectations for symmetry 
(e.g. Knill, 2007), smoothness or “good continuation” in space and time (e.g. Geisler and Perry, 
2008; Schwartz et al., 2007), that cardinal orientations are more frequent than other orientations (e.g. 
Girshick et al., 2011), that objects are convex and backgrounds homogenously colored (Goldreich 
and Peterson, 2012) and that other people’s gaze is directly towards them (Mareshal et al, 2013). 
Such studies have commonly formalized their findings using a Bayesian framework, which leads to 
precise, quantitative predictions regarding the relationships between the sensory variables. 
 
A well-studied example: The slow-speed prior 
 
 The so-called “slow-speed prior”, i.e. the prior belief that visual objects are static or move 
slowly, is one of the best studied structural expectations and will thus be a major topic in this 
review. This prior was first introduced as an elegant hypothesis that could provide a unified 
explanation for a number of visual motion illusions or biases (Weiss et al., 2002). Weiss et al 
formulated a Bayesian model of visual motion perception that assumed that local image 
measurements are noisy and that slower motions are a priori more likely than faster ones (a 
Gaussian prior centered on 0°/s speed), a reasonable assumption in a world where most objects are 
static or moving slowly. They showed that this model, while leading to improved performance on 
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average for naturalistic stimuli (compared to a model without a prior), could also account 
qualitatively for a wide range of biases and illusions previously observed in psychophysics: the 
“aperture problem” (Hildreth, 1983), the “Thomson effect” i.e. the influence of contrast on 
perceived grating speed (Stone and Thomson, 1990), the rhombus illusion (Weiss et al., 2002), the 
influence of contrast on perceived plaid direction (Stone et al., 1990), on perceived line direction 
(Lorenceau et al 1992), on the perceived direction of Type 1 vs. type 2 plaids (Yo and Wilson, 
1992), influence of relative orientation (Burke and Wenderoth, 1993) and relative speed on type 2 
plaids (Bowns, 1996). They thus suggested that motion illusions may not be “the result of sloppy 
computation by various components in the visual system, but rather a result of a coherent 
computational strategy that is optimal under reasonable assumptions”, and that “visual illusions 
[could be viewed] as optimal percepts”. An advantage of studying the slow-speed prior is that it 
provides an explanation for a wide range of phenomena in motion perception and exemplifies the 
characteristics that we use to define structural expectations. Interestingly, similar priors have been 
postulated in other sensory systems. A slow-speed prior has been proposed to act in tactile 
perception, where it explains a variety of spatiotemporal illusions, including the cutaneous rabbit 
illusion, in which successive taps delivered to a couple of skin positions are perceived as a sequence 
of taps traveling from one position to the other, although no stimulation was applied between the 
two actual stimulus locations (see e.g. Goldreich and Tong, 2013). Similar models could explain 
sensory saltation and length contraction illusions occurring in vision and audition (see e.g. Geldard, 
1976; Bremer et al 1977).  
  
Estimating priors in individuals 
 
 While the use of such priors in Bayesian frameworks provides a parsimonious explanation 
of many phenomena at a qualitative level, a key question is whether they can also inform us 
quantitatively on performance and internal beliefs at the level of individuals.  When investigating 
the slow-speed prior, Weiss et al (2002) had assumed a standard (Gaussian) shape for the prior and 
showed that it could qualitatively explain observers’ group performances. More recently, a number 
of laboratories have developed approaches to infer individuals’ priors from their behavioral 
responses. The general methodology is to assume that participants’ data can be accounted for by a 
Bayesian observer, which is specified by choosing a noise model for the sensory estimation process, 
a noise model for the motor response, the form of the prior and a loss function (e.g. Chalk et al 2010, 
Acerbi et al 2012). The full model is then used to fit perceptual performances, choosing the best 
parameters commonly by maximizing the likelihood of the data under the model (see e.g. Adams et 
al 2010; Chalk et al., 2011; Gekas et al., 2013). Bayesian model comparison is often used to assess 
which model of a family provides the best description of the data (where different models 
correspond to different assumptions about the components, e.g. the form of the prior or loss 
function). The most common method for specifying the prior is to assume a particular parametric 
form (e.g. a Gaussian). The difficulty is in choosing the form of the parametric distribution, without 
overly constraining it, where, on the other hand, too many parameters for the prior distributions 
might lead to over-fitting. A few studies have tried to avoid strong parametric forms (Stocker and 
Simoncelli, 2006; Acerbi et al., 2012; Zhang et al., 2013). Stocker and Simoncelli (2006), for 
example, developed a method for estimating the prior based on measurements of both perceptual 
biases and variability, without constraining it to be Gaussian nor even unimodal (but assuming 
instead that the log of the prior is linear over the range of velocities corresponding to the width of 
the likelihood function). They show that the recovered priors have significantly heavier tails than a 
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Gaussian: they fall instead with speed as a power law, with significant variability between 
participants. Moreover, they find individual differences in the shape of the speed prior that can be 
used to explain individual differences in performance. 
 Following this study, a number of laboratories (including ours) are now trying to link 
individual differences in priors’ shapes with individual differences in performance on perceptual 
tasks (different from those used to infer the prior). Collecting such data is recognized as a very 
promising way to assess the validity of the Bayesian approach (Maloney and Mamassian, 2008). 
However, this also raises the question: why would prior distributions differ across individuals in the 
first place? What are the processes that give rise to these priors? We address these questions in the 
following sections. 
 
Do structural priors match environment distributions? 
 
