Edge Detector Introduction

- Edge detection: find pixels at large changes in intensity
- Much historical work on this topic in computer vision (Roberts, Sobel)
- Canny edge detector (1986) first modern edge detector and still commonly used today
- Edge detection never very accurate process: image noise, areas of low contrast, a question of scale. Humans see edges where none exist.

Canny Edge Detection

Robert B. Fisher
School of Informatics
University of Edinburgh

Canny Edge Detections

Finds most edges, even in low contrast
Finds lots of noisy detail too

Comparison Edge Detections

Roberts’ Cross
Canny

Differences in sensitivity and details, esp. in busy areas
Canny Edge Detector

Four stages:
1. Gaussian smoothing: to reduce noise and smooth away small edges
2. Gradient calculation: to locate potential edge areas
3. Non-maximal suppression: to locate “best” edge positions
4. Hysteresis edge tracking: to locate reliable, but weak edges

©2014, School of Informatics, University of Edinburgh

Canny: Gaussian Smoothing

Convolve with a 2D Gaussian

\[
\sigma \text{ of Gaussian controls smoothing explicitly}
\]

\[
\text{convolution mask}(r, c) = \frac{1}{2\pi\sigma} e^{-\frac{r^2+c^2}{2\sigma^2}}
\]

Larger \(\sigma \) gives more smoothing - low pass filter

©2014, School of Informatics, University of Edinburgh

Gaussian Smoothing Examples

\(\sigma = 5 \) \quad \sigma = 20

©2014, School of Informatics, University of Edinburgh
Conservative Smoothing
Gaussian smoothing inappropriate for salt&pepper/spot noise

Noisy image Gauss smooth Conservative
So do this before Canny or Gaussian Smoothing

Canny: Gradient Magnitude Calculation

$G(r, c)$ is smoothed image

Compute local derivatives in the r and c directions as $G_r(r, c), G_c(r, c)$:

Edge gradient: $\nabla G(r, c) = (G_r(r, c), G_c(r, c))$

Gradient magnitude:

$$H(r, c) = \sqrt{G_r(r, c)^2 + G_c(r, c)^2}$$

$\approx |G_r(r, c)| + |G_c(r, c)|$

Gradient direction

$\theta(r, c) = \arctan(G_r(r, c), G_c(r, c))$

$$G_r(r, c) = \frac{\partial G}{\partial r} = \lim_{h \to 0} \frac{G(r + h, c) - G(r, c)}{h}$$

$\approx G(r + 1, c) - G(r, c)$

σ controls amount of smoothing
Smaller σ gives more detail & noise
Larger σ gives less detail & noise
Canny: Non-maximal Suppression

Where exactly is the edge? peak of gradient
Supress lower gradient magnitude values: need
to check ACROSS gradient

\[
\begin{array}{cccccc}
0 & 0 & 3 & 12 & 4 & 0 \\
0 & 0 & 6 & 10 & 2 & 0 \\
0 & 2 & 8 & 7 & 1 & 0 \\
0 & 3 & 11 & 4 & 0 & 0 \\
\end{array}
\]

Estimate gradient magnitudes using gradient
direction:

\[
A = \frac{|G_r|}{|G_c|}
\]

\[
H_\alpha = AH_1 + (1 - A)H_2
\]
\[
H_\beta = AH_4 + (1 - A)H_3
\]

Suppress (set to 0) if \(H < H_\alpha\) OR \(H < H_\beta\)

Canny: Hysteresis Tracking

Start edges at certainty: \(H > \tau_{start}\)
Reduce requirements at connected edges to get weaker edges: \(H > \tau_{continue}\)

Stereo Canny Edges

Matlab has Canny: `edge(left,'canny',[],4);`
What We Have Learned

- Capabilities of edge detectors
- Noise and detail reduction by smoothing
- Canny algorithm details
- Can find too many edges