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Preface

The dream of intelligent automata goes back to antiquity; its first major articulation
in the context of digital computers was by Turing around 1950. Since then, this
dream has been pursued primarily by workers in the field of artificial intelligence,
whose goal is to endow computers with information-processing capabilities
comparable to those of biological organisms. From the outset, one of the goals of
artificial intelligence has been to equip machines with the capability of dealing with
sensory inputs.

Computer vision is the construction of explicit, meaningful descriptions of
physical objects from images. Image understanding is very different from image
processing, which studies image-to-image transformations, not explicit description
building. Descriptions are a prerequisite for recognizing, manipulating, and
thinking about objects.

We perceive a world of coherent three-dimensional objects with many
invariant properties. Objectively, the incoming visual data do not exhibit
corresponding coherence or invariance; they contain much irrelevant or even
misleading variation. Somehow our visual system, from the retinal to cognitive
levels, understands, or imposes order on, chaotic visual input. It does so by using
intrinsic information that may reliably be extracted from the input, and also through
assumptions and knowledge that are applied at various levels in visual processing.

The challenge of computer vision is one of explicitness. Exactly what
information about scenes can be extracted from an image using only very basic
assumptions about physics and optics? Explicitly, what computations must be
performed? Then, at what stage must domain-dependent, prior knowledge about
the world be incorporated into the understanding process? How are world models
and knowledge represented and used? This book is about the representations and
mechanisms that allow image information and prior knowledge to interact in image
understanding.

Computer vision is a relatively new and fast-growing field. The first
experiments were conducted in the late 1950s, and many of the essential concepts

xiii
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have been developed during the last five years. With this rapid growth, crucial ideas
have arisen in disparate areas such as artificial intelligence, psychology, computer
graphics, and image processing. Our intent is to assemble a selection of this material
in a form that will serve both as a senior/graduate-level academic text and as a
useful reference to those building vision systems. This book has a strong artificial
intelligence flavor, and we hope this will provoke thought. We believe that both the
intrinsic image information and the internal model of the world are important in
successful vision systems.

The book is organized into four parts, based on descriptions of objects at four
different levels of abstraction.

1. Generalized images—imagesand image-like entities.

2. Segmented images—images organized into subimages that are likely to
correspond to “‘interesting objects.”

3. Geometricstructures—quantitative models ofimage and world structures.

4. Relational structures—complex symbolic descriptions of image and world
structures.

The parts follow a progression of increasing abstractness. Although the four
parts are most naturally studied in succession, they are not tightly interdependent. Part
[ is a prerequisite for Part II, but Parts III and IV can be read independently.

Parts of the book assume some mathematical and computing background
(calculus, linear algebra, data structures, numerical methods). However, throughout
the book mathematical rigor takes a backseat to concepts. Ourintent is to transmit a set
of ideas about a new field to the widest possible audience.

In one book it is impossible to do justice to the scope and depth of prior work in
computer vision.. Further, we realize that in a fast-developing field, the rapid influx of
new ideas will continue. We hope that our readers will be challenged to think, eriticize,
read further, and quickly go beyond the confines of this volume.

D. H. Ballard
C. M. Brown

Preface
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Computer
Vision 1

Computer Vision Issues

1.1 ACHIEVING SIMPLE VISION GOALS

Suppose that you are given an aerial photo such as that of Fig. 1.1a and asked to lo-
cate ships in it. You may never have seen a naval vessel in an aerial photograph be-
fore, but you will have no trouble predicting generally how ships will appear. You
might reason that you will find no ships inland, and so turn your attention to ocean
areas. You might be momentarily distracted by the glare on the water, but realizing
that it comes from reflected sunlight, you perceive the ocean as continuous and
flat. Ships on the open ocean stand out easily (if you have seen ships from the air,
you know to look for their wakes). Near the shore the image is more confusing, but
you know that ships close to shore are either moored or docked. If you have a map
(Fig. 1.1b), it can help locate the docks (Fig. 1.1¢); in a low-quality photograph it
can help you identify the shoreline. Thus it might be a good investment of your
time to establish the correspondence between the map and the image. A search
parallel to the shore in the dock areas reveals several ships (Fig. 1.1d).

Again, suppose that you are presented with a set of computer-aided tomo-
graphic (CAT) scans showing “‘slices” of the human abdomen (Fig. 1.2a). These
images are products of high technology, and give us views not normally available
even with x-rays. Your job is to reconstruct from these cross sections the three-
dimensional shape of the kidneys. This job may well seem harder than finding
ships. You first need to know what to look for (Fig. 1.2b), where to find it in CAT
scans, and how it looks in such scans. You need to be able to ““stack up’’ the scans
mentally and form an internal model of the shape of the kidney as revealed by its
slices (Fig. 1.2cand 1.2d).

This book is about computer vision. These two example tasks are typical com-
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puter vision tasks; both were solved by computers using the sorts of knowledge
and techniques alluded to in the descriptive paragraphs. Computer vision is the
enterprise of automating and integrating a wide range of processes and representa-
tions used for vision perception. It includes as parts many techniques that are
useful by themselves, such as image processing (transforming, encoding, and
transmitting images) and statistical pattern classification (statistical decision theory
applied to general patterns, visual or otherwise). More importantly for us, it in-
cludes techniques for geometric modeling and cognitive processing.

1.2 HIGH-LEVEL AND LOW-LEVEL CAPABILITIES

The examples of Section 1.1 illustrate vision that uses cognitive processes, geometric
models, goals, and plans. These high-level processes are very important; our exam-
ples only weakly illustrate their power and scope. There surely would be some
overall purpose to finding ships; there might be collateral information that there
were submarines, barges, or small craft in the harbor, and so forth. CAT scans
would be used with several diagnostic goals in mind and an associated medical his-
tory available. Goals and knowledge are high-level capabilities that can guide
visual activities, and a visual system should be able to take advantage of them.

Fig. 1.1 Finding ships in an aerial photograph. (a) The photograph; (b) a corresponding
map; (c) the dock area of the photograph; (d) registered map and image, with ship location.
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(d)

lc)

Fig. 1.1 (cont.)

Even such elaborated tasks are very special ones and in their way easier to
think about than the commonplace visual perceptions needed to pick up a baby,
cross a busy street, or arrive at a party and quickly ‘‘see” who you know, your
host’s taste in decor, and how long the festivities have been going on. All these
tasks require judgment and large amounts of knowledge of objects in the world,
how they look, and how they behave. Such high-level powers are so well in-
tegrated into *‘vision™” as to be effectively inseparable.

Knowledge and goals are only part of the vision story. Vision requires many
low-level capabilities we often take for granted; for example, our ability to extract
intrinsic images of “‘lightness,”” “‘color,”” and ‘‘range.”” We perceive black as black
in a complex scene even when the lighting is such that some black patches are
reflecting more light than some white patches. Similarly, perceived colors are not
related simply to the wavelengths of reflected light; if they were, we would con-
sciously see colors changing with illumination. Stereo fusion (stereopsis) is a low-
level facility basic to short-range three-dimensional perception.

An important low-level capability is object perception: for our purposes it does
not really matter if this talent is innate, (*‘hard-wired’”), or if it is developmental or
even learned (*‘compiled-in’”). The fact remains that mature biological vision sys-
tems are specialized and tuned to deal with the relevant objects in their environ-

Sec. 1.2 High-Level and Low-Level Capabilities 3



(a) (c)

(b) (d)

Fig. 1.2 Finding a kidney in a compuler-aided tomographic scan. (a) One slice of scan data;
(b) prototype kidney model; (¢c) model fitting; (d) resulting kidney and spinal cord instances.

ments. Further specialization can often be learned, but it is built on basic immut-
able assumptions about the world which underlie the vision system.

A basic sort of object recognition capability is the “‘figure/ground’’ discrimi-
nation that separates objects from the ““background.”” Other basic organizational
predispositions are revealed by the ‘‘Gestalt laws’’ of clustering, which demon-
strate rules our vision systems use to form simple arrays of stimuli into more
coherent spatial groups. A dramatic example of specialized object perception for
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human beings is revealed in our *‘face recognition’” capability, which seems to oc-
cupy a large volume of brain matter. Geometric visual illusions are more surprising
symptoms of nonintuitive processing that is performed by our vision systems, ei-
ther for some direct purpose or as a side effect of its specialized architecture. Some
other illusions clearly reflect the intervention of high-level knowledge. For in-
stance, the familiar “‘Necker cube reversal” is grounded in our three-dimensional
models for cubes.

Low-level processing capabilities are elusive; they are unconscious, and they
are not well connected to other systems that allow direct introspection. For in-
stance, our visual memory for images is quite impressive, yet our quantitative ver-
bal descriptions of images are relatively primitive. The biological visual
“hardware’’ has been developed, honed, and specialized over a very long period.
However, its organization and functionality is not well understood except at ex-
treme levels of detail and generality —the behavior of small sets of cat or monkey
cortical cells and the behavior of human beings in psychophysical experiments.

Computer vision is thus immediately faced with a very difficult problem; it
must reinvent, with general digital hardware, the most basic and yet inaccessible
talents of specialized, parallel, and partly analog biological visual systems. Figure
1.3 may give a feeling for the problem:; it shows two visual renditions of a familiar
subject. The inset is a normal image, the rest is a plot of the intensities (gray levels)
in the image against the image coordinates. In other words, it displays information

Fig. 1.3 Two representations of an
image. One is directly accessible to our
low-level processes; the other is not.

Sec. 1.2 High-Level and Low-Level Capabilities 5



with “‘height’” instead of ‘‘light.”” No information is lost, and the display is an
image-like object, but we do not immediately see a face in it. The initial representa-
tion the computer has to work with is no better; it is typically just an array of
numbers from which human beings could extract visual information only very
painfully. Skipping the low-level processing we take for granted turns normally
effortless perception into a very difficult puzzle.

Computer vision is vitally concerned with both low-level or “‘early proc-
essing’’ issues and with the high-level and “‘cognitive’” use of knowledge. Where
does vision leave off and reasoning and motivation begin? We do not know pre-
cisely, but we firmly believe (and hope to show) that powerful, cooperating, rich
representations of the world are needed for any advanced vision system. Without
them, no system can derive relevant and invariant information from input that is
beset with ever-changing lighting and viewpoint, unimportant shape differences,
noise, and other large but irrelevant variations. These representations can remove
some computational load by predicting or assuming structure for the visual world.

Finally, if a system is to be successful in a variety of tasks, it needs some
‘“‘meta-level’’ capabilities: it must be able to model and reason about its own goals
and capabilities, and the success of its approaches. These complex and related
models must be manipulated by cognitive-like techniques, even though introspec-
tively the perceptual process does not always “‘feel’’ to us like cognition.

Computer Vision Systems

1.3 A RANGE OF REPRESENTATIONS

Visual perception is the relation of visual input to previously existing models of the

world. There is a large representational gap between the image and the models

(““ideas,” “‘concepts’’) which explain, describe, or abstract the image information.

To bridge that gap, computer vision systems usually have a (loosely ordered) range
of representations connecting the input and the “‘output’® (a final description, deci-
sion, or interpretation). Computer vision then involves the design of these inter-

mediate representations and the implementation of algorithms to construct them

and relate them to one another.

We broadly categorize the representations into four parts (Fig. 1.4) which
correspond with the organization of this volume. Within each part there may be
several layers of representation, or several cooperating representations. Although
the sets of representations are loosely ordered from “‘early’” and “‘low-level’’ sig-
nals to “‘late’” and “‘cognitive’ symbols, the actual flow of effort and information
between them is not unidirectional. Of course, not all levels need to be used in
each computer vision application; some may be skipped, or the processing may
start partway up the hierarchy or end partway down it.

Generalized images (Part I) are iconic (image-like) and analogical representa-
tions of the input data. Images may initially arise from several technologies.

6 Ch. 1 Computer Vision
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Fig. 1.4 Examples of the four categories of rep-
resentation used in computer vision. (a) Iconic; (b)
segmented; (c) geometric; (d) relational.

(c)

Domain-independent processing can produce other iconic representations more
directly useful to later processing, such as arrays of edge elements (gray-level
discontinuities). Intrinsic images can sometimes be produced at this level —they re-
veal physical properties of the imaged scene (such as surface orientations, range,
or surface reflectance). Often parallel processing can produce generalized images.
More generally, most “‘low-level” processes can be implemented with parallel
computation.

Segmented images (Part II) are formed from the generalized image by gather-
ing its elements into sets likely to be associated with meaningful objects in the
scene. For instance, segmenting a scene of planar polyhedra (blocks) might result
in a set of edge segments corresponding to polyhedral edges, or a set of two-

A Range of Representations 7
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(d)

Fig. 1.4 (cont.)

dimensional regions in the image corresponding to polyhedral faces. In producing
the segmented image, knowledge about the particular domain at issue begins to be
important both to save computation and to overcome problems of noise and inade-
quate data. In the planar polyhedral example, it helps to know beforehand that the
line segments must be straight. Texture and motion are known to be very important
in segmentation, and are currently topics of active research; knowledge in these
areas is developing very fast.

Geometric representations (Part III) are used to capture the all-important idea

Ch. 1 Computer Vision



of two-dimensional and three-dimensional shape. Quantifying shape is as impor-
tant as it is difficult. These geometric representations must be powerful enough to
support complex and general processing, such as ‘‘simulation” of the effects of
lighting and motion. Geometric structures are as useful for encoding previously
acquired knowledge as they are for re-representing current visual input. Computer
vision requires some basic mathematics; Appendix 1 has a brief selection of useful
techniques.

Relational models (Part IV) are complex assemblages of representations used
to support sophisticated high-level processing. An important tool in krowledge
representation is semantic nets, which can be used simply as an organizational con-
venience or as a formalism in their own right. High-level processing often uses
prior knowledge and models acquired prior to a perceptual experience. The basic
mode of processing turns from constructing representations to matching them. At
high levels, propositional representations become more important. They are made
up of assertions that are true or false with respect to a model, and are manipulated
by rules of inference. Inference-like techniques can also be used for planning,
which models situations and actions through time, and thus must reason about
temporally varying and hypothetical worlds. The higher the level of representa-
tion, the more marked is the flow of control (direction of attention, allocation of
effort) downward to lower levels, and the greater the tendency of algorithms to ex-
hibit serial processing. These issues of control are basic to complex information
processing in general and computer vision in particular; Appendix 2 outlines some
specific control mechanisms.

Figure 1.5 illustrates the loose classification of the four categories into ana-
logical and propositional representations. We consider generalized and segmented
images as well as gecometric structures to be analogical models. Analogical models
capture directly the relevant characteristics of the represented objects, and are
manipulated and interrogated by simulation-like processes. Relational models are
generally a mix of analogical and propositional representations. We develop this
distinction in more detail in Chapter 10.

1.4 THE ROLE OF COMPUTERS

The computer is a congenial tool for research into visual perception.

« Computers are versatile and forgiving experimental subjects. They are easily
and ethically reconfigurable, not messy, and their workings can be scrutinized
in the finest detail.

o Computers are demanding critics. Imprecision, vagueness, and oversights are
not tolerated in the computer implementation of a theory.

» Computers offer new metaphors for perceptual psychology (also neurology,
linguistics, and philosophy). Processes and entities from computer science pro-
vide powerful and influential conceptual tools for thinking about perception
and cognition.

« Computers can give precise measurements of the amount of processing they

Sec. 1.4 The Role of Computers 9
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Fig. 1.5 The knowledge base of a complex computer vision system, showing four basic
representational categories.
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Table 1.1

EXAMPLES OF iMAGE ANALYSIS TASKS

Domain Objects Modality Tasks Knowledge Sources
Robotics Three-dimensional Light Identify or describe Models of objects
outdoor scenes K-Tays objects in scene Models of the reflection of
indoor scenes . Industrial tasks light from objects
Mechanical parts Light
Structured light
Aerial images Terrain Light Improved images Maps
- Buildings, etc. Infrared Resource analyses Geometrical models of shapes
Radar Weather prediction Models of image formation
Spying
Missile guidance
Tactical analysis
Astronomy Stars Light Chemical composition Geometrical models of shapes
Planets Improved images
Medical Body organs X-rays Diagnosis of abnor- Anatomical models
Macro Ultrasound malities Models of image formation
Isotopes Operative and treatment
Heat planning
Cells Electronmicroscopy Pathology, cytology
Micro Protein chains Light ’ Karyotyping Models of shape
Chromosomes
Chemistry Molecules Electron densities Analysis of molecular Chemical models
compositions Structured models
Neuroanatomy Neurons Light Determination of Neural connectivity
Electronmicroscopy spatial orientation
Physics Particle tracks Light Find new particles Atomic physics

Identify tracks




do. A computer implementation places an upper limit on the amount of compu-
tation necessary for a task.

o Computers may be used either to mimic what we understand about human per-
ceptual architecture and processes, or to strike out in different directions to try
to achieve similar ends by different means.