 A natural question is whether observers’ measured prior distributions match the 
environment statistics, a condition for optimality (Ma, 2012). This is difficult to answer for the slow 
speed prior. Indeed, it is difficult to measure the statistical distribution of retinal image velocities, 
because these depend not only on the statistics of natural images but also on the relative effects of 
body, head and eye movements (Stocker and Simoncelli, 2006).  
 However, Girshick et al (2012) successfully explored this issue in the context of visual 
orientation biases, applying a method similar to that of Stocker and Simoncelli (2006). They studied 
the performances of participants comparing different orientations, and found that participants were 
strongly biased towards the cardinal axes when the stimuli were uncertain. They further measured 
the distribution of local orientations in a collection of photographs and found that it was strongly 
non-uniform, with a dominance of cardinal directions. They found that the recovered priors 
matched the measured environmental distribution.  
 Another strong indication that humans use priors that are matched with the statistics of the 
environment comes from the recent work of Zhang et al. (2013). These authors reasoned that the 
slow speed prior should hold only for foveal or parafoveal vision. In peripheral vision, when we are 
in motion or tracking an object, the optic flow is predominantly expanding. If prior distributions are 
learned from experience, the velocity prior in the visual periphery should thus correspond to faster 
motions, biased toward centrifugal directions. They tested this idea experimentally by measuring 
perceived direction of motion for peripheral gratings. They found that stationary objects in the 
visual periphery are indeed often perceived as moving centrifugally, while objects moving as fast as 
7°/s toward the fovea are perceived as stationary. They showed that these illusions are well 
explained by a Bayesian observer model that has a strong centrifugal prior in peripheral vision. 
 These data show that at least some structural priors approximate natural stimulus statistics. 
It is thus reasonable to conjecture that structural priors form as a mechanism to optimize one’s 
sensory processes in reflection of the environment. One question that is unclear, though, is the time 
scale with which priors should change. Is the learning of priors a continual process that occurs 
through the lifespan of an individual? If this is the case then we should be capable of learning new 
priors (see §3,4) and update existing priors (see §5). 
 
3. Can new priors be learned?  
 
 Substantial research shows that contextual priors can be quickly learned. In fact, much of the 
research that gives evidence for contextual priors does so by inducing them experimentally. 
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Compelling examples can be found in the perception of bistable or ambiguous displays (e.g. 
Haijiang et al., 2006; Sterzer et al., 2008; Adams et al., 2004). For example, the appearance of a 
bistable image such as the moving direction of a rotating Necker cube can be influenced by external 
cues when those cues have been previously associated with a particular direction for the cube 
(Haijiang et al., 2006).  
 However, there is little work concerning learning or updating of structural priors in visual 
perception. Theories of statistical learning suggest that, with extensive experience, mechanisms that 
lead to contextual priors, such as contextual cueing (Chun and Jiang, 1998) can develop into new 
structural priors and engage similar mechanisms as those that lead to the formation of language and 
visual Gestalt grouping laws (Fiser and Aslin, 2001, 2002). One way to approach structural prior 
learning is thus to investigate (contextual) learning paradigms that impact on the implicit use of 
structural expectations: can one learn through exposure to use a new statistical model for basic 
features of the environment, such as depth or motion cues? 
 Knill (2007) explored how participants’ learned expectations about stimulus shape alter their 
interpretation of depth. When participants are asked to judge the planar orientation of randomly 
shaped ellipses, they initially exhibit expectations for regularly shaped objects, and are thus biased 
to perceive elliptical stimuli as circles presented at an oblique angle. However, Knill (2007) found 
that prolonged exposure to a stimulus distribution that included a large number of randomly shaped 
ellipses reduced this bias. After training, participants’ learned expectations influenced how they 
combined different visual cues in their estimates of stimulus slant: participants gave progressively 
less weight to stimulus shape, and more weight to stereoscopic cues.   
 Chalk et al (2010) asked whether expectations formed through statistical learning could also 
modulate the perception of simple visual features, such as a motion direction, in a situation where 
there is only one available visual cue. This was examined in a design where some motion directions 
were more likely to appear than others (Figure 2). In each trial, participants were presented with 
either a low contrast random dot kinematogram, moving coherently in one direction, or a blank 
screen. Participants performed a dual task in which they were required to first report the direction of 
motion (estimation) and then report whether the stimulus was present (detection). Chalk et al used a 
bimodal distribution of motion directions such that two directions, 64 degrees apart from each other, 
were more frequently presented than the others. The hypothesis was that participants would 
automatically learn which directions were most likely to be presented and that these learned 
expectations would bias their perception of motion direction. 
 
< Figure 2 around here>  
 
 Chalk et al (2010) found that after a few minutes of task performance, participants perceived 
stimuli to be moving in directions that were more similar to the most frequently presented directions 
than they actually were (attractive estimation bias). Furthermore, on trials where no stimulus was 
presented, but where participants reported seeing a stimulus, they were strongly biased to report 
motion in these two directions (a form of hallucination). No such effect was observed when 
participants did not report seeing a stimulus. This learning was implicit: when asked about the 
stimulus distribution after the experiment, most participants indicated no conscious knowledge that 
some directions had been presented more frequently than others. Modeling of participants’ behavior 
showed that their estimation biases could not be well explained by a simple response bias or by 
more complex response strategies. On the other hand, the results were well accounted for by a 
model which assumed that a learned prior of the stimulus statistics, corresponding to participants’ 
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distributions of perceived motion directions in the absence of a stimulus, was combined with 
sensory evidence in a probabilistically optimal way. The model also provided correct predictions 
for participants’ behavior when no stimulus was presented. Overall, these results show that stimulus 
statistics are rapidly learned and can powerfully influence perception of simple visual features, both 
in the form of perceptual biases and hallucinations. 
 While this research is suggestive that new structural priors can be formed, research is still 
lacking regarding how long-lived these effects are and the extent to which they generalize across 
contexts, especially to novel conditions (see also §7). Perceptual learning studies, however, suggest 
that such effects can persist over time. For example, in Seitz et al. (2005), participants were trained 
to notice and later report white letters presented in a series of darker letters, where unbeknownst to 
them, coherent motion stimuli were presented at a sub-threshold contrast level, with a specific 
direction of motion always paired with the target letters. This task-irrelevant perceptual learning 
training (Seitz and Watanabe, 2009) induced direction-specific visual hallucinations and 
improvements in discriminating that motion direction, in a manner similar to Chalk et al (2010). 
Furthermore, participants improved in their critical flicker fusion thresholds (Seitz et al., 2006) and 
these improvements lasted over 6-months. While these results have not fully been characterized 
within a Bayesian model, they are consistent with the broad impact that structural priors can have 
on the visual system. 
 
4. What level of complexity of a prior can be learned?  
 
 An interesting question is to understand the precision that can be achieved in learning prior 
distributions. For example, in the study of Chalk et al (2010), although the prior that individual 
participants learned was usually sensible, it was always only an approximation of the true stimulus 
distribution, with high variability between individuals. A common opinion is that the brain can only 
achieve sub-optimal inference (Fiser et al., 2010; Beck et al., 2012) and that there are strong limits 
on the types of statistical regularities that sensory systems can automatically detect. However, 
which aspects of stimuli statistics can be learned, how it depends on the underlying complexity and 
what is the impact of the approximations made in the inference is unclear (Fiser et al. 2010; Gekas 
et al., 2013; Turk-Browne and Scholl, 2009; Turk-Browne et al., 2008; Berniker et al, 2010; Acerbi 
et al., 2012). 
 Berniker et al (2010) recently investigated whether participants can learn the variance of the 
prior, in addition to the mean. They addressed this question using a visuo-motor “coin catching” 
experiment. They found that the mean and variance of a time-varying Gaussian prior could be 
learned quickly and accurately, but at different rates, with learning of the prior variance requiring 
more trials than learning of the mean. 
 In a similar spirit, Gekas et al (2013) explored whether participants could learn two different 
distributions simultaneously (see also Kerrigan and Adams, 2013). They did this by modifying the 
experimental paradigm used in Chalk et al (2010) to include interleaved moving dot displays of two 
different colors, either red or green, with different motion direction distributions. The aim of the 
experiment was to assess whether participants could learn the frequency distribution of motion 
directions of each color and whether knowledge about the statistical properties of the two 
distributions transferred between conditions.  
 When one distribution was uniform and the other bimodal (experiment 1), participants 
quickly developed expectations for the most frequently presented directions over all trials, 
irrespective of the color of the dots. They exhibited similar estimation biases towards those 
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directions for both the uniform and bimodal color conditions. Consistent with this, on trials where 
no stimulus was presented but participants reported seeing a stimulus, they were strongly biased to 
make estimates in the most frequently presented directions regardless of the color reported. 
Participants’ estimation behavior was described successfully by a non-optimal Bayesian inference 
strategy, which combined sensory evidence with a unique learned prior of the combined stimulus 
statistics, applied to both color conditions in a probabilistic way.  
  However, when both distributions were similarly structured and chosen such that the 
combined distribution was uniform (experiment 2), there was evidence for the formation of two 
distinct priors. Participants’ estimation performances on trials where no stimulus was presented but 
where they reported seeing a stimulus were significantly different depending on the color they 
reported. Moreover, participants increasingly perceived the most frequently presented directions of 
the color condition they reported as the sessions progressed. For a number of participants, 
estimation performances were best accounted for by a model that assumed a distinct prior for each 
color condition. Moreover, the prior distributions for each color condition were compatible with 
participants’ behavior in trials where no stimulus was presented. 
 These results suggest that it is possible to learn the joint statistics of the stimuli but only 
under specific conditions. Even so, there was a tendency for participants to learn a complex 
combination of the two distributions and use it non-specifically in the different conditions. 
Interestingly, complexity does not seem to be a limiting factor per se as the distributions of 
Experiment 2 were more complex than that of Experiment 1. More relevant is probably the degree 
of overlap between the two stimulus distributions. Further experiments are now needed to 
understand what other factors impact learning in such situations. It is possible in particular that, for 
the visual system, plasticity, the formation and/or use of new priors are computationally costly and 
that this cost needs to be balanced against possible gains in performance or expected rewards. It 
might also be the case that higher-level priors also enter into play. Participants might have a 
preference for simple explanations of their sensory input. For example, participants may have a 
prior expectation that similar objects might follow similar distributions. Similarly, when forming an 
internal model of the environment, they might have a preference for assigning stimuli to as small a 
set of categories (here corresponding to different motion distributions) as possible, only creating 
new perceptual categories when the stimulus statistics are radically different (Anderson, 1991; 
Sanborn et al., 2010).  
 