« Computer models may be judged either by their efficacy for applications and
on-the-job performance or by their internal organization, processes, and
structures—the theory they embody.

1.5 COMPUTER VISION RESEARCH AND APPLICATIONS

12

““‘Pure’’ computer vision research often deals with relatively domain-independent
considerations. The results are useful in a broad range of contexts. Almost always
such work is demonstrated in one or more applications areas, and more often than
not an initial application problem motivates consideration of the general problem.
Applications of computer vision are exciting, and their number is growing as com-
puter vision becomes better understood. Table 1.1 gives a partial list of “‘classical’
and current applications areas.

Within the organization outlined above, this book presents many specific
ideas and techniques with general applicability. It is meant to provide enough basic
knowledge and tools to support attacks on both applications and research topics.

Ch. 1 Computer Vision
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The first step in the vision process is image formation. Images may arise from a
variety of technologies. For example, most television-based systems convert
reflected light intensity into an electronic signal which is then digitized; other sys-
tems use more exotic radiations, such as x-rays, laser light, ultrasound, and heat.
The net result is usually an array of samples of some kind of energy.

The vision system may be entirely passive, taking as input a digitized image
from a microwave or infrared sensor, satellite scanner, or a planetary probe, but
more likely involves some Kind of active imaging. Automated active imaging sys-
tems may control the direction and resolution of sensors, or regulate and direct
their own light sources. The light source itself may have special properties and
structure designed to reveal the nature of the three-dimensional world; an example
is to use a plane of light that falls on the scene in a stripe whose structure is closely
related to the structure of opaque objects. Range data for the scene may be pro-
vided by stereo (two images), but also by triangulation using light-stripe tech-
niques or by ‘‘spotranging’’ using laser light. A single hardware device may deliver
range and multispectral reflectivity (‘‘color”) information. The image-forming
device may also perform various other operations. For example, it may automati-
cally smooth or enhance the image or vary its resolution.

The generalized image is a set of related image-like entities for the scene. This
set may include related images from several modalities, but may also include the
results of significant processing that can extract intrinsic images. An intrinsic image
is an ‘‘image,”’ or array, of representations of an important physical quantity such
as surface orientation, occluding contours, velocity, or range. Object color, which
is a different entity from sensed red—green—blue wavelengths, is an intrinsic
quality. These intrinsic physical qualities are extremely useful; they can be related
to physical objects far more easily than the original input values, which reveal the
physical parameters only indirectly. An intrinsic image is a major step toward scene
understanding and usually represents significant and interesting computations.

Part I Generalized Images



Part |

The information necessary to compute an intrinsic image is contained in the
input image itself, and is extracted by ‘‘inverting’’ the transformation wrought by
the imaging process, the reflection of radiation from the scene, and other physical
processes. An example is the fusion of two stereo images to yield an intrinsic range
image. Many algorithms to recover intrinsic images can be realized with paralle!
implementations, mirroring computations that may take place in the lower neuro-
logical levels of biological image processing.

All of the computations listed above benefit from the idea of resolution pyra-
mids. A pyramid is a generalized image data structure consisting of the same image
at several successively increasing levels of resolution. As the resolution increases,
more samples are required to represent the increased information and hence the
successive levels are larger, making the entire structure look like a pyramid.
Pyramids allow the introduction of many different coarse-to-fine image-resolution
algorithms which are vastly more efficient than their single-level, high-resolution-
only counterparts.

Ceneralized Images 15



Image
Formation 2

2.1 IMAGES

Image formation occurs when a sensor registers radiation that has interacted with

physical objects. Section 2.2 deals with mathematical models of images and image

formation. Section 2.3 describes several specific image formation technologies.
The mathematical model of imaging has several different components.

An image function is the fundamental abstraction of an image.
2. A geometrical model describes how three dimensions are projected into two.

3. A radiometrical model shows how the imaging geometry, light sources, and
reflectance properties of objects affect the light measurement at the sensor.

4. A spatial frequency model describes how spatial variations of the image may
be characterized in a transform domain.

5. A color model describes how different spectral measurements are related to im-
age colors.

6. A digitizing model describes the process of obtaining discrete samples.

This material forms the basis of much image-processing work and is
developed in much more detail elsewhere, e.g., [Rosenfeld and Kak 1976; Pratt
1978]. Our goals are not those of image processing, so we limit our discussion to a
summary of the essentials.

The wide range of possible sources of samples and the resulting different
implications for later processing motivate our overview of specific imaging tech-
niques. Our goal is not to provide an exhaustive catalog, but rather to give an idea
of the range of techniques available. Very different analysis techniques may be
needed depending on how the image was formed. Two examples illustrate this
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point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGEMODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘“‘opaque’’ and “‘transparent.”’

Most images are presented by functions of two spatial variables
f(x) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f ... f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

LX) = 1frea (%), foiue (%), Fgreen (X)

Time-varying images f(x,f) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded.-

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by

Ch. 2 Image Formation



Sec. 2.2

Owhenx =0
oo when x =0

8(x) = 2.1)

_Tﬁ(x)dx =1

If some care is exercised, the delta function may be interpreted as the limit of a set
of functions:

8(x) = lim §,(x)

where

3 1
n if |x ‘<2—n

8,00 =10 otherwise (2.2)
A useful property of the delta function is the sifting property:
ff(x)ﬁ(x—a)dx=f(a) (2.3)

A continuous image may be multipled by a two-dimensional ‘‘comb,’” or array of
delta functions, to extract a finite number of discrete samples (one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Point projection is the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devices. To a first-order ap-
proximation, these devices act like a pinhole camera in that the image results from
projecting scene points through a single point onto an image plane (see Fig. 2.1). In
Fig. 2.1, the image plane is behind the point of projection, and the image is re-
versed. However, it is more intuitive to recompose the geometry so that the point
of projection corresponds to a viewpoint behind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoint
is +fon the zaxis, with z = 0 plane being the i image plane upon which the i image is
projected. (f'is sometimes called The Jocal length in this context.
this section should not be co the use o im i As the
imaged object approaches the viewpoint, its projection gets bigger (tryv moving
your hand toward your eye). To specify how its imaged size changes, one needs
only the geometry of similar triangles. In Fig. 2.2b y the projected height of the
object, is related to its real height y, its position z, and the focal length f by

’

e 2.4)
f—z f
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Fig. 2.1 A geometric camera model.

The case for x' is treated similarly:

X X (2.5)
J=z - F
The projected image has z = 0 everywhere. However, projecting away the z com-
ponent is best considered a separate transformation; the projective transform is
usually thought to distort the zcomponent just as it does the x and y. Perspective dis-
tortion thus maps (x, y, z) to

L S (2.6)
f—z' f—-2 f-z '

The perspective transformation yields orthographic projection as a special case
when the viewpoint is the point at infinity in the z direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their xand y coordinates.

The perspective distortion yields a three-dimensional object that has been
“‘pushed out of shape’’; it is more shrunken the farther it is from the viewpoint.
The z component is not available directly from a two-dimensional image, being
identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is a

x,y,2) =

_perspective picture. Thus, to achieve the effect of railroad tracks appearing to come

together in the distance, the-perspective distortion transforms the tracks so that
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigated
further in Appendix 1.

Binocular Imaging

Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we

Ch. 2 Image Formation
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Fig. 2.2 (a) Camera model equivalent to that of Fig. 2.1; (b) definition of terms.

use a system with two viewpoints. In this model the eyes do not converge, they are
aimed in parallel at the point at infinity in the —z direction. The depth information
about a point is then encoded only by its different positions (disparity) in the two
image planes.

With the stereo arrangement of Fig. 2.3,

- ek 4
X wf—z
o x+dlf
x"= Fouy

where (x, y") and (x", y") are the retinal coordinates for the world point imaged
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Image Fig. 2.3 A nonconvergent binocular
plane imaging system.

through each eye. The baseline of the binocular system is 2d. Thus
(= 2)x" = (x—d)f (2.7
F-2)x"=&+adf (2.8)
Subtracting (2.7) from (2.8) gives
(f = 2)x" = x) = 2df

or

3 5 e xz“'f (2.9)

Z—
Thus if points can be matched to determine the disparity (x” — x’) and the base-
line and focal length are known, the z coordinate is simple to calculate.

If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is the matching of points for disparity calculations.
“Light striping’’ is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.3).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their ‘‘brightness’ in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux ® is measured in watts; “‘brightness’’ is measured with
respect to area and solid angle. The radiant intensity I of a source is the exitant flux
per unit solid angle:

I= %% watts/steradian (2.10)
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Here dw is an incremental solid angle. The solid angle of a small area d4 measured
perpendicular to a radius ris given by

dw = — (2.11)

in units of steradians. (The total solid angle of a sphere is 4 .)
The irradiance is flux incident on a surface element dA:
dd
dA
and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:

L = #ﬂdgcb—
dA cosfdw

watts/meter? (2.12)

watts/ (meter? steradian) (2.13)

where 6 is the angle between the surface normal and the direction of emission.

Image irradiance fis the “‘brightness’’ of the image at a point, and is propor-
tional to scene radiance. A ‘‘gray-level’’ is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur-
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be matte
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

Effects of Geomelry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 19781, assume that the imaging device is prop-
erly focused; rays originating in the infinitesimal area d4, on the object’s surface
are projected into some area d4, in the image plane and no rays from other por-
tions of the object’s surface reach this area of the image. The system is assumed to
be an ideal one, obeying the laws of simple geometrical optics.

. The energy flux/unit area that impinges on the sensor is defined to be E,. To
show how E, is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area d4, . From (2.13) this is given as

d® = dd, [ Leostde (2.14)

This flux is assumed to arrive at an area d4,, in the imaging plane. Hence the irradi-
ance is given by [using Eq. (2.12)]
dd
E —_—
P dA,
Now relate d4, to d4, by equating the respective solid angles as seen from the
lens; that is [making use of Eq. (2.12)],

(2.15)
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cos# COS &
= dA (2.16)
o - o

Substituting Eqgs. (2.16) and (2.14) into (2.15) gives

dA

P 2
E = cosal—o—] dew 2.17)
Jo

The integral is over the solid angle seen by the lens. In most instances we can as-
sume that L is constant over this angle and hence can be removed from the in-

. tegral. Finally, approximate dw by the area of the lens foreshortened by cos «, that

is, (w/4) D? cosa divided by the distance f,/cos « squared:

3
_ T 2005«
dow = TD T (2.18)
so that finally
2
1|D 4
E=—|-—=| cos*anL (2.19)

The interesting results here are that (1) the image irradiance is proportional to the
scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle «. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function of « is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of spatial frequency. For no-
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tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by (u, v). The one-
dimensional Fourier transform, denoted 7 , is defined by

5G] = Fu)

where
+o0
Fu) = ff(x)exp (—j2mux)dx (2.20)

where j = +/(—1). Intuitively, Fourier analysis expresses a function as a sum of
sine waves of different frequency and phase. The Fourier transform has an inverse
“1[F(u)] = f(x). This inverse is given by

flx) = fF(u) exp (j2mux) du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1. Common one-dimensional Fourier transform pairs are shown in Table 2.2.

The transform F(u) is simply another representation of the image function.
Its meaning can be understood by interpreting Eq. (2.21) for a specific value of x,
say xq

Flxq) = [ Fudexp (j2muxe) du (2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies u. F(u) is thus a weighting function for the different frequencies. Low-
spatial frequencies accourt for the ‘‘slowly” varying gray levels int an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with “‘quickly varying”’ information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the ‘‘fast
Fourier transform,’’ is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 1977] discuss the FFT in some detail; we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem

Convolution is a very important image-processing operation, and is a basic
operation of linear systems theory. The convolution of two functions fand gis a
function /4 of a displacement y defined as

h) = frg= [ fx)g(y — x)ax (2.23)
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Table 2.1
PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain

Frequency Domain

Fx)
gx)

Fu) =F1f(x)]
G (u) =5 [g(x)]

(1)  Linearity
e f(x) + cag(x)
¢y,C7 scalars

(2)  Scaling
fax)

(3)  Shifting
Slx = xo)

(4)  Symmetry
F(x)

(5) Conjugation
J*(x)

(6) Convolution

hix) = frg = ff(x'}g(x — x7) dx'

(7)  Differentiation

d"f (x)

ax”

ciF(u) + ¢2,G(w)

1 Hu
la] | a
e TR ()
S=u)

F*(—u)

Flu)G (u)

Qmrju)" Fu)

Parseval’s theorem:

oo

ilf(x)lzdx - [IF@rae

—o0

S&)

—co

Jregr e ax = [F@)6*@ ae

F(€)

Real(R)

Real part even (RE)
Imaginary part odd (10)

Imaginary ()
RE,IO
RE,IE

RE

RO

1IE

10
Complex even (CE)

CO

RO,IE

R

I
RE
10
IE
RO
CE
Co
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Table 2.2

FOURIER TRANSFORM PAIRS

fix)

F{&)

Rectangle function

Triangle function
1

Exponential

o —alxl

1
Gaussian

Unit impulse  8{x)

Unit step

Sec. 2.2 Image Model

Sinc function
1

Sine (¢) = SN 7€

Sinc? (§)

2a

1
1
2 iR 20/t
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Table2.2 (cont.)

Comb function -
2 % L =z - £
I 8ix—nx,) 0 p=-o 0
n=—oo I T
B x| X 2 2 o | 1 2
X0 Xo Xo X
€08 2Ty X

U6 (g —wp) + 6 {8+ wy) )

l\/ [ [ ]

sin 2wy x %”"5 (E—wgl +8 (£ + wy) ]

N
AT

Intuitively, one function is ‘‘swept past” (in one dimension) or “‘rubbed over™ (in
two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a “‘point-spread function,”
which is the image of a single point. (In linear systems theory, this is the ‘‘impulse
response,” or response to a delta-function input.) The ideal point-spread function
is, of course, a point. A typical point-spread function is a two-dimensional Gaus-
sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, f(x, y). (b) A rotated version of (a), filtered to enhance high spatial
frequencies. (c) Similar to (b), but filtered to enhance low spatial frequencies. (d), (e), and (f) show the loga-
rithm of the power spectrum of (a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F(u, v). Considered in polar coordinates (p, 8), points of small p correspond to low spatial frequencies
(“*slowly-varying™ intensities), large p to high spatial frequencies contributed by ‘‘fast’” variations such as step
edges. The power at (p, ) is determined by the amount of intensity variation at the frequency p occurring at the
angle 6.
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ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus

blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (called
correlation) to perform matching operations (Chapter 3) which detect instances of

subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply—integrate operation which is hard to do efficiently.
However, multiplication and convolution are ‘‘transform pairs,’’ so that the calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-

cation, and then transforming back.
The convolution of fand g in the spatial domain is equivalent to the point-

wise product of Fand G in the frequency domain,
S(f+g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shift theorem. If the Fourier transform of f (x) is F (#), defined as

F(u) = ff(x) exp [ — j2a (ux)]dx (2.25)

then
Flfx—a)l= ff(x*a) exp [ — j2m (ux)ldx (2.26)

changing variables so that x' = x — aand dx = dx’
= ff(x') exp { — j2m{u (" + a)lidx’ 2.27)
%

Now expl — j2mwu(x' + a)l = exp ( — j2mua) exp ( — j2mux’), where the first
term is a constant. This means that

Ff(x — a)l = exp(— j2mua) F(u) (shift theorem)
Now we are ready to show that F[f (x)*g (x)] = F(u) G (u).