5. Can long-term structural priors be updated (or over-ridden)? 
 
 While we have provided evidence that human observers exhibit structural expectations that 
are thought to correspond to the long-term statistics of natural scenes, one may ask: are these 
expectations hard-wired, or fixed after long-term exposure, or are they constantly updating through 
experience?  
 This question was first addressed in the context of the light-from-above prior. Hershber 
(1970) showed that chickens reared in an environment illuminated from below did not differ from 
controls in their interpretation of shadows and depth. They thus suggested that the prior that light 
comes from above is innate. Adams et al (2004) revisited this question in humans. In their 
experiment, they first asked participants to make convex-concave judgments of bump-dimple 
stimuli at different orientations (as in Figure 1b), and measured the light-from-above prior based on 
their responses. During a training phase, they then added new shape information via haptic (active 
touch) feedback, that disambiguated object shape but conflicted with the participants’ initial 
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interpretation, by corresponding to a light source shifted by 30° compared to the participants 
baseline prior. When participants were finally tested again on visual only stimuli, their light 
direction prior had shifted significantly in the direction of the information provided during training. 
Adams et al thus concluded that, unlike in chickens, the 'light-from-above' prior could be updated in 
humans. Adams et al (2010) subsequently found that such recalibration could also be obtained using 
visual feedback alone.  
 Sotiropoulos et al (2011) revisited this question in the context of the slow speed prior (Weiss 
et al., 2002; Stocker and Simoncelli, 2006). Although never directly tested, the speed prior is 
commonly thought to develop over the course of our lifetime, in a world where static or slowly 
moving objects are more frequent than fast objects. Sotiropoulos et al (2011) investigated whether 
expectations about the speed of visual stimuli could be changed implicitly solely through exposure 
(i.e. without introducing feedback or a conflict between modalities) and if so, whether this could 
result in a disappearance or reversal of the classically reported direction biases. 
 They conducted a psychophysical experiment where participants were presented with a field 
of parallel lines translating rigidly along a direction that was either normal to the line (in 50% of the 
trials) or oblique to the line (in the other 50%). Participants were tested on their ability to report the 
perceived motion direction (normal or oblique) of the stimulus (Figure 3). The experiment was 
conducted over five sessions, taking place on consecutive days. Each session contained a short test 
block, a long ‘training’ block and a final test block. The test blocks were always conducted with 
slow stimulus speeds (4°/s). The training block differed across groups: a control group performed 
the task at slow speeds (4°/s) and the experimental group at fast speeds (8°/s). The reasoning was 
that participants in the experimental group might implicitly update their expectations towards faster 
speeds, and thus experience a change in the direction bias. 
 Consistent with previous findings (Lorenceau et al., 1993), for low contrast stimuli, both 
groups initially perceived motion as being more often normal to the line than it really was. However, 
in the experimental group, this illusion gradually changed through the experience of the faster 
speeds, until the illusion reversed and the motion direction was perceived as being more often 
oblique than it really was. For the control group the illusion was unaltered. 
 
< Figure 3 around here> 
 
 The data was modeled using the Bayesian model of Weiss et al (2002) described above. 
Sotiropoulos et al (2011) found that this model satisfactorily fit the data when extended to allow the 
speed prior to shift towards higher speeds with exposure. Overall, this suggests that the visual 
system expects a priori that the speeds of moving stimuli are slow but that the prior on slow speeds 
is not fixed and can change through implicit learning over the course of a few training sessions. 
After training, participants experienced clear perceptual biases about motion direction that were 
consistent with expecting that visual objects move quickly rather than slowly. Interestingly, 
expectations were found to update over two time-scales. First, within each session, participants 
exhibited a fast update of the prior (perhaps evidence of a contextual expectation). Second, this 
learning partially survived until the session of the following day. As a result, across sessions, a slow 
learning component was observed, with a modest shift of the prior from day to day (possibly 
evidence of a more “structural” expectation). These findings provide evidence for a causal link 
between the existence of the slow speed prior and the learning of the statistics of stimuli in the 
world and show that structural priors can be updated throughout the lifetime.  
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6. Neural substrate of expectations and prior beliefs. 
 
 There is a well-known (and often criticized) gap between Bayesian model descriptions, 
which (by nature) account for cognitive processes at a computational level, and our understanding 
of the potential neurobiological mechanisms (see e.g. Colombo and Seriès, 2012; Bowers and Davis, 
2012; O’Reilly et al., 2012). Similarly, while there is some indication that priors and likelihood 
would be encoded separately in the brain (Beierholm et al., 2009; Vilares et al., 2012), not much is 
known about the neural substrate of expectations and priors. Whether (all) prior expectations 
correspond to top-down signals modulating early visual pathways, whether they reside entirely in 
higher level areas, or on the contrary whether they are formed in sensory cortex itself is not clear. 
Moreover, prior expectations have been proposed to correspond to either a reduction of neural 
responses, or on the contrary to an increase in activity, a change in baseline activity, or a shift in the 
selectivity of the neurons activated by the expected features (Summerfield and Egner, 2009; Vilares 
et al., 2012; Fiser et al., 2010). We review some of the pertinent literature, which is limited, discuss 
some of the outstanding questions in the field (§7) and suggest future directions that we believe will 
help resolve these issues (§8). 
 
Priors and the activity level of neurons sensitive to expected features 
 
 Unfortunately, there has been little investigation looking specifically at the effect of 
structural expectations at the level of individual neurons. There is, however, some indication that 
structural expectations could correspond to an enhancement of activity of the neurons sensitive to 
expected features. For example, structural expectations that objects are smooth in space or that lines 
would be co-circular (a.k.a. the Gestalt laws of proximity, continuity, co-circularity) have been 
linked with center/surround effects in V1 (for a review, Seriès et al., 2003). In situations of 
uncertainty (i.e. low contrast), such effects are mediated by neural response facilitation. For 
example the response to a low contrast bar is facilitated by the presence of a collinear surround.  

A number of studies have also examined electrophysiological correlates of short-term 
learning of expectations. For example, Platt and Glimcher (2000) examined how decision variables 
in area LIP of awake monkeys are modulated by the frequency and reward associated with 
particular choices. They found that neural activity in LIP neurons was enhanced in neurons 
signaling the more likely response. Similarly, Basso and Wurtz (1997) investigated the influence of 
target uncertainty (defined by the number of stimuli from which a selection must be made) on the 
activity of superior colliculus neurons and found that activity preceding target selection increased 
when prior probability increased. However, whether such modulation would also be observed at 
earlier cortical stages (e.g. MT) is not known.   