5 (f+g) = f{f f(x)gly — x)) exp (— j2muy) dx dy (2.28)
Y X
= [ e = x) exp (— j2muy) dy}dx (2.29)
X ¥

Recognizing that the terms in braces represent §[g(y — x)] and applying the shift
theorem, we obtain

5(frg) = [ FGexp (= j2mux)G (u) dx (2.30)

= F(u)G(u) (2.31)

Ch. 2 Image Formation



2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral images
are becoming increasingly common (Section 2.3.2). Further, human beings intui-
tively feel that color is an important part of their visual experience, and is useful or
even necessary for powerful visual processing in the real world. Color vision pro-
vides a host of research issues, both for psychology and computer vision. We
briefly discuss two aspects of color vision: color spaces and color perception.
Several models of the human visual system not only include color but have proven
useful in applications [Granrath 1981].

Color Spaces

Color spaces are a way of organizing the colors perceived by human beings. It
happens that weighted combinations of stimuli at three principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form a na-
tural basis or coordinate system from which the color measurement process can be
described. Color perception is not related in a simple way to color measurement,
however.

Color is a perceptual phenomenon related to human response to different
wavelengths in the visible electromagnetic spectrum [400 (blue) to 700 nanometers
(red); a nanometer (nm) is 10~ meter]. The sensation of color arises from the
sensitivities of three types of neurochemical sensors in the retina to the visible
spectrum. The relative response of these sensors is shown in Fig. 2.6. Note that
each sensor responds to a range of wavelengths. The illumination source has its
own spectral composition f (A} which is modified by the reflecting surface. Let
r(\) be this reflectance function. Then the measurement R produced by the “‘red”
sensor is given by

R=[r0r0n ) ax (2.32)

So the sensor output is actually the integral of three different wavelength-

dependent components: the source f, the surface reflectance r, and the sensor 4.
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the different f(\) 4 (A), thatis, §(Ag), 8(A), and 8 (A 3), are necessary to

Relative sensitivity

Sec. 2.2

L
400 500 600 700

Fig. 2.6 Spectral response of human
Wavelenigth, nm color sensors.
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produce the sensation of nearly all the colors. This result is displayed on a chromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor meas-

urements:
- R
R+CGF+B
8~ RTCcrEB (2.33)
P -
R+G+ B

and then plotting perceived color as a function of any two (usually red and green).
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choice of (A g, A5, Ag) = (410, 530,
650) nm maximizes the realizable colors, but some colors still cannot be realized
since they would require negative values for some of r, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color can
be visualized as a point in the unit cube. Other coordinate systems are useful for
different applications; computer graphics has proved a strong stimulus for investi-
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation of
three input intensity measurements into another basis. The coordinates of the new

(a) (b)

Fig. 2.7 (a) An artist’s conception of the chromaticity diagram—see color inserr: (b) a
more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.
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basis are more directly related to human color judgments.

Although the RGRB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the perception of colors. Hu-
man vision systems can make good judgments about the relative surface reflec-
tance r (A) despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in “‘black and white,”” effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need to
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categorize
such bases into two groups.

1. Intensity/Saturation/Hue (IHS). In this basis, we compute intensity as

intensity: = R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as “‘fire
engine” red and ‘‘grass’’ green are saturated; pastels (e.g., pinks and pale blues)
are desaturated. Saturation can be computed from RGB coordinates by the formula
[Tenenbaum and Weyl 19751

_ 3min (R G B)

intensity
Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGB by the following program fragment:

| AR — G) + (R — B}
VIR ~ G + (R — BI{G — B)"

If B > Gthenhue: = 2pi — hue

The IHS basis transforms the RGB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regard
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chroma. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978].

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essential
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

2. Opponent processes. The opponent process basis uses Cartesian rather than

(2.35)

saturation: = 1

(2.36)

hue: = cos™
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{a) (b)

Fig. 2.8 AnIHS Color Space. (a) Cross section at one intensity; (b) cross section at one hue— see color inserts.

34

cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed “R — G 7,
“Bl— Y ,and “W — Bk ”:

B~ G 1 =2 1R
pi—y|=l-1 =1 2||¢
W — Bk 1 1 1| 1B

The advocates of this representation, such as [Hurvich and Jameson 1957], theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent (“‘name”’) colors. For example, in this basis it makes sense to talk about
a “‘reddish blue”’ but not a “‘reddish green.”” Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or ‘W — Bk’ com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a ““‘YIQ” basis extracted
from RGRB via
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0.60 —0.28 -0.32

I R
ol =021 —052 031 |G
I lo30 o059 o011 !B

This basis is a weighted form of
(I 0 Y)= (“R—cyan, ” “magenta—green, ” “W—Bk")

2.2.6 Digital Images

The digital images with which computer vision deals are represented by m-vector
discrete-valued image functions f(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of f(x) are discrete. The
domain of f is finite, usually a rectangle, and the range of f is positive and
bounded: 0 < f(x) < M for some integer M. For all practical purposes, the image
is a continuous function which is represented by measurements or samples at regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
quantized into a number of different gray levels. For a discrete image, f(x) is an in-
teger gray level, and x = (x, y) is a pair of infeger coordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) the sampling interval, which determines in a basic way whether all the
information in the image is represented, and (2) the tesselation or spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselations of the plane. Fi-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictated
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage re-
quired for an image in 8-bit bytes as a function of m, the number of bits per sam-
ple, and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use im-
ages of considerably less spatial resolution than that required to preserve fidelity to
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatial
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
““contouring’” introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in
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Fig. 2.9 Using different numbers of samples. (a) N = 16; (b) N =32, () N =
64; (d) N =128; (e) N = 256; () N = 512.
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Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

N 32 64 128 256 512
m

1 128 512 2,048 8,192 32,768
2 256 1,024 4,096 16,384 65,536
3 512 2,048 8,192 32,768 131,072
4 512 2,048 8,192 32,768 131,072
5 1,024 4,096 16,384 65,536 262,144
6 1,024 4,096 16,384 65,536 262,144
7 1,024 4,096 16,384 65,536 262,144
8 1,024 4,096 16,384 65,536 262,144

computer vision to have to balance the desire for increased resolution (both gray
scale and spatial) against its cost. Better data can often make algorithms easier to
write, but a small amount of data can make processing more efficient. Of course,
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of resolutions.

Tesselations and Distance Metrics

Although the spatial samples for f (x) can be represented as points, it is more
satisfying to the intuition and a closer approximation to the acquisition process to
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termed pixels, an acronym for picture elements. The pattern
into which the plane is divided is called its tesselation. The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in computer
vision, they have a structural problem known as the ‘‘connectivity paradox.”’
Given a pixel in a rectangular tesselation, how should we define the pixels to which
it is connected? Two common ways are four-connectivity and eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12¢, con-
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole is
separated from the ‘‘outside’ background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected to
the outside. This paradox poses complications for many geometric algorithms. Tri-
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); however, distance can be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that is
fundamental to many algorithms. In general, a distance dis a metric. That is,
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Fig. 2.10 Using different numbers of bits per sample. (a) m = 1; (b) m = 2; (c)
m=4,(d) m=8.

(1) dx, y) =0iffx=1y
(2) dx, y) =d(y, x)
(3) dx, y) +d(y, z2) = d(x, z)

For square arrays with unit spacing between pixels, we can use any of the following
common distance metrics (Fig. 2.13) for two pixels x = (x;,p;) and y = (x3,p4).

Euclidean:

d.(x, y) =/ Gei=x)? + (1 = y2)? (2.37)
City block:

dep (X, ¥) = [x1—=x2| + |y1—p2 (2.38)
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>—< Fig. 2.11 Different tesselations of the
image plane. (a) Rectangular; (b)

(e) triangular; (c) hexagonal.
Chessboard:
dey (X, ¥) = maX{Im—Xleyl—sz] (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions. The tesselation of higher-dimensional space into pixels usually is confined to
(n-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional ‘‘image’’ shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat-
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel-
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous
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(a) (b) (c)

Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (c) a
figure with ambiguous connectivity.

232 3 3333333
32223 323 3222223
2211122 32123 3211123
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Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Hunt

1977]. :
Suppose that the image is sampled with a “‘comb”” function of spacing x, (see

Table 2.2). Then the sampled image can be modeled by
fi(x) = F(x) 28 (x — nxp) (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

L) =Y flnxg) 8(x — nxp) (2.41)
n
The right-hand side of Eq. (2.40) is the product of two functions, so that property
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(6) in Table 2.1 is appropriate. The Fourier transform of £, (x) is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

Fl) = Fl)s—F 8 — L) (2.42)
Xp " X0
But from Eq. (2.3),
Fu)«s(u—-1) = Flu—-"1) (2.43)
X0 X0
so0 that
. - _
F.(u) = xo)n:m xO) (2.44)

Therefore, sampling the image function f (x) at intervals of x, is equivalent

in the frequency domain to replicating the transform of f at intervals of L This
X0
limits the recovery of f(x) from its sampled representation, £, (x). There are two
basic situations to consider. If the transform of f (x) is bandlimited such that F(u)
= 0 for| u|> 1/(2xg), then there is no overlap between successive replications of
F(u) in the frequency domain. This is shown for the case of Fig. 2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects of
sampling. Incidentally, note that for this transform F(u) = F(—u) and that it has
no imaginary part; from Table 2.2, the one-dimensional image must also be real
and even. Now if F(u) is not bandlimited, i.e., there are u > —2—)16— for which F(u)
0

# 0, then components of different replications of F (u) will interact to produce the
composite function F,(u), as shown in Fig. 2.15b. In the first case f(x) can be
recovered from F, (1) by multiplying F, (u) by a suitable G (u):

1
gay={ . <5
0  otherwise (2.45)
Then
f(x) =5 "1F )G )] (2.46)

However, in the second case, F,(u) G (u) is very different from the original F ().
This is shown in Fig. 2.15¢c. Sampling a F () that is not bandlimited allows infor-
mation at high spatial frequencies to interfere with that at low frequencies, a
phenomenon known as aliasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequency,
the underlying continuous image is unambiguously represented by its samples.
However, lest one be tempted to insist on images that have been so sampled, note
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling is usually preceded by some form of blurring of
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Fig. 2.15 (a) F(u) bandlimited so that F(u) = 0 for || > 1/2xq. (b) F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in-
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only “‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an analog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive
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Fig. 2.16 Imaging devices (boxes), information structures (rectangles), and processes (circles).

taxonomy is probably unwise. Figure 2.16 is a flowchart of devices, information
structures, and processes addressed in this and succeeding sections.

When the image already exists in some form, or physical considerations limit
choice of imaging technology, the choice of digitizing technology may still be open.
Most images are carried on a permanent medium, such as film, or at least are avail-
able in (essentially) analog form to a digitizing device. Generally, the relevant
technical characteristics of imaging or digitizing devices should be foremost in
mind when a technique is being selected. Such considerations as the signal-to-
noise ratio of the device, its resolution, the speed at which it works, and its ex-
pense are important issues.
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2.3.1 Photographic Imaging

The camera is the most familiar producer of optical images on a permanent
medium. We shall not address here the multitudes of still- and movie-camera op-
tions; rather, we briefly treat the characteristics of the photographic film and of the
digitizing devices that convert the image to machine-readable form. More on these
topics is well presented in the References.

Photographic (black-and-white) film consists of an emulsion of silver halide
crystals on a film base. (Several other layers are identifiable, but are not essential to
an understanding of the relevant properties of film.) Upon exposure to light, the
silver halide crystals form development centers, which are small grains of metallic
silver. The photographic development process extends the formation of metallic
silver to the entire silver halide crystal, which thus becomes a binary (*‘light>” or
“no light’’) detector. Subsequent processing removes undeveloped silver halide.
The resulting film negative is dark where many crystals were developed and light
where few were. The resolution of the film is determined by the grain size, which
depends on the original halide crystals and on development techniques. Gen-
erally, the faster the film (the less light needed to expose it), the coarser the grain.
Film exists that is sensitive to infrared radiation; x-ray film typically has two emul-
sion layers, giving it more gray-level range than that of normal film.

A repetition of the negative-forming process is used to obtain a photographic
print. The negative is projected onto photographic paper, which responds roughly
in the same way as the negative. Most photographic print paper cannot capture in
one print the range of densities that can be present in a negative. Positive films do
exist that do not require printing; the most common example is color slide film.

The response of film to light is not completely linear. The photographic den-
sity obtained by a negative is defined as the logarithm (base 10) of the ratio of in-
cident light to transmitted light.

k3
2

The exposure of a negative dictates (approximately) its response. Exposure is
defined as the energy per unit area that exposed the film (in its sensitive spectral
range). Thus exposure is the product of the intensity and the time of exposure. This
mathematical model of the behavior of the photographic exposure process is
correct for a wide operating range of the film, but reciprocity failure effects in the
film keep one from being able always to trade light level for exposure time. At very
low light levels, longer exposure times are needed than are predicted by the prod-
uct rule.

The response of film to light is usually plotted in an “H&D curve’ (named
for Hurter and Driffield), which plots density versus exposure. The H&D curve of
film displays many of its important characteristics. Figure 2.17 exhibits a typical
H&D curve for a black and white film.

The roe of the curve is the lower region of low slope. It expresses reciprocity
failure and the fact that the film has a certain bias, or fog response, which dom-
inates its behavior at the lowest exposure levels. As one would expect, there is an
upper limit to the density of the film, attained when a maximum number of silver

D= loglo
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halide crystals are rendered developable. Increasing exposure beyond this max-
imum level has little effect, accounting for the shoulder in the H&D curve, or its
flattened upper end.

In between the toe and shoulder, there is typically a linear operating region of
the curve. High-contrast films are those with high slope (traditionally called
gamma); they respond dramatically to small changes in exposure. A high-contrast
film may have a gamma between about 1.5 and 10. Films with gammas of approxi-
mately 10 are used in graphics arts to copy line drawings. General-purpose films
have gammas of about 0.5 to 1.0.

The resolution of a general film is about 40 lines/mm, which means that a
1400 x 1400 image may be digitized from a 35mm slide. At any greater sampling
frequency, the individual film grains will occupy more than a pixel, and the resolu-
tion will thus be grain-limited.

Image Digitizers (Scanners)

Accuracy and speed are the main considerations in converting an image on
film into digital form. Accuracy has two aspects: spatial resolution, loosely the level
of image spatial detail to which the digitizer can respond, and gray-level resolution,
defined generally as the range of densities or reflectances to which the digitizer
responds and how finely it divides the range. Speed is also important because usu-
ally many data are involved; images of 1 million samples are commonplace.

Digitizers broadly take two forms: mechanical and *‘flying spot.”” In a
mechanical digitizer, the film and a sensing assembly are mechanically transported
past one another while readings are made. In a flying-spot digitizer, the film and
sensor are static. What moves is the ““flying spot,”” which is a point of light on the
face of a cathode-ray tube, or a laser beam directed by mirrors. In all digitizers a
very narrow beam of light is directed through the film or onto the print at a known
coordinate point. The light transmittance or reflectance is measured, transformed
from analog to digital form, and made available to the computer through interfac-
ing electronics. The location on the medium where density is being measured may
also be transmitted with each reading, but it is usually determined by relative offset
from positions transmitted less frequently. For example, a ““new scan line’’ im-
pulse is transmitted for TV output; the position along the current scan line yields
an x position, and the number of scan lines yields a y position.

Imaging Devices for Computer Vision 45



46

The mechanical scanners are mostly of two types, flat-bed and drum. In a flat-
bed digitizer, the film is laid flat on a surface over which the light source and the
sensor (usually a very accurate photoelectric cell) are transported in a raster
fashion. In a drum digitizer, the film is fastened to a circular drum which revolves
as the sensor and light source are transported down the drum parallel to its axis of
rotation.

Color mechanical digitizers also exist; they work by using colored filters,
effectively extracting in three scans three “‘color overlays’ which when superim-
posed would yield the original color image. Extracting some ‘‘composite’” color
signal with one reading presents technical problems and would be difficult to do as
accurately,

Satellite Imagery

LANDSAT and ERTS (Earth Resources Technology Satellites) have similar
scanners which produce images of 2340 x 3380 7-bit pixels in four spectral bands,
covering an area of 100 x 100 nautical miles. The scanner is mechanical, scanning
six horizontal scan lines at a time; the rotation of the earth accounts for the
advancement of the scan in the vertical direction.