Many electrophysiological studies have also manipulated contextual expectations so as to 
direct attention, using explicit external cues directed to particular locations or features. It is well 
established in this case that directing attention to a location or feature in anticipation of a target 
leads to enhancement of activity in regions of the visual cortex that are selective for this location or 
feature (for a review, see e.g. Carrasco, 2011).  
 By contrast, a number of fMRI and EEG studies have looked at the influence of stimulus 
repetition on neural activity, in a situation of passive viewing or using an “oddball” task. Those 
studies suggest that expectations correspond not to an enhancement of activity evoked by the 
expected stimuli but to a reduction (for a review, see Summerfield and Egner, 2009). Summerfield 
et al (2008), for example, found that repetition suppression was reduced in the fusiform face area 
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when repetitions of face images were improbable (and thus, unexpected). However, this result was 
not replicated in studies of non-human primates (Kaliukhovich and Vogels, 2010).  

A possible reconciliation between fMRI studies finding a decrease in activity and single-unit 
studies finding an increase is that learning can result in a relative reduction of activity in neurons 
that are not selective to the expected feature or task compared to those that are selective (Adab and 
Vogels, 2011). Some data seems to be in line with this idea. For example, using an orientation 
discrimination task (with a contextual cue predicting the global orientation of the subsequent 
stimuli), De Lange and collaborators argue that (contextual) expectations, when behaviorally 
relevant, correspond not only to a decrease of activity but also a sharpening of the representation in 
visual cortex. They find that perceptual expectation leads to a reduction in neural activity in V1, but 
improves the stimulus representation, as measured by multivariate pattern analysis (Kok et al., 
2012).	
  

In line with this idea, there has been much attention to the selectivity of neurons involved in 
learning. 
 
Priors in the selectivity of the neurons 
 
A natural way in which (structural) priors could be represented in the brain is in the selectivity of 
the neurons and the inhomogeneity of their preferred features (Girshick et al., 2011; Fisher and 
Pena, 2011; Ganguli and Simoncelli, 2010). In this framework, the neurons representing the 
expected features of the environment would be present in larger numbers (Girshick et al., 2011), or 
be more sharply tuned (Schoups et al., 2001), or more strongly connected to higher processing 
stages (Raiguel et al., 2006) than neurons representing non-expected features. For example, as 
discussed above, a Bayesian model with a prior on cardinal orientations (reflecting the fact that they 
are more frequent in the natural environment) can account for the observed perceptual bias towards 
cardinal orientations. These effects can also be simply accounted for in a model of the visual cortex 
where more neurons are sensitive to cardinal orientations, with those neurons being also more 
sharply tuned (as observed experimentally), combined with a simple population vector decoder 
(Gershick et al., 2011). Similar models have been proposed in the auditory domain to explain biases 
in localization of sources (Fisher and Pena, 2011) and formalized theoretically. Ganguli and 
Simoncelli (2010), for example, provided a thorough analysis of how priors could be implicitly 
encoded in the properties of a population of sensory neurons, so as to provide optimal allocation of 
neurons and spikes given some stimulus statistics. Interestingly, their theory makes quantitative 
predictions about the relationship between empirically measured stimulus priors, physiologically 
measured neural response properties (cell density, tuning widths, and firing rates) and 
psychophysically measured discrimination thresholds (see also: Wei and Stocker, 2012). 
 Whether all structural priors correspond to inhomogeneities in cell properties is unclear. The 
light-from-above prior is thought to be related to activity in early visual cortex (Mamassian et al., 
2003), but, as far as we know, its precise relation with neural responses is yet unclear. The slow 
speed prior, however, could be implemented in such a way, via an over-representation of very slow 
speeds in MT or a shift of the tuning curves towards lower speeds when contrast is decreased 
(Krekelberg et al., 2006; Seitz et al., 2008). Accordingly, there is some evidence that prolonged 
experience with high-speeds leads to a shift of the MT population to prefer higher speeds (Liu and 
Newsome, 2005). 
 
Priors in the neurons’ spontaneous activity 
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 Finally, an intriguing idea that has recently attracted much interest is that spontaneous 
activity in sensory cortex could be interpreted as samples of the prior distribution (Fiser et al., 2010; 
Berkes et al., 2011). The logic is the following. In a probabilistic framework, if neural responses 
represent samples from a distribution over external variables, this distribution is the so-called 
“posterior distribution’’.  By definition, the posterior distribution results from the combination of 
two components:  the sensory input, and the prior distribution describing a priori beliefs about the 
sensory environment (i.e. expected sensory inputs). In the absence of sensory inputs, this 
distribution will collapse to the prior distribution, and spontaneous activity will correspond to this 
prior. This hypothesis would explain why spontaneous activity is found to be remarkably similar to 
evoked activity. Moreover, it would be computationally advantageous, driving the network closer to 
states that correspond to likely inputs, and thus shortening the reaction time of the system (Fiser et 
al 2010). Berkes et al (2011) recently provided further evidence for this idea by analyzing 
spontaneous activity in the primary visual cortex of awake ferrets at different stages of development. 
They found that the spontaneous activity is similar to the averaged evoked activity, with a similarity 
that increased with age and is specific for natural scenes. That spontaneous activity could 
correspond to the prior is a very attractive idea. More experimental and theoretical work is needed, 
however, to understand the validity, generality and implications of this hypothesis. For example, 
whether spontaneous activity is mostly shaped by visual experience or by developmental programs 
is unclear. Similarly, it is yet unclear whether spontaneous activity could represent both structural 
and contextual expectations.  
 
7. Outstanding questions. 
 
 Given that the learning of expectations has been addressed through diverse techniques and 
that many of the discussed studies were not explicitly designed to understand expectations, 
numerous questions remain at both the physiological and behavioral levels.   

At the physiological level, a primary question is whether existing data about the neural 
effect of expectations can be unified in the same framework. For example, can we reconcile 
whether expectations lead to enhancement or suppression of neural activity (Summerfield and 
Egner, 2009)? Notably, single unit recording studies and fMRI studies image different components 
of neuronal responses and different neuronal populations. For example, fMRI studies are influenced 
by changes across the all neurons in an area, perhaps favouring unselective neurons (as discussed 
above). Another possibility is that the imaging data may reflect mostly inhibitory activity, while 
extracellular recordings corresponds mostly to the activity of excitatory cells (Niessing et al., 2005; 
Gieselmann and Thiele, 2008). Expectations would then correspond to decreased inhibition. The 
effect of expectations might also depend on the behavioural relevance of expected stimuli: sensory 
signals that are behaviourally relevant would be enhanced, while expected stimuli that are irrelevant 
to the task at hand would be filtered out and suppressed (such as in repetition suppression). Another 
factor to consider is the time-scale of these effects. Chopin and Mamassian (2012) found that visual 
adaptation could lead to negative correlation of the current percept with visual events presented just 
before (< 3 min) and a positive correlation with a remote reference window of stimuli (from 2 to 10 
minutes in the past). They propose that the visual system uses statistics collected over the more 
remote past as a reference that is then combined with recent history for predicting the next percept. 
The most likely forthcoming percept would be the one that helps the statistic of the most recent 
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percepts match that of the remote past.  Perception would be biased towards such predictions when 
a new stimulus appears. 	
  
 At the behavioral level, an issue that deserves further investigation concerns the dynamics of 
prior learning. In particular, how fast is learning compared to the optimal? Also, what information 
is stored from trial to trial about the prior distributions? A number of studies suggest that observers 
integrate information sub-optimally when learning stimulus statistics (e.g. Eckstein et al., 2004; 
Raviv et al., (2012)). For example, using a 2-tones discrimination task, Raviv et al. (2012) show 
that participants exhibit (so called “contraction”) biases that are consistent with using a prior that 
corresponds to the stimulus distribution. However, the most recent trials are found to be 
overweighted compared with the predictions of a standard Bayesian model, which can be 
interpreted as if the participants assume that the statistics of stimuli in the experiment is highly 
volatile. They suggest that Bayesian-like computation is approximated using a much simpler 
algorithm, in which the prior distribution is not fully represented. For example, their data can be 
accounted for by participants using only a single scalar to represent past trials, corresponding to an 
exponentially weighted sum of the current and past stimuli and their respective encoding noises.  

Another crucial issue that needs to be clarified concerns the specificity of expectations. 
While specificity and transfer have been extensively studied in the context of perceptual learning 
(e.g. for a review: Sagi, 2011; Seitz and Dinse, 2007), only a few studies have investigated how 
specific prior expectations are (e.g. Adams et al., 2004, 2007; Turk-Browne and Scholl, 2009; 
Maloney and Mamassian, 2009; Gekas et al., 2013). For example, is there only one speed prior, 
which is applied to all types of visual objects and stimuli? When new priors are learned in the 
context of a task, do they automatically transfer to different tasks? When a structural prior seems to 
be over-ridden by short-term learning of the current statistics, is the initial representation 
maintained or over-written? Adams et al (2004) provide evidence that the visual system uses the 
same prior about light source position in quite different tasks, one involving shape and another 
requiring lightness judgments. Similarly, Adams et al (2007) measured the “light-from-above” in 
different tasks: visual search, shape perception, and a novel reflectance-judgment task. They found 
strong positive correlations between the light priors measured using all three tasks, suggesting a 
single mechanism used for “quick and dirty” visual search behaviour, shape perception, and 
reflectance judgments. In the context of short-term statistical learning, and using a familiarisation 
task with complex shapes, Turk-Browne and Scholl (2009) provide evidence for transfer of 
perceptual learning across space and time, suggesting that statistical learning leads to flexible 
representations. Similarly, the findings of Gekas et al (2013) suggest that human observers are 
prone to transfer between similar stimulus configurations. However, the generality of these findings 
is very unclear and needs further exploration. A related question is to understand how long 
expectations learned in the laboratory persist over time. This question and that of transfer are in fact 
crucial for assessing whether our classification into “contextual” and “structural” priors is 
meaningful. If contextual priors can persist for long periods (Olson and Chun (2001); Kim et al. 
(2009); Sotiropoulos et al. (2011), Adams et al 2010), transfer to different tasks (Adams et al., 
2004; Turk-Browne and Scholl, 2009) and more importantly to different contexts, it would suggest 
that the mechanisms that lead to contextual priors are similar to those which lead to the formation of 
structural priors (Fiser and Aslin, 2001, 2002). Contextual expectations could become structural 
over time. Kerrigan and Adams (2013) suggest, however, that contextual priors persist over time, 
but remain context-dependent (although possibly not stimulus-dependent (Adams et al., 2004)), 
with the experimental set-up acting as a contextual cue. More evidence is needed so as to test the 
generality of this finding. 
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This issue of flexible representations also brings to question the extent to which learning of 
expectations and classical perceptual learning rely upon similar mechanisms. Perceptual learning is 
commonly defined as changes in perceptual processing that occur with experience (typically 
through active training on a given task) and is a phenomenon that influences nearly all aspects of 
vision. Examples of perceptual learning range from the abstract, such as pattern recognition found 
in expert chess players, radiologists, and visual aspects of language processing, to intermediate 
levels of processing such as those found in categorical, associative, and object learning, to low-level 
perceptual learning of basic visual skills such as contrast detection, orientation discrimination and 
hyperacuity judgments, etc. While these different visual processes may not be perfectly dissociable, 
it is clear that perceptual learning is used to describe aspects of learning that involve a myriad of 
visual processes, that result from plasticity in a diverse set of brain areas and certainly includes 
phenomena that we have discussed regarding both contextual and structural expectations. There is 
already great debate about the different mechanisms in the brain that subserve perceptual learning; 
such as reducing the system’s noise (Dosher and Lu, 1998), increasing the gain of the signal (Gold 
et al., 1999), improving an internal template of the target (Li et al., 2004), better attending the 
location or features of the stimulus (Franko al., 2010), improving decisions rules regarding the 
stimulus (Yu, Zhang et al. 2010), among other mechanisms. It would be very valuable to assess 
how these mechanisms and related debates, could apply, or not, to expectation learning. It may be, 
for example, that structural and contextual priors differ in how they are learned and at which stage 
of processing. Similar to the perceptual learning literature (e.g. for a review, Choi and Watanabe, 
2012; Sagi, 2011), one might wonder whether structural expectations could be understood in terms 
of a change in representation in perceptual areas, while contextual expectations could correspond 
more to top-down signals coming from decision stages and resulting in a selection (or 
“reweighting”) of the sensory signals. Similarly, in Bayesian terms, we have focussed on how 
expectations and learning could be described by changes in sensory priors, but these are only one 
element of the internal model thought to be used by the brain. In theory, perceptual learning could 
correspond to changes at different levels: changes in prior distributions, but also changes in sensory 
representations (perceptual likelihood), and changes in decision rules or read-out strategies. More 
work is needed to understand how perceptual learning maps onto changes of these different 
elements. 