A set of four images is shown in Fig. 2.18. The four spectral bands are num-
bered 4, 5, 6, and 7. Band 4 [0.5 to 0.6 um (green)] accentuates sediment-laden
water and shallow water, band 5 [0.6 to 0.7 um (red)] emphasizes cultural features
such as roads and cities, band 6 [0.7 to 0.8 um (near infrared)] emphasizes vegeta-
tion and accentuates the contrast between land and water, band 7 [0.8 to 1.1 um
(near infrared)] is like band 6 except that it is better at penetrating atmospheric
haze.

The LANDSAT images are available at nominal cost from the U.S. govern-
ment (The EROS Data Center, Sioux Falls, South Dakota 57198). They are fur-
nished on tape, and cover the entire surface of the earth (often the buyer has a
choice of the amount of cloud cover). These images form a huge data base of mul-
tispectral imagery, useful for land-use and geological studies; they furnish some-
thing of an image analysis challenge, since one satellite can produce some 6 billion
bits of image data per day.

Television Imaging

Television cameras are appealing devices for computer vision applications for
several reasons. For one thing, the image is immediate; the camera can show
events as they happen. For another, the image is already in electrical, if not digital
form. “Television camera’ is basically a nontechnical term, because many
different technologies produce video signals conforming to the standards set by the
FCC and NTSC. Cameras exist with a wide variety of technical specifications.

Usually, TV cameras have associated electronics which scan an entire ‘‘pic-
ture’’ at a time. This operation is closely related to broadcast and receiver stand-
ards, and is more oriented to human viewing than to computer vision. An entire
image (of some 525 scan lines in the United States) is called a frame, and consists
of two fields, each made up of alternate scan lines from the frame. These fields are
generated and transmitted sequentially by the camera electronics. The transmitted
image is thus interlaced, with all odd-numbered scan lines being ‘painted’’ on the
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Fig. 2.18 The straits of Juan de Fuca as seen by the LANDSAT multispectral scanner, (a)
Band 4; (b) band 5; (c) band 6; (d) band 7.

screen alternating with all even-numbered scan lines. In the United States, each
field takes Yso sec to scan, so a whole frame is scanned every /3 sec. The interlacing
is largely to prevent flickering of the image, which would become noticeable if the
frame were painted from top to bottom only once in J3 sec. These automatic scan-
ning electronics may be replaced or overridden in many cameras, allowing ‘‘ran-
dom access’ to the image. In some technologies, such as the image dissector, the
longer the signal is collected from any location, the better the signal-to-noise per-
formance.

There are a number of different systems used to generate television images.
We discuss five main methods below.

Image orthicon tube. This is one of the (wo main methods in use today (in
addition to the vidicon). It offers very stable performance at all incident light levels
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and is widely used in commercial television. It is a storage-type tube, since it
depends on the neutralization of positive charges by a scanning electron beam.

The image orthicon (Fig. 2.19) is divided into an imaging and readout sec-
tion. In the imaging section, light from the scene is focused onto a semitransparent
photocathode. This photocathode operates the same way as the cathode in a photo-
tube. It emits electrons which are magnetically focused by a coil and are
accelerated toward a positively charged target. The target is a thin glass disk with a
fine-wire-mesh screen facing the photocathode. When electrons strike it, secon-
dary emission from the glass takes place. As electrons are emitted from the photo-
cathode side of the disk, positive charges build up on the scanning side. These
charges correspond to the pattern of light intensity in the scene being viewed.

In the readout section, the back of the target is scanned by a low velocity elec-
tron beam from an electron gun at the rear of the tube. Electrons in this beam are
absorbed by the target in varying amounts, depending on the charge on the target.
The image is represented by the amplitude-modulated intensity of the returned
beam.

Vidicon tube. The vidicon is smaller, lighter, and more rugged than the
image orthicon, making it ideal for portable use. Here the target (the inner surface
of the face plate) is coated with a transparent conducting film which forms a video
signal electrode (Fig. 2.20). A thin photosensitive layer is deposited on the film,
consisting of a large number of tiny resistive globules whose resistance decreases
on illumination. This layer is scanned in raster fashion by a low velocity electron
beam from the electron gun at the rear of the tube. The beam deposits electrons on
the layer, thus reducing its surface potential. The two surfaces of the target essen-
tially form a capacitor, and the scanning action of the beam produces a capacitive
current at the video signal electrode which represents the video signal.

The plumbicon is essentially a vidicon with a lead oxide photosensitive layer.
It offers the following advantages over the vidicon: higher sensitivity, lower dark
current, and negligible persistence or lag.
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Fig. 2.19 The image orthicon.
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Iconoscope tube. The iconoscope is now largely of historical interest. In it,
an electron beam scans a target consisting of a thin mica sheet or mosaic coated
with a photosensitive layer. In contrast to the vidicon and orthicon, the electron
beam and the light both strike the same side of the target surface. The back of the
mosaic is covered with a conductive film connected to an output load. The arrange-
ment is equivalent to a matrix of small capacitors which discharge through a com-
mon lead.

Image dissector tube. The image dissector tube operates on instantaneous
scanning rather than by neutralizing positive charges. Light from the scene is
focused on a cathode coated with a photosensitive layer (Fig. 2.21). The cathode
emits electrons in proportion to the amount of light striking it. These electrons are
accelerated toward a target by the anode. The target is an electron multiplier
covered by a small aperture which allows only a small part of the ‘‘electron image”’
emitted by the cathode to reach the target. The electron image is focused by a
focusing coil that produces an axial magnetic field. The deflection coils then scan
the electron image past the target aperture, where the electron multiplier produces
a varying voltage representing the video signal. The image is thus ‘‘dissected’’ as it
is scanned past the target, in an electronic version of a flat-bed digitizing process.

Charge transfer devices. A more recent development in image formation
is that of solid-state image sensors, known as charge transfer devices (CTDs).
There are two main classes of CTDs: charge-coupled devices (CCDs) and charge-
injection devices (CIDs).

CCDs resemble MOSFETs (metal-oxide semiconductor field-effect transis-
tor) in that they contain a “‘source’’ region and a ‘‘drain’’ region coupled by a
depletion-region channel (Fig. 2.22). For imaging purposes, they can be con-
sidered as a monolithic array of closely spaced MOS capacitors forming a shift
register (Fig. 2.23). Charges in the depletion region are transferred to the output
by applying a series of clocking pulses to a row of electrodes between the source
and the drain.

Photons incident on the semiconductor generate a series of charges on the
CCD array. They are transferred to an output register either directly one line at a
time (line transfer) or via a temporary storage area (frame transfer). The storage
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Photosensitive
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area is needed in frame transfer because the CCD array is scanned more rapidly
than the output can be directly accommodated.

Charge injection devices (CIDs) resemble CCDs except that during sensing
the charge is confined to the image site where it was generated (Fig. 2.24). The
charges are read using an X-Y addressing technique similar to that used in com-
puter memories. Basically, the stored charge is “‘injected’’ into the substrate and
the resulting displacement current is detected to create the video signal.

CTD technology offers a number of advantages over conventional-tube-type
cameras: light weight, small size, low power consumption, resistance to burn-in,
low blooming, low dark current, high sensitivity, wide spectral and dynamic range,
and lack of persistence. CIDs have the further advantages over CCDs of tolerance
to processing defects, simple mechanization, avoidance of charge transfer losses,
and minimized blooming. CTD cameras are now available commercially.

Analog-to-Digital Conversion

With current technology, the representation of an image as an analog electri-
cal waveform is usually an unavoidable precursor to further processing. Thus the
operation of deriving a digital representation of an analog voltage is basic to com-
puter vision input devices.
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The function of an analog-to-digital (A/D) converter is to take as input a vol-
tage such as a video signal and to produce as output a representation of the voltage
in digital memory, suitable for reading by an interface to a digital computer. The
quality of an A/D converter is measured by its temporal resolution (the speed at
which it can perform conversions) and the accuracy of its digital output. Analog-
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Fig. 2.24 A CID array.
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to-digital converters are being produced as integrated circuit chips, but high-
quality models are still expensive. The output precision is usually in the 8- to 12-bit
range.

It is quite possible to digitize an entire frame of a TV camera (i.e., approxi-
mately 525 scan lines by 300 or so samples along a scan line) in a single frame time
(1/30 sec in the United States). Several commercial systems can provide such fast
digitization into a ‘‘frame buffer”” memory, along with raster graphics display capa-
bilities from the same frame buffer, and ‘“video rate processing’’ of the digital data.
The latter term refers to any of various low-level operations (such as averaging,
convolution with small templates, image subtraction) which may be performed as
fast as the images are acquired.

One inexpensive alternative to digitizing entire TV frames at once is to use an
interface that acquires the TV signal for a particular point when the scan passes the
requested location. With efficient programming, this point-by-point digitization
can acquire an entire frame in a few seconds.

2.3.2 Sensing Range

The third dimension may be derived from binocular images by triangulation, as we
saw earlier, or inferred from single monocular visual input by a variety of “‘depth
cues,”” such as size and occlusion. Specialized technology exists to acquire ‘‘depth
images’’ directly and reliably. Here we outline two such techniques: “‘light strip-
ing,”” which is based on triangulation, and ‘‘spot ranging,”” which is based on
different principles.

Light Striping

Light striping is a particularly simple case of the use of structured light [Will
and Pennington 1971]. The basic idea is to use geometric information in the illumi-
nation to help extract geometric information from the scene. The spatial frequen-
cies and angles of bars of light falling on a scene may be clustered to find faces; ran-
domly structured light may allow blank, featureless surfaces to be matched in
stereo views; and so forth.

Many researchers [Popplestone et al. 1975; Agin 1972; Sugihara 1977] have
used striping to derive three dimensions. In light striping, a single plane of light is
projected onto a scene, which causes a stripe of light to appear on the scene (Fig.
2.25). Only the part of the scene illuminated by the plane is sensed by the vision
system. This restricts the ‘‘image’’ to be an essentially one-dimensional entity, and
simplifies matching corresponding points. The plane itself has a known position
(equation in world coordinates), determinable by any number of methods involv-
ing either the measurement of the projecting device or the measurement of the
final resulting plane of light. Every image point determines a single “‘line of sight”’
in three-space upon which the world point that produces the image point must lie.
This line is determined by the focal point of the imaging system and the image
point upon which the world point projects. In a light-striping system, any point
that is sensed in the image is also guaranteed to lie on the light plane in three-
space. But the light plane and the line of sight intersect in just one point (as long as
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Fig. 2.25 Light striping. (a) A typical arrangement; (b) raw data; (c) data segmented into
strips; (d) strips segmented into two surfaces.

the camera’s focal point is not in the light plane). Thus by computation of the in-
tersection of the line of sight with the plane of light, we derive the three-
dimensional point that corresponds te any image point visible as part of a stripe.

The plane of light may result from a laser or from the projection of a slit. Only
the light stripe should be visible to the imaging device; unless a laser is used, this
implies a darkened room. If a camera is fitted with the proper filter, a laser-based
system can be operated in normal light. Another advantage of the laser is that it can
be focused into a narrower plane than can a slit image.

The only points whose three-dimensional coordinates can be computed are
those that can be ‘“‘seen’ by both the light-stripe source and the camera at once.
Since there must be a nonzero baseline if triangulation is to derive three-
dimensional information, the camera cannot be too close to the projector, and thus
concavities in the scene are potential trouble spots, since both the striper and the
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camera may not be able to “‘see’’ into them. Surfaces in the scene that are nearly
parallel with the light plane will have a relatively small number of stripes projected
onto them by any uniform stripe placement strategy. This problem is ameliorated
by striping with two sets of parallel planes at right angles to each other [Agin 1972].
A major advantage of light striping over spot ranging is that (barring shadows) its
continuity and discontinuity indicate similar conditions on the surface. It is easy to
“segment’’ stripe images (Part II): Stripes falling on the same surface may easily
be gathered together. This set of related stripes may be used in a number of ways to
derive further information on the characteristics of the surface (Fig. 2.25b).

Spot Ranging

Civil engineers have used laser-based ‘‘spot range finders’’ for some time. In
laboratory-size environments, they are a relatively new development. There are
two basic techniques. First, one can emit a very sharp pulse and time its return
(““lidar,” the light equivalent of radar). This requires a sophisticated laser and
electronics, since light moves 1 ft every billionth of a second, approximately. The
second technique is to modulate the laser light in amplitude and upon its return
compare the phase of the returning light with that of the modulator. The phase
differences are related to the distance traveled [Nitzan et al. 1977]. A representa-
tive image is shown in Fig. 2.26.

Both these techniques produce results that are accurate to within about 1% of
the range. Both of them allow the laser to be placed close to a camera, and thus
“intensity maps” (images) and range maps may be produced from single
viewpoints. The laser beam can easily poke into holes, and the return beam may be
sensed close to the emitted one, so concavities do not present a serious problem.
Since the laser beam is attenuated by absorption, it can yield intensity information
as well. If the laser produces light of several wavclengths, it is possible to use filters
and obtain multispectral reflectance information as well as depth information from
the same device [Garvey 1976; Nitzan et al. 1977].

The usual mode of use of a spot ranging device is to produce a range map that
corresponds to an intensity map. This has its advantages in that the correspon-
dence may be close. The structural properties of light stripes are lost: It can be hard
to “‘segment’’ the image into surfaces (to tell which “‘range pixels’’ are associated
with the same surface). Range maps are amenable to the same sorts of segmenta-
tion techniques that are used for intensity images: Hough techniques, region grow-
ing, or differentiation-based methods of edge finding (Part II).

Ultrasonic Ranging

Just as light can be pulsed to determine range, so can sound and ultrasound
(frequencies much higher than the audible range). Ultrasound has been used ex-
tensively in medicine to produce images of human organs (e.g., [Waag and
Gramiak 1976]). The time between the transmitted and received signal determines
range; the sound signal travels much slower than light, making the problem of tim-
ing the returning signal rather easier than it is in pulsed laser devices. However,
the signal is severely attenuated as it travels through biological tissue, so that the
detection apparatus must be very sensitive.
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Fig. 2.26 Intensity and range images. (a) A (synthesized) intensity image of a
street scene with potholes. The roofs all have the same intensity, which is different
from the walls; (b) a corresponding range image. The wall and roof of each house
have similar ranges, but the ranges differ from house to house.

One basic difference between sound and visible light ranging is that a light
beam is usually reflected off just one surface, but that a sound beam is generally
partially transmitted and partially reflected by “‘surfaces.”” The returning sound
pulse has structure determined by the discontinuities in impedence to sound found
in the medium through which it has passed. Roughly, a light beam returns infor-
mation about a spot, whereas a sound beam can return information about the
medium in the entire column of material. Thus, although sound itself travels rela-
tively slowly, the data rate implicit in the returning structured sound pulse is quite
high. Figure 2.27 shows an image made using the range data from ultrasound. The
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Fig. 2.27 Image made from
ultrasound ranging.

sound pulses emanate from the top of the image and proceed toward the bottom,
being partially reflected and transmitted along the way. In the figure, it is as if we
were looking perpendicular to the beams, which are being displayed as brighter
where strong reflectance is taking place. A single *‘scan line’” of sound thus pro-
duces an image of an entire planar slice of medium.

2.3.3 Reconstruction Imaging

Two-dimensional reconstruction has been the focus of much research attention
because of its important medical applications. High-quality images such as that
shown in Fig. 1.2b can be formed by multiple images of x-ray projection data. This
section contains the principles behind the most important reconstruction algo-
rithms. These technigues are discussed in more detail with an expanded list of
references in [Gordon and Herman 1974]. For a view of the many applications of
two-dimensional reconstruction other than transmission scanning, the reader is re-
ferred to [Gordon et al. 1975].

Figure 2.28 shows the basic geometry to collect one-dimensional projections
of two-dimensional data. (Most systems construct the image in a plane and repeat
this technique for other planes; there are few true three-dimensional reconstruc-
tion systems that use planes of projection data simultaneously to construct
volumes.)

In many applications sensors can measure the one-dimensional projection of
two-dimensional image data. The projection g (x") of an ideal image f(x, y) in the
direction @ is given by ff(x’, y') dy'where x' = R,x. If enough different projec-
tions are obtained, a good approximation to the image can be obtained with two-
dimensional reconstruction techniques.