A related question regards the distinction between attention and expectations. These effects 
can easily be confounded, in experimental designs and results interpretation. In many situations, 
stimulus expectations can direct attention to particular visual features and locations (Downing, 
1988; Posner, 1980). In addition, attention and expectations are generally thought to be controlled 
by similar cognitive processes, which allocate increased resources to the perceptual processing of 
stimuli that are either behaviourally relevant or contextually likely (Corbetta and Shulman, 2002). 
Chalk et al (2013) propose that what is usually described as ‘expectations’ and ‘attention’ might 
correspond to two sides of the same mechanism. They propose that the visual system is constantly 
seeking to optimize its internal model so as to predict how the sensory input and reward received 
for performing different actions are generated by a common set of hidden causes (Sahani, 2004). In 
this Bayesian model, goal-oriented attention and expectations refer to adaptation of the system’s 
priors to changes in reward statistics (or task relevance) and stimulus statistics respectively. The 
model is consistent with, and provides a normative explanation for, recent divisive normalization 
models of attention (Reynolds & Heeger, 2009) and provides new tools for understanding how the 
brain’s internal models should change with task demands and stimuli statistics, but remains 
tractable unfortunately only in extremely simplified situations. 	
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 These outstanding issues (see also Box 1) suggest that there is much work to be done to 
better understand how expectations are learned and their behavioral manifestations.  
 
8 - Future directions. 
 
 We suggest that targeted studies need to be conducted to better understand the neuronal 
basis of structural expectations. Physiological experiments using statistical learning designs 
comparable with the behavioral studies are needed to clarify the neural basis of expectations, and 
whether contextual and structural expectations share the same mechanisms.  

It would be very valuable, for example, to obtain electrophysiological recordings from brain 
regions such as MT and LIP in awake monkeys while performing tasks such as that of Chalk et al 
(2010) and Sotiropoulos et al (2011) and measure change in responses properties with learning. 
This would help disentangle between different hypotheses. For example, the attractive biases 
observed in Chalk et al (2010) are theoretically compatible with a model that assumes either an 
increase of activity for expected directions or a shift of the tuning curves towards the expected 
directions in MT combined with a read-out mechanism (e.g. in LIP) that doesn’t change on a short 
time scale (Seriès et al., 2009). The hallucination data could be explained by an increase in baseline 
activity for the expected directions. Alternatively, the data may be explained by reweighting 
mechanisms between the MT stage and the LIP decision stage (Law and Gold, 2007) that would 
favor the influence of neurons selective to the expected directions.  
 Another research question that needs further investigation is the link between Bayesian 
models and the biological substrate. Bayesian models of perception have been increasingly popular 
in the past ten years. However, unfortunately, Bayesian models are usually aimed at describing 
performance and are not predictive at the neural level (Colombo and Seriès, 2012; O’Reilly et al., 
2012; Bowers and Davis, 2012). One reason is that it is not known how (or whether) probability 
distributions are encoded by neurons. Moreover, there is a lack of computational models describing 
a neural implementation of probabilistic learning that would provide experimentally testable 
predictions (Fiser et al., 2010). To progress with these issues, further experiments and models will 
be needed. At the experimental level, investigating the time-scale and specificity of priors, as well 
as the limits of the complexity of the priors that can be learned will shed light into the biological 
constraints. We expect that priors formed over different time-scales will likely involve different 
forms of plasticity. At the theoretical level, we believe that it is crucial to propose plausible neural 
implementations of generative models of the sensory inputs (Lee and Mumford, 2003). To capture 
how expectations and internal priors are shaped by experience, such models would need to be able 
to learn neural representations from sensory data. To explain how priors influence ongoing 
perception, the models would need to connect perceptual processes to (approximate) probabilistic 
inference.  
 Furthermore, the utility of modeling approaches from other fields, such as those of machine 
learning, should be investigated in their potential to create better biological models. For example, 
Reichert et al. (2010, 2011, 2013) have recently proposed that the deep Boltzmann machine (DBM) 
offered a promising (even if idealized) description of a generative model that learns to synthesize 
representations of sensory data. A DBM can be seen as an instance of a hierarchical probabilistic 
model, and captures the intuition of bottom-up and top-down processing in the cortex reflecting the 
interaction between sensory information and internal priors. At the same time, the DBM is also a 
simple neural network, with ‘deep’ organization into hierarchical layers and image-based 
representations that can be directly linked to properties of the visual cortex. Modeling neural 
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mechanisms such as homeostatic plasticity in the generative framework, Reichert et al. (2010) show 
how an imbalance of bottom-up and top-down processing then can be seen as a cause for 
hallucinations to emerge, such as in Charles Bonnet Syndrome. Reichert et al. (2011) further show 
how such a model can account for bistable perception as originating from sampling-based 
approximate probabilistic inference. Still, models such as the DBM leave much to be desired both 
in terms of biological realism and in terms of their capability to deal with realistic complex sensory 
input. Such challenges will need to be addressed by future work. 
 
9 - Conclusion. 
 
 Here, we introduced a conceptual framework by which to consider different types of 
expectations (contextual vs structural; Figure 1). We reviewed how expectations can be studied 
using Bayesian models and described as probabilistic priors. Within this framework, we showed 
that such priors provide a parsimonious way to understand many perceptual phenomena, and that 
such priors can be measured in individuals. They are then found to approximate the stimulus 
statistics of the environment, with some individual variability that can be related to performance 
variability. Furthermore, new priors can be acquired throughout the lifetime, and existing priors 
appear to be shaped through our on-going experience in the world. While there exists a rich 
literature providing theoretical ideas and behavioral and neurophysiological data related to priors 
and expectations, the field has lacked a clear unifying framework. As such, many questions remain 
regarding both phenomenology and mechanisms. We suggest that investigating the neurobiological 
underpinnings of expectations might be a promising starting point for understanding how 
(approximate) Bayesian inference is implemented in the brain.  We propose a few guidelines for 
further studies so as to bridge the gap between theoretical models, physiological and behavioral data.  
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Box 1. Outstanding Questions 

 
1. What are the limits in the complexity of expectations and prior distributions that 

can be formed? 
 

2. Are priors specific to the learned conditions? How do they transfer to similar 
stimuli, tasks and/or contexts? 
 

3. How optimal is the learning of priors? Are there biological constraints limiting 
what can be learned and how fast? What heuristics would form plausible alternatives to 
Bayesian inference? 

 
4. Where and how are priors and likelihoods integrated? 

  
5. Are priors mostly encoded in the preparatory activity prior to the stimulus 

presentation, the modulation of evoked activity, or the read-out?  
 

6.     How can we better disentangle expectations vs. sensory adaptation, perceptual 
learning, attention, working memory?  
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Figure 1. Structural vs. Contextual Expectations. A. Example of a structural expectation: the 
“light-from-above” prior. Are those shapes bumps or dimples? Perceiving one dimple in the middle 
of bumps is consistent with assuming that light comes from the top of the image. Turning the page 
upside down would lead to the opposite percept (seeing a bump in a middle of dimples). B. 
Example of a contextual expectation. What do you see in the drawing on the right: a rabbit or duck? 
This ambiguous and bistable percept can be influenced by the spatial context in which it is placed, 
for e.g. having just seen a flock of ducks would make one more likely the perceive a duck. C. 
Structural expectations act as “default” expectations, but can be superseded by contextual 
expectations. 
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Figure 2. Experiment and main results of Chalk et al (2010). A. Stimulus and task used in the 
experiment. In each trial, participants were asked to give an estimate of the direction of motion of a 
cloud of coherently moving dots by moving the central bar (estimation task), then indicate whether 
they had perceived a stimulus or not, by clicking on “dots” or “no dots” (detection task). Some trials 
had very low contrast stimuli or no stimuli at all. Feedback was only given relative to the detection 
task. Inset: Two directions of motion, -32 deg and 32 deg, were presented in more trials than other 
directions. The question was whether participants would implicitly learn about this underlying 
stimulus distribution and how this would influence their performances. B. Participants quickly 
exhibited attractive estimation biases: they tended to perceive motion direction as being more 
similar to the most frequent directions, -32 and 32 deg (vertical dashed lines), than they really were. 
C. On trials when there was no stimulus but participants reported seeing a stimulus (blue line), they 
tended to report directions close to -32 and 32 deg (vertical dashed lines). When they correctly 
reported that there was no stimulus (red line), their estimation was more uniform. 	
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Figure 3. Experiment and main results of Sotiropoulos et al (2011). A. The stimulus is a field of 
lines translating rigidly along either of the two directions shown by the white arrows (the latter are 
not part of the stimulus). The task of the participants is to report the direction of motion (“up” or 
“down”), without feedback. B. Cartoon of experimental hypothesis. Left: initially participants have 
a prior favoring slow speeds. Middle: the low-speed group was exposed to low speeds (blue), while 
the high-speed group viewed faster speeds (red). Right: training will lead the high-speed group to 
shift their prior expectations towards higher speeds (red) compared to the low-speed group (blue). C. 
Results: Proportion of oblique perceptions (po) in low-contrast condition, for 3 trial durations. Each 
point is the po for the first (empty symbols) or last (filled symbols) test block of the session, for the 
high-speed (red) or the low-speed (blue) group. Lines correspond to linear fits to each block/group 
combination. Error bars denote between-subjects SEM. Initially participants are biased towards 
perceiving motion as being more often perpendicular to the orientation of the lines than it really is 
(consistent with estimating that the test stimulus is slower than it really is). However, this bias 
slowly decreases with training in the experimental group, and reverses after 3 days (consistent with 
estimating that the test stimulus is faster than it really is). D. Fits from Bayesian model of motion 
perception (points) can account for the behavior of the two groups (lines, corresponding to the 
linear fits in C) when the speed prior is allowed to shift with training. Reproduced from 
Sotiropoulos et al, with permission. 