From Fig. 2.28, with the source at the first position along line 44, we can ob-
tain the first projection datum from the detector at the first position along BB The
line AB is termed a ray and the measurement at B a ray sum. Moving the source
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Fig. 2.28 Projection geometry.

and detector along lines 44 'and BB’in synchrony allows us to obtain the entire
data for projection 1. Now the lines 44" and BB'are rotated by a small angle 46
about 0 and the process is repeated. In the original x-ray systems d6 was 1° of an-
gle, and 180 projections were taken. Each projection comprised 160 transmission
measurements. The reconstruction problem is simply this: Given the projection
datag,(x),k =0, ..., N — 1, construct the original image f(x).

Systems in use today use a fan beam rather than the parallel rays shown.
However, the mathematics is simpler for parallel rays and illustrates the funda-
mental ideas. We describe three related techniques: summation, Fourier interpola-
tion, and convolution.

The Summation Method

The summation method is simple: Distribute every ray sum g, (x") over the
image cells along the ray. Where there are N cells along a ray, each such cell is in-

cremented by Wg (x). This step is termed back projection. Repeating this process

for every ray results in an approximate version of the original [DeRosier 1971].
This technique is equivalent (within a scale factor) to blurring the image, or con-
volving it with a certain point-spread function. In the continuous case of infinitely
many projections, this function is simply the radically symmetric # (r) = 1/r.
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Fig. 2.29 Basis of Fourier techniques. (a) Projection axis x'; {b) corresponding
axis in Fourier Space.

Fourier Algorithms

If a projection is Fourier-transformed, it defines a line through the origin in
frequency space (Fig. 2.29). To show this formally, consider the expression for the
two-dimensional transform

Fu) = fff(x, y)exp [i2m (ux + vy)l dx dy (2.47)
Now consider y = 0 (projection onto the xaxis): x’= xand
gk = ff(x, ¥)dy (2.48)
The Fourier transform of this equation is
§ lgo(x)] = ff [f(x, y) dvlexpj2mux dx (2.49)

= fff(x, y) expj2mwux dy dx
which, by comparison with (2.47), is
§lgo(x)] = F(u,0) (2.50)

Generalizing to any 6, the transform of an arbitrary g (x’) defines a line in the
Fourier space representation of the cross section. Where S () is the cross section
of the Fourier transform along this line,

Si (@) = F(ucos@, usind) (2.51)
= [ &) expl=j2mu(x)]dx’

Thus one way of reconstructing the original image is to use the Fourier transform
of the projections to define points in the transform of f(x), interpolate the
undefined points of the transform from the known points, and finally take the in-
verse transform to obtain the reconstructed image.
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Fig. 2.30 Convolution method.

This technique can be applied with transforms other than the Fourier
transform, and such methods are discussed in [DeRosier 1971; Crowther and Klug
1971].

The Convolution Method

The convolution method is the natural extension of the summation method.
Since the summation method produces an image degraded from its convolution
with some function A, one can remove the degradation by a ‘“deconvolution.”” The
straightforward way to accomplish this is to Fourier-transform the degraded image,
multiply the result by an estimate of the transformed 4~ , and inverse-Fourier-
transform the result. However, since all the operations are linear, a faster approach
is to deconvolve the projections before performing the back projection. To show
this formally, we use the inverse transform

Sx) = ff F(u, v)exp [j27 (ux + vy)ldu dv (2.52)

Changing to cylindrical coordinates (w, ) yields
F@ = [ [ Fy@) explj2me(xcost + ysin 0)l|oldodd  (2.53)

Since x'= xcos@ + y siné, rewrite Eq. (2.53) as
& = [FUF @ Hw)do (2.54)

Since the image is bandlimited at some interval (—w,,, w,,) one can define H ()
arbitrarily outside of this interval. Therefore, H (w) can be defined as a constant
minus a triangular peak as shown in Fig. 2.30. Finally, the operation inside the in-
tegral in Eq. (2.54) is a convolution. Using the transforms shown in Fig. 2.30,

£ = [ 1) = fo(x),sincX(w,,x)] d6 (2.55)

Owing to its speed and the fact that the deconvolutions can be performed
while the data are being acquired, the convolution method is the method employed
in the majority of systems.

EXERCISES

2.1 In a binocular animal vision system, assume a focal length fof an eye of 50 mm and a
separation distance d of 5 cm. Make a plot of Ax vs. —z using Eq. (2.9). If the resolu-
tion of each eye is on the order of 50 line pairs/mm, what is the useful range of the bi-
nocular system?
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2.2

Z:3

2.4

2.5

2.6

2

In an opponent-process color vision system, assume that the following relations hold:

R-G

Red

Yellow Blue

Green

For example, if the (R—G, B —Y, W—Bk) components of the opponent-process sys-
tem are (0.5, 3, 4), the perceived color will be blue.
Work out the perceived colors for the following (R,G,B) measurements:

(a) (0.2,03,04) (b (02,03,00 (@ (7,41

Develop an indexing scheme for a hexagonal array and define a Euclidean distance
measure between points in the array.

Assume that a one-dimensional image has the following form:
f(x) = cos2mu,x)

and is sampled with u; = u,. Using the graphical method of Section 2.2.6, find an ex-
pression for f(x) as given by Eq. (2.49). Is this expression equal to the original im-
age? Explain.

A certain image has the following Fourier transform:

nonzero inside a hexagonal domain

Flu =1, otherwise

(a) What are the smallest values for # and v so that F(u) can be reconstructed
from F, (u)?

(b) Suppose now that rectangular sampling is not used but that now the u and v
directions subtend an angle of 7/3. Does this change your answer as to the
smallest # and v? Explain.

Extend the binocular imaging model of Fig. 2.3 to include convergence: Let the two
imaging systems pivot in the y = 0 plane about the viewpoint. Let the system have a
baseline of 24 and be converged at some angle @ such that a point (x, y, z) appears at
the origin of each image plane.

(a) Solve for zin terms of rand 6.
(b) Solve for zin this situation for points with nonzero disparity.
Compute the convolution of two Rect functions, where

1 0<x<l
Rect(x) = 0  otherwise

Show the steps in your calculations.

Ch. 2 Image Formation



2.8

b for|x|< a
Rect(x) =15 otherwise

(a) Whatis Rect(x) x8(x—a)?
(b) What is the Fourier transform of f(x) where f(x) = Rect(x+c) +
Rect(x—c) and ¢ > a?

2.9 A digitizer has a sampling interval of Ax = Ay = A. Which of the following images
can be represented unambiguously by their samples? (Assume that effects of a finite
image domain can be neglected.)

(a) (sin(mx/A))/ (wx/A)
(b) cos(ar/x/2A)cos(3mx/4A)
(c) Rect(x) (see Problem 2.8)

d) e’
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Early Processing 3

3.1 RECOVERING INTRINSIC STRUCTURE

The imaging process confounds much useful physical information into the gray-
level array. In this respect, the imaging process is a collection of degenerate
transformations. However, this information is not irrevocably lost, because there
is much spatial redundancy: Neighboring pixels in the image have the same or
nearly the same physical parameters. A collection of techniques, which we call
early processing, exploits this redundancy in order to undo the degeneracies in the
imaging process. These techniques have the character of transformations for
changing the image into ‘‘parameter images’ or intrinsic images [Barrow and
Tenenbaum 1978; 1981] which reflect the spatial properties of the scene. Common
intrinsic parameters are surface discontinuities, range, surface orientation, and
velocity.

In this chapter we neglect high-level internal model information even though
it is important and can affect early processing. Consider the case of the perceived
central edge in Fig. 3.1a. As shown by Fig. 3.1b, which shows portions of the same
image, the central edge of Fig. 3.1a is not present in the data. Nevertheless, the hu-
man perceiver ‘‘sees’’ the edge, and one reasonable explanation is that it is a prod-
uct of an internal block model. Model-directed activity is taken up in later
chapters. These examples show how high level models (e.g., circles) can affect
low-level processors (e.g., edge finders). However, for the purposes of study it is
often helpful to neglect these effects. These simplifications make it easier to derive
the fundamental constraints between the physical parameters and gray levels. Once
these are understood, they can be modified using the more abstract structures of
later chapters.

Most early computer vision processing can be done with parallel computa-
tions whose inputs tend to be spatially localized. When computing intrinsic images
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(a) (b)

Fig. 3.1 (a) A perceived edge. (b) Portions of image in (a) showing the lack of image data.

the parallel computations are iterated until the intrinsic parameter measurements
converge to a set of values. A computation that falls in the parallel-iterative
category is known in computer vision as relaxation [Rosenfeld et al. 1976]. Relaxa-
tion is a very general computational technique that is useful in computer vision.
Specific examples of relaxation computations appear throughout the book; general
observations on relaxation appear in Chapter 12.

This chapter covers six categories of early processing techniques:

1. Filtering is a generic name for techniques of changing image gray levels to
enhance the appearance of objects. Most often this means transformations
that make the intensity discontinuities between regions more prominent.
These transformations are often dependent on gross object characteristics. For
example, if the objects of interest are expected to be relatively large, the image
can be blurred to erase small intensity discontinuities while retaining those of
the object’s boundary. Conversely, if the objects are relatively small, a
transformation that selectively removes large discontinuities may be appropri-
ate. Filtering can also compensate for spatially varying illumination.

2. FEdge operators detect and measure very local discontinuities in intensity or its
gradient. The result of an edge operator is usually the magnitude and orienta-
tion of the discontinuity.

3. Range transforms use known geometry about stereo images to infer the dis-
tance of points from the viewer. These transforms make use of the inverse per-
spective transform to'interpret how points in three-dimensional space project
onto stereo pairs. A correspondence between points in two stereo images of
known geometry determines the range of those points. Relative range may
also be derived from local correspondences without knowing the imaging
geometry precisely.

4. Surface orientation can be calculated if the source illumination and reflectance

properties of the surface are known. This calculation is sometimes called
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““shape from shading.”” Surface orientation is particularly simple to calculate
when the source illumination can be controlled.

5. Optical flow, or velocity fields of image points, can be calculated from local
temporal and spatial variations in sequences of gray-level images.

6. A pyramid is a general structure for representing copies of the image at multi-
ple resolutions. A pyramid is a “‘utility structure’” which can dramatically im-
prove the speed and effectiveness of many early processing and later segmen-
tation algorithms.

3.2 FILTERING THE IMAGE

Filtering is a very general notion of transforming the image intensities in some way
so as to enhance or deemphasize certain features. We consider only transforms
that leave the image in its original format: a spatial array of gray levels. Spurred on
by the needs of planetary probes and aerial reconnaissance, filtering initially
received more attention than any other area of image processing and there are ex-
cellent detailed reference works (e.g., [Andrews and Hunt 1977, Pratt 1978; Gon-
zalez and Wintz 1977]1). We cannot afford to examine these techniques in great
detail here; instead, our intent is to describe a set of techniques that conveys the
principal ideas.

Almost without exception, the best time to filter an image is at the image for-
mation stage, before it has been sampled. A good example of this is the way chemi-
cal stains improve the effectiveness of microscopic tissue analysis by changing the
image so that diagnostic features are obvious. In contrast, filtering after sampling
often emphasizes random variations in the image, termed noise, that are undesir-
able effects introduced in the sampling stage. However, for cases where the image
formation process cannot be changed, digital filtering techniques do exist. For ex-
ample, one may want to suppress low spatial frequencies in an image and sharpen
its edges. An image filtered in this way is shown in Fig. 3.2.

Note that in Fig. 3.2 the work of recognizing real-world objects still has to be
done. Yet the edges in the image, which constitute object boundaries, have been
made more prominent by the filtering operation. Good filtering functions are not
easy to define. For example, one hazard with Fourier techniques is that sharp
edges in the filter will produce unwanted "ringing" in the spatial domain, as evi-
denced by Fig. 2.5. Unfortunately, it would be too much of a digression to discuss
techniques of filter design. Instead, the interested reader should refer to the refer-
ences cited earlier.

3.2.1 Template Matching

Template matching is a simple filtering method of detecting a particular feature in
an image. Provided that the appearance of this feature in the image is known accu-
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() (b)

Fig. 3.2 Effects of high frequency filtering. (a) Original image. (b) Filtered image.

rately, one can try to detect it with an operator called a template. This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial image and a relevant template.

Correlation
One standard similarity measure between a function f(x) and a template 1(x) is
the Euclidean distance d (y) squared, given by

d?r=Y[f&x) — tix— yl? (3.1)

X

M ON

By Y wemean », 3, ,forsome M, Nwhich define the size of the template ex-
X x=—My=—N

tent. If the image at point y is an exact match, then d (y) = 0; otherwise, d (y) >0.

Expanding the expression for ¢%, we can see that

d(y) = 212 -2t x — y) + Alx - y)] (3.2)

Notice that 3, r?(x — y) is a constant term and can be neglected. When Y, /2(x) is
X X
approximately constant it too can be discounted, leaving what is called the cross

correlation between fand t.

R,(y) =X fx)t(x—y) (3.3)

This is maximized when the portion of the image ‘““under’’ ¢ is identical to .
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Template

Industrial Image

Fig. 3.3 Anindustrial image and template for a hexagonal nut.

One may visualize the template-matching calculations by imagining the tem-
plate being shifted across the image to different offsets; then the superimposed
values at this offset are multiplied together, and the products are added. The result-
ing sum of products forms an entry in the ‘‘correlation array’’ whose coordinates
are the offsets attained by the source template.

If the template is allowed to take a// offsets with respect to the image such that
some overlap takes place, the correlation array is larger than either the template or
the image. An n X n image with an m X m template vyields an
(n+m—1xn+m—1) correlation array. If the template is not allowed to
shift off the image, the correlation array is (n —m +1xn —m + 1); for
m < n. Another form of correlation results from computing the offsets modulo
the size of the image; in other words, the template ‘‘wraps around’’ the image. Be-
ing shifted off to the right, its right portion reappears on the left of the image. This
sort of correlation is called periodic correlation, and those with no such wraparound
properties are called aperiodic. We shall be concerned exclusively with aperiodic
correlation. One can always modify the input to a periodic correlation algorithm by
padding the outside with zeros so that the output is the aperiodic correlation.

Figure 3.4 provides an example of (aperiodic) ‘““shift, add, multiply”® tem-
plate matching. This figure illustrates some difficulties with the simple correlation
measure of similarity. Many of the advantages and disadvantages of this measure
stem from the fact that it is linear. The advantages of this simplicity have mainly to
do with the existence of algorithms for performing the calculation efficiently (in a-
transform domain) for the entire set of offsets. The disadvantages have to do with

. Image Laetman Fig. 3.4 (a) A simple template. (b) An image
with noise. (¢) The aperiodic correlation array of
111 11000 742xx the template and image. Ideally peaks in the
111 11100 532xx correlation indicate positions of good match. Here
111 10100 219xx the correlation is only calculated for offsets that
00000 XXXXX leave the template entirely within the image. The
00008 XX XXX correct peak is the upper left one at 0, 0 offset. The
x = undefined “false alarm”™ at offset 2, 2 is caused by the bright

“noise point™ in the lower right of the image.

Sec. 3.2 Filtering the Image 67



68

the fact that the metric is sensitive to properties of the image that may vary with
the offset, such as its average brightness. Slight changes in the shape of the object,
its size, orientation, or intensity values can also disturb the match.

Nonetheless, the idea of template matching is important, particularly if Eq.
(3.3) is viewed as a filtering operation instead of an algorithm that does all the work
of object detection. With this viewpoint one chooses one or more templates
(filters) that transform the image so that certain features of an object are more
readily apparent. These templates generally highlight subparts of the objects. One
such class of templates is edge templates (discussed in detail in Section 3.3).

We showed in Section 2.2.4 that convolution and multiplication are Fourier
transform pairs. Now note that the correlation operation in (3.3) is essentially the
same as a convolution with a function #(x) = t(—x). Thus in a mathematical
sense cross correlation and convolution are equivalent. Consequently, if the size of
the template is sufficiently large, it is cheaper to perform the template matching
operation in the spatial frequency domain, by the same transform techniques as for
filtering.

Normalized Correlation

A crucial assumption in the development of Eq. (3.3) was that the image en-
ergy covered by the matching template at any offset was constant; this leads to a
linear correlation matching technique. This assumption is approximately correct if
the average image intensity varies slowly compared to the template size, but a
bright spot in the image can heavily influence the correlation by affecting the sum
of products violently in a small area (Fig. 3.4). Even if the image is well behaved,
the range of values of the metric can vary with the size of the matching template.
Are there ways of normalizing the correlation metric to make it insensitive to these
variations?

There is a well-known treatment of the normalized correlation operation. It
has been used for a variety of tasks involving registration and stereopsis of images
[Quam and Hannah 1974]. Let us say that two input images are being matched to
find the best offset that aligns them.

Let £, (x) and f,(x) be the images to be matched. g, is the patch of £, (possi-
bly all of it) that is to be matched with a similar-sized patch of f;. g is the patch of
f1 that is covered by g, when g, is offset by y.

Let E () be the expectation operator. Then

al(q)) = [E(g}) — (E(g)?]" (3.4)
a(gy) = [E(g}) — (E(gy))?]" (3.5)
give the standard deviations of points in patches g, and g,. (For notational con-

venience, we have dropped the spatial arguments of ¢, and ¢,.) Finally, the nor-
malized correlation is

_ E(Q1£I2) - E(Q])E(qz)
ke oy

(3.6)

and E(q,q,) is the expected value of the product of intensities of points that are
superimposed by the translation by y.
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The normalized correlation metric is less dependent on the local properties of
the reference and input images than is the unnormalized correlation, but it is sensi-
tive to the signal-to-noise content of the images. High uncorrelated noise in the
two images, or the image and the reference, decreases the value of the correlation.
As a result, one should exercise some care in interpreting the metric. If the noise
properties of the image are known, one indication of reliability is given by the
“‘(signal + noise)-to-noise”’ ratio. For the normalized correlation to be useful, the
standard deviation of the patches of images to be matched (i.e., of the areas of im-
age including noise) should be significantly greater than that of the noise. Then a
correlation value may be considered significant if it is approximately equal to the
theoretically expected one. Consider uncorrelated noise of identical standard devi-
ation, in a patch of true value f(x, y). Let the noise component of the image be
n (x, ). Then the theoretical maximum correlation is

2
1- —5’& (3.7
o’ (f+n)

In matching an idealized, noise-free reference pattern, the best expected

value of the cross correlation is
_zir (3.8)
o(f+n)

If the noise and signal characteristics of the data are known, the patch size
may be optimized by using that information and the simple statistical arguments
above. However, such considerations leave out the effects of systematic, nonsta-
tistical error (such as imaging distortions, rotations, and scale differences between
images). These systematic errors grow with patch size, and may swamp the statisti-
cal advantages of large patches. In the worst case, they may vitiate the advantages
of the correlation process altogether.

Since correlation is expensive, it is advantageous to ensure that there is
enough information in the patches chosen for correlation before the operation is
done. One way to do this is to apply a cheap ‘‘interest operator’ before the rela-
tively expensive correlation. The idea here is to make sure that the image varies
enough to give a usable correlation image. If the image is of uniform intensity,
even its correlation with itself (autocotrelation) is flat everywhere, and no infor-

- mation about where the image is registered with itself is derivable. The “‘interest
operator’’ is a way of finding areas of image with high variance. In fact, a common
and useful interest measure is exactly the (directional) variance over small areas of
image. One directional variance algorithm works as follows.

The Moravec interest operator [Moravec 1977] produces candidate match
points by measuring the distinctness of a local piece of the image from its sur-
round. To explain the operator, we first define a variance measure at a pixel (x) as

varke ) = l Y [Fley) = fle + &y + z)]zr (3.9)

Kk lins

5= I(O, a), (0, —a), (g, 0), (—a, 0)]
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where a is a parameter. Now the interest operator value is initially the minimum of
itself and surrounding points:

IntOpVal (x) = m<nl1 [var (x + y)] (3.10)
y

Next a check is made to see if the operator is a local maximum by checking neigh-
bors again. Only local maxima are kept.

IntOpVal(x) = 0 if
IntOpVal(x) > IntOpVal(x + y) (3.11)
fory <1
Finally, candidate points are chosen from the IntOpVal array by thresholding.

x is a candidate point iff IntOpVal (x) > T (3.12)

The threshold is chosen empirically to produce some fraction of the total image
points.

3.2.2 Histogram Transformations

A gray-level histogram of an image is a function that gives the frequency of oc-
currence of each gray level in the image. Where the gray levels are quantized from
0 to n, the value of the histogram at a particular gray level p, denoted 4 (p), is the
number or fraction of pixels in the image with that gray level. Figure 3.5 shows an
image with its histogram.

A histogram is useful in many different ways. In this section we consider the
histogram as a tool to guide gray-level transformation algorithms that are akin to
filtering. A very useful image transform is called histogram equalization. Histogram
equalization defines a mapping of gray levels p into gray levels ¢ such that the dis-
tribution of gray levels ¢ is uniform. This mapping stretches contrast (expands the

(b)

(a) Fig. 3.5 (a) Animage. (b) Its intensity histogram.
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range of gray levels) for gray levels near histogram maxima and compresses con-
trast in areas with gray levels near histogram minima. Since contrast is expanded
for most of the image pixels, the transformation usually improves the detectability
of many image features.

The histogram equalization mapping may be defined in terms of the cumula-
tive histogram for the image. To see this, consider Fig. 3.6a. To map a small inter-
val of gray levels dp onto an interval dg in the general case, it must be true that

glg)dg = h(p)dp (3.13)

where g(g) is the new histogram. If, in the histogram equalization case, g (¢) is to
be uniform, then

glgy) = (3.14)

2
M

g hipl

hig) P

(b)
Fig. 3.6 (a) Basis for a histogram equalization technique. (b) Results of histo-
gram equalization.
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where N? is the number of pixels in the image and M is the number of gray levels.
Thus combining Egs. (3.13) and (3.14) and integrating, we have

M
glg) = F_zh(p) dp (3.15)

But Eq. (3.15) is simply the equation for the normalized cumulative histogram.
Figure 3.6b shows the histogram-equalized image.

3.2.3 Background Subtraction

Background subtraction can be another important filtering step in early processing.
Many images can have slowly varying background gray levels which are incidental
to the task at hand. Examples of such variations are:

« Solution gradients in cell slides
« Lighting variations on surfaces in office scenes
« Lungimages in a chest radiograph

Note that the last example is only a ‘‘background’ in the context of looking for
some smaller variations such as tumors or pneumoconiosis.

Background subtraction attempts to remove these variations by first approxi-
mating them (perhaps analytically) with a background image f, and then subtract-
ing this approximation from the original image. That is, the new image f, is

f(x) = f(x) — f(x) (3.16)

Various functional forms have been tried for analytic representations of slowly
varying backgrounds. In the simplest cases, f, (x) may be a constant,

f1(x) =¢ (3.17)
or linear,
f(x) =mx+¢ (3.18)

A more sophisticated background model is to use a low-pass filtered variant of the
original image:

£ (x) =57 H@) F(a)] (3.19)

where H (u) is a low-pass filtering function. The problem with this technique is
that it is global; one cannot count on the “‘best’’ effect in any local area since the
filter treats all parts of the image identically. For the same reason, it is difficult to
design a Fourier filter that works for a number of very different images.

A workable alternative is to approximate f;(x), using splines, which are
piecewise polynomial approximation functions. The mathematics of splines is
treated in Chapter 8 since they find more general application as representations of
shape. The filtering application is important but specialized. The attractive feature
of a spline approximation for filtering is that it is variation diminishing and spatially
variant. The spline approximation is guaranteed to be “‘smoother” than the origi-
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nal function and will approximate the background differently in different parts of
the image. The latter feature distinguishes the method from Fourier-domain tech-
niques which are spatially invariant. Figure 3.7 shows the results of spline filtering.

3.2.4 Filtering and Reflectance Models

Leaving the effects of imaging geometry implicit (Section 2.2.2), the definitions in
Section 2.2.3 imply that the image irradiance (gray level) at the image point x'is
proportional to the product of the scene irradiance E and the reflectance r at its
corresponding world point x.

fx) =EXrx) (3.20)

The irradiance at x is the sum of contributions from all illumination sources, and
the reflectance is that portion of the irradiance which is reflected toward the ob-
server (camera). Usually E changes slowly over a scene, whereas » changes quickly
over edges, due to varying face angles, paint, and so forth. In many cases one
would like to detect these changes in r while ignoring changes in £. One way of do-
ing this is to filter the image f(x') to eliminate the slowly varying component.
However, as fis the product of illumination and reflectance, it is difficult to define
an operation that selectively diminishes E while retaining ». Furthermore, such an
operation must retain the positivity of f. One solution is to take the logarithm of
Eq. (3.20). Then

logf = logE + logr (3.21)

Equation (3.21) shows two desirable properties of the logarithmic transformation:
(1) the logarithmic image is positive in sign, and (2) the image is a superposition of
the irradiance component and reflectance component. Since reflectance is an in-

Fig. 3.7 The results of spline filtering to remove background variation.
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trinsic characteristic of objects, the obvious goal of image analysis is to recognize
the reflectance component under various conditions of illumination. Since the
separation of two components is preserved under linear transformations and the ir-
radiance component is usually of low spatial frequency compared to the reflectance
component, filtering techniques can suppress the irradiance component of the sig-
nal relative to the reflectance component.

If the changes in r occur over very short distances in the images, r may be iso-
lated by a three-step process [Horn 1974]. First, to enhance reflectance changes,
the image function is differentiated (Section 3.3.1). The second step removes the
low irradiance gradients by thresholding. Finally, the resultant image is integrated
to obtain an image of perceived ““lightness’” or reflectance. Figure 3.8 shows these
steps for the one-dimensional case.

A basic film parameter is density, which is proportional to the logarithm of
transmitted intensity; the logarithmically transformed image is effectively a density
image. In addition to facilitating the extraction of lightness, another advantage of
the density image is that it is well matched to our visual experience. The ideas for
many image analysis programs stem from our visual inspection of the image. How-
ever, the human visual system responds logarithmically to light intensity and also
enhances high spatial frequencies [Stockham 1972]. Algorithms derived from

(a)

(b)

—-—-I__-__r—-—- Fig. 3.8 Stepsin processing an image
to detect reflectance. (a) Original image.
(b) Differentiation followed by
X thresholding. (c) Integration of function
(c) in (b).

Ch. 3 Early Processing



introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
“seeing’ more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of “‘edge profiles’” that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow” on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge
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E st 1

(b)

VS v s

(c} (d)

Fig. 3.9 Edge profiles.

operators, and we make no attempt to summarize them all here. For a guide to this
literature, see [Rosenfeld and Kak 1976].

Parametric models generally capture more detailed edge structure than the
two-parameter direction and magnitude vector; as a result, they can be more com-
putationally complicated. For this reason and others discussed in Section 3.3.4, we
shall omit a detailed discussion of these kinds of edge operators. One of the best
known parametric models is Hueckel’s [Hueckel 1971, 1973], but several others
have been developed since [Mero and Vassy 1975; Nevatia 1977, Abdou 1978;
Tretiak 1979].

3.3.1 Types of Edge Operators

Gradient and Laplacian

The most common and historically earliest edge operator is the gradient [Roberts
1965]. For an image function f(x), the gradient magnitude s(x) and direction
¢ (x) can be computed as

s(x) = (Af + AD* (3.22)
¢(x) = atan(A, A)) (3.23)

where
A= flx+ny)— flx p) (3.24)

Ary=flx,y +n)— flx y)
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n is a small integer, usually unity, and atan (x, y) returns tan™' (x/y) adjusted to
the proper quadrant. The parameter s is called the ‘‘span’® of the gradient.
Roughly, nshould be small enough so that the gradient is a good approximation to
the local changes in the image function, yet large enough to overcome the effects
of small variations in f.

Equation (3.24) is only one difference operator, or way of measuring gray-
level intensities along orthogonal directions using A; and A, . Figure 3.10 shows
the gradient difference operators compared to other operators [Roberts 1965;
Prewitt 1970]. The reason for the modified operators of Prewitt and Sobel is that
the local averaging tends to reduce the effects of noise. These operators do, in fact,
perform better than the Roberts operator for a step edge model.

One way to study an edge operator’s performance is to use an ideal edge such
as the step edge shown in Fig. 3.11. This edge has two gray levels: zero and h units.
If the edge goes through the finite area associated with a pixel, the pixel is given a
value between zero and h, depending on the proportion of its area covered. Com-
parative edge operator performance has been carried out [Abdou 1978]. In the case
of the Sobel operator (Fig. 3.10¢) the measured orientation ¢’ is given by

Ay A,
0 1 1 0
-1 ] o 0o | -1
(a)
=4 0 1 1 1 1
=] 0 1 0 0 1]
=] 0 1 -1 = —1
{b)
=1 0 1 1 2 1
P 0 2 0 0 0
= 0 1 | -2 -1
(c) Fig. 3.10 Gradient operators.
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//7 Fig. 3.11 Edge models for orientation
ﬁ A and displacement sensitivity analyses.

j

S0 o< 7w/4 (3.25)

) if0 < ¢ < tan™!

) ~111
1
if tan 3

| 7tan’¢ + 6tang — 1
—9tan’¢ + 22tane — 1

tan

Arguments from symmetry show that only the 0 £ ¢ < /4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken ‘‘between pixels.”” This
scheme is shown in Fig. 3.12. Here a pixel may be thought of as having four crack
edges surrounding it, whose directions of are fixed by the pixel to be multiples of
/2. The magnitude of the edge is determined by |f(x) — f(y)|, where x and y are
the coordinates of the pixels that have the edge in common. One advantage of this
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacian is an edge detection operator that is an approximation to the
mathematical Laplacian 82f/0x? + 82//dy? in the same way that the gradient is an
approximation to the first partial derivatives. One version of the discrete Laplacian
is given by

X Yy
WY

“Crack” edge  Fig. 3.12 *‘Crack” edge representation.
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LG, y)=flxy)—%lfGy+1D+flx,y—1) (3.26)
+ flx+1,p)+ fx—1, ]

The Laplacian has two disadvantages as an edge measure: (1) useful directional in-
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these disad-
vantages, the Laplacian has fallen into disuse, although some authors have used it
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in the
following manner: There is an edge at x with magnitude g (x) and direction ¢ (x) if
g(x) > Tyand L(x) > T,.

Edge Templates

The Kirsch operator [Kirsch 1971] is related to the edge gradient and is given
by

S(x) = max[1, mfx%lf(xk)] (3.27)
k=1

where f(x,) are the eight neighboring pixels to x and where subscripts are com-
puted modulo 8. A 3-bit direction can also be extracted from the value of k that
yields the maximum in (3.27). In practice, ‘“‘pure’’ template matching has replaced
the use of (3.27). Four separate templates are matched with the image and the
operator reports the magnitude and direction associated with the maximum match.
As one might expect, the operator is sensitive to the magnitude of £(x), so that in
practice variants using large templates are generally used. Figure 3.13 shows
Kirsch-motivated templates with different spans.

1 B

3
[}
[N
|
st

-10 1 1T 11 0 1 1 1 1 0
n=1 "~ =] @ 1 0 0O -1. 0 1 1 01
-1 01 e e -1-1 0 0 -1-1
-1-1 01 1 11 1 11 01 1 11 11110
-1-1 01 1 1T 1 1 11 -10 1 11 1T 1 1 01
n=2 -1-1 01 1 0 00O0OTO -1-1 0 1 1 11 0 -1-1
-1-1 0 1 1 =3 =] =1 =1~ s = =1, O 1 1 0 =111
-1-10 1 1 =] == =-1-1-1-10 0 -1-1-1-1

Fig. 3.13 Kirsch templates.
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This brief discussion of edge templates should not be construed as a com-
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is also
evidence that the mammalian visual system responds to edges through special
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equal
to zero. Furthermore, in the absence of any special context, small magnitudes are
most likely to be due to random fluctuations, or noise in the image function f.
Thus in practical cases one may use the expedient of only reporting an edge ele-
ment at x if g(x) is greater than some threshold, in order to reduce these noise
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators as
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec-
tion 2.2.4. Figure 3.14 shows the nine Frei-Chen basis functions. Using this
basis, the image near a point x, can be represented as

8
F& =3 (f, ) (x— x0) /[ (hy, By (3.28)
k=1
where the (f, A,) is the correlation operation given by
(f, hk) e Ef(XO)hk (X ¥ XO) (329)
D

and D is the nonzero domain of the basis functions. This operation is also regarded
as the projection of the image into the basis function A,. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions span a
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the “‘edge-
ness’” of a local area in an image is to measure the relative projection of the image

-1+/7 -1 1 1 1 -2 1

-1 1 -1 1 -2 4 -2

111 1 v/2 1 -1 -1 1 -2 1
11

1 11 -1 1 VZ -1 -1 1 -2 1 -2

V2 /2 -1 1 1 4 1

-1 1 12 1 ~1 -2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.
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into the edge basis functions. The relative projection into the particular ‘‘edge sub-
space’’ is given by

E.y
cos @ = (E)/ (3.30)

where

2
E=73% (f i)?
k=1

and
8
): (f, b’

Thus if & < T, report an edge; otherwise, not. Figure 3.15 shows the potential ad-
vantage of this technique compared to the technique of thresholding the gradient
magnitude, using two hypothetical projections B; and B,. Even though B, has a
small magnitude, its relative projection into edge subspace is large and thus would
be counted as an edge with the Frei-Chen criterion. This is not true for B;.

Under many circumstances it is appropriate to use model information about
the image edges. This information can affect the way the edges are interpreted after
they have been computed or it may affect the computation process itself. Asan ex-
ample of the first case, one may still use a gradient operator, but vary the threshold
for reporting an edge. Many versions of the second, more extreme strategies of us-
ing special spatially variant detection methods have been tried [Pingle and Tenen-
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Sec-
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows several
parallel image planes, effectively producing a three-dimensional volume of data.

Non-edge
subspace

T, Edge
subspace
“g(x)” . .
Fig. 3.15 Comparison of thresholding
(a) (b) techniques.
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(a)

Fig. 3.16 Model-directed edge
(b) detection.

In three-dimensional data, boundaries of objects are surfaces. Edge elements
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the local
surface normal. Just as in the two-dimensional case, many different basis operators
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall just
describe the operator here; the proof of its correctness given the continuous image
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

g1lx, y, 2) = -)f (3.31)
g:(x, v, z) = ‘%

Lol
g3(x, y, z) = -

where r = (x2 + y* + z9)". The discrete form of these operators is shown in Fig.
3.17fora3 x 3 x 3 pixel domain D. Only g; is shown since the others are obvious
by symmetry. To apply the operator at a point xq_,yq zo compute projections a, b,
and ¢, where

a = (g, /) = L&1(x)f (x—xo)
D

b= (g f) (3.32)
c= (g3, f)

The result of these computations is the surface normal n = (g, b, c) at (xq, yo, zo).
Surface thresholding is analogous to edge thresholding: Report a surface element
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Fig. 3.17 The 3 x 3 x 3 edge basis
function g,(x, y, z).
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only if s(x, y, z) = |n| exceeds some threshold. Figure 3.18 shows the results of
applying the operator to a synthetic three-dimensional image of a torus. The

display shows small detected surface patches.
3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exam-
ple, some operators may find most edges but also respond to noise; others may be

= 5

\LL‘“}J/
% L
. |

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-
age data in the shape of a torus.
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noise-insensitive but miss some crucial edges. The following figure of merit [Pratt
1978] may be used to compare edge operators:
1 M

s (3.33)
max (NA: Nj) =1 14 (ad;z)

where N, and N, represent the number of actual and ideal edge points, respec-
tively, a is a scaling constant, and 4 is the signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad;? penalizes detected
edges which are offset from their true position; the penalty can be adjusted via a.
Using this measure, all operators have surprisingly similar behaviors. Unsurpris-
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978].
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude di-
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows some
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize Eq.
(3.33).

These comparisons are important as they provide a gross measure of
differences in performance of operators even though each operator embodies a
specific edge model and may be best in special circumstances. But perhaps the
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This means
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that can
use or improve the measurements from unreliable edges rather than in a search for
the ideal edge detector.

Prewitt/Sobel

100

80 [~
Hueckel with

conf=0.9
diff = 100

'S
40 Roberts
20
0 1 L L 1 1 o
1.0 2.0 5.0 10 20 50 100
h2/02

Fig. 3.19 Edge operator performance using Pratt’s measure (Eq. 3.33).
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3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on meas-
urements of neighboring edges. This is a natural thing to want to do: If a weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cred-
ibility. The edges can be adjusted based on local information using parallel-
iterative techniques. This sort of process is related to more global analysis and is
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measurements
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for more
complicated adjustment formulas. In describing the edge relaxation scheme, we
essentially follow Prager’s development and use the crack edges described at the
end of the discussion on gradients (Sec. 3.31). The development can be extended
to the other kinds of edges and the reader is invited to do just this in the Exercises.

The overall strategy is to recognize local edge patterns which cause the
confidence in an edge to be modified. Prager recognizes three groups of patterns:
patterns where the confidence of an edge can be increased, decreased, or left the
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(¢) as the normalized gradient
magnitude normalized by the maximum gradient magnitude in the image.

1. k=1,
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edge C*(e) based on its edge type and its pre-
vious confidence C¥1(e);

4. Test the C*(e)’s to see if they have all converged to either 0 or 1. If so, stop;
else, increment k and go to 2.

The two important parts of the algorithm are step 2, computing the edge type, and
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). The
edge type is a concatenation of the left and right vertex types. Vertex types are
computed from the strength of edges emanating from a vertex. Vertical edges are
handled in the same way, exploiting the obvious symmetries with the horizontal
case. Besides the central edge e, the left vertex is the end point for three other pos-
sible edges. Classifying these possible edges into ‘“‘edge”’ and ‘‘no-edge’” provides
the underpinnings for the vertex types in Fig. 3.21.
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(a) (b) " I f Fig. 3.20 Edge notation. (a) Edge
— position with no edge. (b) Edge position
b . 7 with edge. (c) Edge to be updated. (d)
Edge of unknown strength. (e)
=20 e A Configuration of edges around a central
{c) (d) (e) edge e.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type jwhere jmaximizes conf (;)

and
conf(0) = (m-a)(m-b)(m-0o
conf(1) = alm- ) (m-c)
conf(2) = ab(m-¢)
conf(3) = abc

where

m = max (a, b, c, q)

gis a constant (0.1 is about right)
and a, b, and ¢ are the normalized gradient magnitudes for the three edges.
Without loss of generality, @ = b = ¢. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus (g, b, ¢) = (0.25,
0.01, 0.01) is a type 1 vertex. The parameter ¢ forces weak vertices to type zero
[e.g., (0.01, 0.001, 0.001) is type zerol.

Once the vertex type has been computed, the edge type is simple. It is merely
the concatenation of the two vertex types. That is, the edge type is (ij), where iand
Jjare the vertex types. (From symmetry, only consider ; > j.)

E—

@ -——-

(B} ==— — s

(c)  — s il === | ==l

Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.
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Decisions in the second step of modifying edge confidence based on edge
type appear in Table 3.1. The updating formula is:

increment: CH1l(e) = min (1, C*(e) + &)
decrement: Ck*1(e) = max (0, C*(e) — &)
leave as is: Ck*l(e) = Ck(e)

where 8 is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

(c) - - (d) «

Fig. 3.22 Edge relaxation results. (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only. (b) Results after five iterations of relaxation applied to
(a). (c¢) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only. (d) Results after five iterations of relaxation applied to (c).
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the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement  Increment  Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a “‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The “‘inverse perspective’’ transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been
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considerable effort in this direction [Moravec 1977; Quam and Hannah 1974; Bin-
ford 1971; Turner 1974; Shapira 1974]. The technique is conceptually simple:

1. Take two images separated by a baseline.
2. Identify points between the two images.

3. Use the inverse perspective transform (Appendix 1) or simple tri-
angulation (Section 2.2.2) to derive the two lines on which the world
point lies.

4. Intersect the lines.

The resulting point is in three-dimensional world coordinates.

The hardest part of this method is step 2, that of identifying corresponding
points in the two images. One way of doing this is to use correlation, or template
matching, as described in Section 3.2.1. The idea is to take a patch of one image
and match it against the other image, finding the place of best match in the second
image, and assigning a related ““disparity’’ (the amount the patch has been dis-
placed) to the patch.

Correlation is a relatively expensive operation, its naive implementation re-
quiring 0(n?m?) multiplications and additions for an m X m patch and nxn image.
This requirement can be drastically improved by capitalizing on the idea of variable
resolution; the improved technique is described in Section 3.7.2.

Efficient correlation is of technological concern, but even if it were free and
instantaneous, it would still be inadequate. The basic problems with correlation in
stereo imaging have to do with the fact that things can look significantly different
from different points of view. It is possible for the two stereo views to be
sufficiently different that corresponding areas may not be matched correctly.
Worse, in scenes with much obscuration, very important features of the scene may
be present in only one view. This problem is alleviated by decreasing the baseline,
but of course then the accuracy of depth determinations suffers; at a baseline
length of zero there is no problem, but no stereo either. One solution is to identify
world features, not image appearance, in the two views, and match those (the nose
of a person, the corner of a cube). However, if three-dimensional information is
sought as a help in perception, it is unreasonable to have to do perception first in
order to do stereo.

3.4.2 A Relaxation Algorithm for Stereo

Human stereopsis, or fusing the inputs from the eyes into a stereo image, does not
necessarily involve being aware of features to match in either view. Most human
beings can fuse quite efficiently stereo pairs which individually consist of randomly
placed dots, and thus can perceive three-dimensional shapes without recognizing
monocular clues in either image. For example, consider the stereo pair of Fig. 3.23.
In either frame by itself, nothing but a randomly speckled rectangle can be per-
ceived. All the stereo information is present in the relative displacement of dots in
the two rectangles. To make the right-hand member of the stereo pair, a patch of
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Fig. 3.23 A random-dot stereogram.

the randomly placed dots of the left-hand image is displaced sideways. The dots
which are thus covered are lost, and the space left by displacing the patch is filled in
with random dots.

Interestingly enough, a very simple algorithm [Marr and Poggio 1976] can be
formulated that computes disparity from random dot stereograms. First consider
the simpler problem of matching one-dimensional images of four points as de-
picted in Fig. 3.24. Although only one depth plane allows all four points to be
placed in correspondence, lesser numbers of points can be matched in other
planes.

The crux of the algorithm is the rules, which help determine, on a local basis,
the appropriateness of a match. Two rules arise from the observation that most im-
ages are of opaque objects with smooth surfaces and depth discontinuities only at
object boundaries:

1. Each point in an image may have only one depth value.
2. A point is almost sure to have a depth value near the values of its neighbors.

F'ig. 3.24 The stereo matching problem.
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Figure 3.24 can be viewed as a binary network where each possible match is
represented by a binary state. Matches have value 1 and nonmatches value 0. Fig-
ure 3.25 shows an expanded version of Fig. 3.24. The connections of alternative
matches for a point inhibit each other and connections between matches of equal
depth reinforce each other. To extend this idea to two dimensions, use parallel ar-
rays for different values of y where equal depth matches have reinforcing connec-
tions. Thus the extended array is modeled as the matrix C(x, y, d) where the
point x, y, d corresponds to a particular match between a point (x;, y,) in the
right image and a point (x;, y;) in the left image. The stereopsis algorithm pro-
duces a series of matrices C, which converges to the correct solution for most
cases. The initial matrix Cy(x, y, d) has values of one where x, y, d correspond to
a match in the original data and has values of zero or otherwise.

Algorithm 3.2 [Marr and Poggio 1976]

Until C satisfies some convergence criterion, do

Corix,y,d)=| Y Cy.d)Y— Y C,x,y.,d)+ Colx, y, d)1(3.34)

x\y,d'es x,y,d'€d
where the term in braces is handled as follows:

1 iftr>T
[¥]m 0 otherwise

[

S = set of points x, y, d' such that |x — X and d = d’

<
L land|d — d'|=1

(€1
6 = set of points x’, y, d’ such that |x — x| < 1

Disparity

Match between
x and x'

/ Inhibitory
connection

Excitatory
connection

Fig. 3.25 Extension of stereo matching.
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One convergence criterion is that the number of points modified on an iteration
must be less than some threshold 7. Fig. 3.26 shows the results of this computa-
tion; the disparity is encoded as a gray level and displayed as an image for different
values of n.

A more general version of this algorithm matches image features such as
edges rather than points (in the random-dot stereogram, the only features are

5 =

Fig. 3.26 The results of relaxation computations for stereo.
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points), but the principles are the same. The extraction of features more compli-
cated than edges or points is itself a thorny problem and the subject of Part II. It
should be mentioned that Marr and Poggio have refined their stercopsis algorithm
to agree better with psychological data [Marr and Poggio 1977].

3.5 SURFACE ORIENTATION FROM REFLECTANCE MODELS

The ordinary visual world is mostly composed of opaque three-dimensional ob-
jects. The intensity (gray level) of a pixel in a digital image is produced by the light
reflected by a small area of surface near the corresponding point on the object.

It is easiest to get consistent shape (orientation) information from an image if
the lighting and surface reflectance do not change from one scene location to
another. Analytically, it is possible to treat such lighting as uniform illumination, a
point source at infinity, or an infinite linear source. Practically, the human shape-
from-shading transform is relatively robust. Of course, the perception of shape
may be manipulated by changing the surface shading in calculated ways. In part,
cosmetics work by changing the reflectivity properties of the skin and misdirecting
our human shape-from-shading algorithms.

The recovery transformation to obtain information about surface orientation
is possible if some information about the light source and the object’s reflectivity is
known. General algorithms to obtain and quantify this information are compli-
cated but practical simplifications can be made [Horn 1975; Woodham 1978; Ikeu-
chi 1980]. The main complicating factor is that even with mathematically tractable
object surface properties, a single image intensity does not uniquely define the sur-
face orientation. We shall study two ways of overcoming this difficulty. The first al-
gorithm uses intensity images as input and determines the surface orientation by
using multiple light source positions to remove ambiguity in surface orientation.
The second algorithm uses a single source but exploits constraints between neigh-
boring surface elements. Such an algorithm assigns initial ranges of orientations to
surface elements (actually to their corresponding image pixels) on the basis of in-
tensity. The neighboring orientations are ‘‘relaxed’ against each other until each
converges to a unique orientation (Section 3.5.4).

3.5.1 Reflectivity Functions

For all these derivations, consider a distant point source of light impinging on a
small patch of surface; several angles from this situation are important (Fig. 3.27).

A surface’s reflectance is the fraction of a given incident energy flux (irradi-
ance) it reflects in any given direction. Formally, the reflectivity function is defined

asr = z—‘z, where L is exitant radiance and E is incident flux. In general, for an-

isotropic reflecting surfaces, the reflectivity function (hence L) is a function of all
three angles i, e, and g The quantity of interest to us is image irradiance, which is
proportional to scene radiance, given by L = | r dE. In general, the evaluation of
this integral can be quite complicated, and the reader is referred to [Horn and
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Fig. 3.27 Important reflectance angles:
z ¥ i, incidence; e, emittance; g, phase.

Sjoberg 1978] for a more detailed study. For our purposes we consider surfaces
with simple reflectivity functions.

Lambertian surfaces, those with an ideal matte finish, have a very simple
reflectivity function which is proportional only to the cosine of the incident angle.
These surfaces have the property that under uniform or collimated illumination
they look equally bright from any direction. This is because the amount of light
reflected from a unit area goes down as the cosine of the viewing angle, but the
amount of area seen in any solid angle goes up as the reciprocal of the cosine of the
viewing angle. Thus the perceived intensity of a surface element is constant with
respect to viewer position. Other surfaces with simple reflectivity functions are
“‘dusty’’ and ‘‘specular” surfaces. An example of a dusty surface is the lunar sur-
face, which reflects in all directions equally. Specular (purely mirror-like) surfaces
such as polished metal reflect only at the angle of reflection = angle of incidence,
and in a direction such that the incidence, normal, and emittance vectors are
coplanar.

Most smooth things have a specular component to their reflection, but in
general some light is reflected at all angles in decreasing amounts from the specular
angle. One way to achieve this effect is to use the cosine of the angle between the
predicted specular angle and the viewing angle, which is given by C where

C = 2cos (i) cos (e) — cos (g)

o
2
radians away from it. Convincing specular contributions of greater or less sharp-

ness are produced by taking powers of C. A simple radiance formula that allows the
simulation of both matte and specular effects is

L e g)=s(C)"+ (1 —s)cos(i) (3.35)

This quantity is unity in the pure specular direction and falls off to zero at
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Here s varies between 0 and 1 and determines the fraction of specularly reflected
light; n determines the sharpness of specularity peaks. As n increases, the specular
peak gets sharper and sharper. Computer graphics research is constantly extending
the frontiers of realistic and detailed reflectance, refractance, and illumination cal-
culations [Blinn 1978; Phong 1975; Whitted 1980].

3.5.2 Surface Gradient

The reflectance functions described above are defined in terms of angles measured
with respect to a local coordinate frame. For our development, it is more useful to
relate the reflectivity function to surface gradients measured with respect to a
viewer-oriented coordinate frame.

The concept of gradient space, which is defined in a viewer-oriented frame
[Horn 1975], is extremely useful in understanding the recovery transformation al-
gorithm for the surface normal. This gradient refers to the orientation of a physical
surface, not to local intensities. It must not be confused with the intensity gradients
discussed in Section 3.3 and elsewhere in this book.

Gradient space is a two-dimensional space of slants of scene surfaces. It
measures a basic ““intrinsic” (three-dimensional) property of surfaces. Consider
the point-projection imaging geometry of Fig. 2.2, with the viewpoint at infinity
(far from the scene relative to the scene dimensions). The image projection is then
orthographic, nor perspective.

The surface gradient is defined for a surface expressed as —z = f(x, y). The
gradient is a vector (p, ¢), where
_ 0(=2)

dx
_ Bile)

oy
Any plane in the image (such as the face plane of a polyhedral face) may be
expressed in terms of its gradient. The general plane equation is

p (3.36)

Ax + By +Cz+ D=0 (3.37)
Thus
_ A4 ., B, . D
e Cx—l- Cy+ a (3.38)
and from (3.36) the gradient may be related to the plane equation:
—z=px+qp+ K (3.39)

Gradient space is thus the two-dimensional space of (p, g) vectors. The pand
g axes are often considered to be superimposed on the x and y image plane coord-
inate axes. Then the (p, g) vector is ““in the direction’ of the surface slant of im-
aged surfaces. Any plane perpendicular to the viewing direction has a (p, ¢) vector
of (0,0). Vectors on the g (or y) axis correspond to planes tilted about the x axis in
an “‘upward”’ or ‘“‘downward”” (*‘yward”’) direction (like the tilt of a dressing table
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mirror). The direction arctan (g/p) is the direction of fastest change of surface
depth (—2) as xand ychange. (p? + ¢2" is the rate of this change. For instance, a
vertical plane “edge on’’ to the viewer has a (p, g) of (J e0, 0).

The reflectance map R (p, q) represents this variation of perceived brightness
with surface orientation. R (p, q) gives scene radiance (Section 2.2.3) as a function
of surface gradient (in our usual viewer-centered coordinate system). (Figure 3.27
showed the situation and defined some important angles.) R (p, g¢) is usually
shown as contours of constant scene radiance (Fig. 3.28). The following are a few
useful cases.

In the case of a Lambertian surface with the source in the direction of the
viewer (i = e), the gradient space image looks like Fig. 3.28. Remember that
Lambertian surfaces have constant intensity for constant illumination angle; these
constant angles occur on the concentric circles of Fig. 3.28, since the direction of
tilt does not affect the magnitude of the angle. The brightest surfaces are those
illuminated from a normal direction—they are facing the viewer and so their
gradients are (0,0).

Working this out from first principles, the incident angle and emittance angle
are the same in this case, since the light is near the viewer. Both are the angle bet-
ween the surface normal and the view vector. Looking at the x—y plane means a
vector to the light source of (0,0,—1), and at a gradient point (p, g), the surface
normal is (p, g, —1). Also,

R =r,cosi (3.40)

/@*\\\\/\ | .
N~/

Fig. 3.28 Contours of constant radiance in gradient space for Lambertian sur-
faces; single light source near the viewpoint.
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where r, is a proportionality constant, and we conventionally use R to denote ra-
diance in a viewer-centered frame. Let n, and n be unit vectors in the source and
surface normal directions. Since cos i = ng'n

a1+ pz + g)*
Thus cos (i) determines the image brightness, and so a plot of it is the gradient
space image (Figs. 3.29 and 3.30).
For a more general light position, the mathematics is the same; if the light
source is in the (p,, q,, —1) direction, take the dot product of this direction and
the surface normal.

(3.41)

R = r,n'n; (3.42)
Or, in other words,
_ rlpp + ¢, g+ 1)
[(1+p? + ¢%) (1 + p? + g))]”
The phase angle g is constant throughout gradient space with orthographic projec-
tion (viewer distant from scene) and light source distant from scene.
Setting R constant to obtain contour lines gives a second-order equation,
producing conic sections. In fact, the contours are produced by a set of cones of
varying angles, whose axis is in the direction of the light source, intersecting a

plane at unit distance from the origin. The resulting contours appear in Fig. 3.29.
Here the dark line is the terminator, and represents all those planes that are edge-

WA

Fig. 3.29 Contours of constant radiance in gradient space. Lambertian surfaces;
light not near viewpoint.

Sec. 3.5 Surface Orientation from Reflectance Models 97



98

on to the light source; gradients on the back side of the terminator represent self-
shadowed surfaces (facing away from the light). One intensity determines a con-
tour and so gives a cone whose tangent planes all have that emittance. For a surface
with specularity, contours of constant 7 (i, e, g) could appear as in Fig. 3.30.

The point of specularity is between the matte component maximum bright-
ness gradient and the origin. The brightest matte surface normal points at the light
source and the origin points at the viewer. Pure specular reflection can occur if the
vector tilts halfway toward the viewer maintaining the direction of tilt. Thus its
gradient is on a line between the origin and the light-source direction gradient po-
int.

3.5.3 Photometric Stereo

The reflectance equation (3.42) constrains the possible surface orientation to a
locus on the reflectance map. Multiple light-source positions can determine the
orientation uniquely [Woodham 1978]. Each separate light position gives a sepa-
rate value for the intensity (proportional to radiance) at each point f(x). If the
surface reflectance r, is unknown, three equations are needed to determine the
reflectance together with the unit normal n. If each source position vector is
denoted by n,, k = 1, ..., 3, the following equations result:

L(x, y) = r,(ngn), k=1,..,3 (3.43)
where / is normalized intensity. In matrix form
=r,Nn (3.44)
q

/

=

7

S

o
-0

Fig. 3.30 Contours of constant radiance for a specular/matte surface.
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where

= [1(x, y),1,(x, ¥),15(x, )17,

and
1 n12 ny3
N = H21 Ho2 Ho3 (3.45)
n31 k7] 33

and I = fcwhere cis the appropriate normalization constant. If ¢ is not known, it
can be regarded as being part of r, without affecting the normal direction calcula-
tion. As long as the three source positions n;, n,, n3 are not coplanar, the matrix
N will have an inverse. Then solve for r, and n by using (3.44), first using the fact
that n is a unit vector to derive

ro= N1 (3.46)
and then solving for n to obtain

n= }L N1 (3.47)

Examples of a particular solution are shown in Fig. 3.31. Of course, a prerequisite
for using this method is that the surface point not be in shadows for any of the
sources.

R, b, q1=0723 |

104

R, lp, q) = 0.942

A3 (p, g} = 0.505

-2.0 + Fig. 3.31 A particular solution for

photometric stereo.

3.5.4 Shape from Shading by Relaxation

Combining local information allows improved estimates for edges (Section 3.3.5)
and for disparity (Section 3.4.2). In a similar manner local information can help in
computing surface orientation [Ikeuchi 1980]. Basically, the reflectance equation
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provides one constraint on the surface orientation and another is provided by the
heuristic requirement that the surface be smooth.

Suppose there is an estimate of the surface normal at a point (p(x, y),
g (x, ¥)). If the normal is not accurate, the reflectivity equation /(x, y) = R (p, q)
will not hold. Thus it seems reasonable to seek p and ¢ that minimize (/ — R)2
The other requirement is that p(x, y) and g(x, y) be smooth, and this can be
measured by their Laplacians V2 p and V2 4. For a smooth curve both of these
terms should be small. The goal is to minimize the error at a point,

E(x, y) = I(x, y) = R(p, 91 + A\ [(V?p)? + (V?g)?] (3.48)
where the Lagrange multiplier A [Russell 1976] incorporates the smoothness con-

straint. Differentiating E (x, y) with respect to p and g and approximating deriva-
tives numerically gives the following equations for p(x, y) and g (x, y):

2 y) =pu(x p) + Tx y p, q)%‘;i (3.49)
q(x, ¥) = qa(x, y) + T(x, y, p, q)% (3.50)
where
T,y p q)= U/ (x y) — R(p, ¢q)]
using

Pav(x, y) = %[p(x +1, ) +px—=1,p)+pb,y+1)+ply— 1] (3.51)

and a similar expression for g,, . Now Egs. (3.49) and (3.50) lend themselves to
solution by the Gauss-Seidel method: calculate the left-hand sides with an esti-
mate for p and ¢ and use them to derive a new estimate for the right-hand sides.
More formally,

Algorithm 3.3: Shape from Shading [Ikeuchi 1980].

Step0. k = 0. Pick an initial p°(x, y) and ¢°(x, y) near boundaries.
Stepl. k =k + 1; compute

pi=pi' + T%—Ii
p

i aR
qk=Q§v1 % T"@

Step 2. If the sum of all the E’s is sufficiently small, stop. Else, go to step 1.
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A loose end in this algorithm is that boundary conditions must be specified. These
are values of pand g determined a priori that remain constant throughout each ite-
ration. The simplest place to specify a surface gradient is at an occluding contour
(see Fig. 3.32) where the gradient is nearly 90° to the line of sight. Unfortunately, p
and ¢ are infinite at these points. Ikeuchi’s elegant solution to this is to use a
different coordinate system for gradient space, that of a Gaussian sphere
(Appendix 1). In this system, the surface normal is described relative to where it
intersects the sphere if the tail of the normal is at the sphere’s origin. This is the
point at which a plane perpendicular to the normal would touch the sphere if tran-
slated toward it (Fig. 3.32b).

In this system the radiance may be described in terms of the spherical coor-
dinates 0, ¢. For a Lambertian surface

R(8,¢) =cos 8 cos 8, + sin 0 sin 8; cos(p — ¢,) (3.52)

At an occluding contour ¢ = m/2 and @ is given by tan™! (8y / 8x), where the
derivatives are calculated at the occluding contour (Fig. 3.32¢).

Occluding
contour

Ay

(b} {c)

Fig. 3.32 (a) Occluding contour. (b) Gaussian sphere. (c) Calculating # from
occluding contour.
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To use the (0, ¢) formulation instead of the (p, g) formulation is an easy
matter. Simply substitute # for pand ¢ for g in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICALFLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical flow. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘‘retinal velocity’’ at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are
given in Chapter 7. :

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function f (x, y, t) in a Taylor series.

fc+dx, y+dy t +dt)= (3.53)
ﬂ _a_f ._al + hi i t -
fp )+ e dx + By dy + Y dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time ¢ + dtis
the result of the original image at time ¢ being moved translationally by dx and dy,
then in fact

fle+dx, y+dy, t+dt) = f(x p 1) (3.54)
Consequently, from Egs. (3.53) and (3.54),
_Of _ Ordx  Of dy (3.55)

at 0x dt dy dt
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Now 9f 9f and %£ are all measurable quantities, and & and @ are estimates

¢’ ox’ dt dt
of what we are looking for—the velocity in the xand y directions. Writing
ax _ @ _
a a '
gives
_8f_8f, L, 8f, (3.56)
dr  0x ay
or equivalently,
—%{ - T (3.57)

where V fis the spatial gradient of the image and u = (z, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say that the time rate of change in intensity of a
point in the image is (to first order) explained as the spatial rate of change in the
intensity of the scene multiplied by the velocity that points of the scene move past
the camera. .

" This equation also indicates that the velocity (x4, v) must lie on a line
perpendicular to the vector (f,, fy) where f, and f, are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the direction (£, f},) is (from
3.57):

—fi
[(F2 + £D1%

3.6.2 Calculating Optical Flow by Relaxation

Equation (3.57) constrains the velocity but does not determine it uniquely. The
development of Section 3.5.4 motivates the search for a solution that satisfies Eq.

-

fiutfr+f =0

Fig. 3.33 Relation between (», v) and

(fx- fy)
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(3.57) as closely as possible and also is locally smooth [Horn and Schunck 1980].
In this case as well, the Laplacians of the two velocity components, V?u and V 2y,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

EXx, y) = (fu + fv + )2+ AUV + (V)2 (3.58)
Differentiating this equation with respect to & and v provides equations for the

change in error with respect to u# and v, which must be zero for a minimum.
Writing V2uas u — u,, and V2vas v — v,,, these equations are

W + fDu + £,y = Ny — fiofi (3.59)
Ll + 024+ 55 = Vo ~ 1.1, (3.60)
These equations may be solved for » and v, yielding
P
U=y, — fx_D_ (3.61)
P
y = v, — fy—ﬁ (3.62)

where
P = fxuav 915 fyvav + .f.'
D=\+f11+ 1}

To turn this into an iterative equation for solving u (x, y) and v(x, y), again use
the Gauss-Seidel method.

Algorithm 3.4: Optical Flow [Horn and Schunck 1980].

k=0.
Initialize all #* and v* to zero.
Until some error measure is satisfied, do

¥ P
uk = ué};vl _fxB

" P
vk = v::fvl _fyB

As Horn and Schunck demonstrate, this method derives the flow for two time
frames, but it can be improved by using several time frames and using the final sol-
ution after one iteration at one time for the initial solution at the following time
frame. That is:
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Algorithm 3.5:
t=0.

Multiframe Optical Flow.

Initialize all u (x, y, 0), v (x, y, 0)
Jor t =1 until maxframes do

ulx, p )=

vix, y, 1) =

uav(x: DA 1) - fx%

vuv(x; W= 1) - fy%

The results of using synthetic data from a rotating checkered sphere are shown in

Fig. 3.34.
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Fig. 3.34 Optical flow results. (a), (b) and (c) are three frames from the rotating
sphere, (d) is the derived three-dimensional flow after 32 such time frames.
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What is the best spatial resolution for an image? The sampling theorem states that
the maximum spatial frequency in the image data must be less than half the sam-
pling frequency in order that the sampled image represent the original unambigu-
ously. However, the sampling theorem is not a good predictor of how easily objects
can be recognized by computer programs. Often objects can be more easily recog-
nized in images that have a very low sampling rate. There are two reasons for this.
First, the computations are fewer because of the reduction in dimensionality. Se-
cond, confusing detail present in the high-resolution versions of the images may
not appear at the reduced resolution. But even though some objects are more easily
found at low resolutions, usually an object description needs detail only revealed at
the higher resolutions. This leads naturally to the notion of a pyramidalimage data
structure in which the search for objects is begun at a low resolution, and refined at
ever-increasing resolutions until one reaches the highest resolution of interest.
Figure 3.35 shows the correspondence between pixels for the pyramidal structure.

In the next three sections, pyramids are applied to gray-level images and edge
images. Pyramids, however, are a very general tool and can be used to represent
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a way
to reduce the number of samples. However, most digitizer parameters are difficult
to change, so that often computational means of reduction are needed. A
straightforward method is to partition the digitized image into nonoverlapping

L,

A I M Fig. 3.35 Pyramidal image structure.
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neighborhoods of equal size and shape and to replace each of those neighborhoods
by the average pixel densities in that neighborhood. This operation is consolidation.
For an n X n neighborhood, consolidation is equivalent to averaging the original
image over the neighborhood followed by sampling at intervals n units apart.

Consolidation tends to offset the aliasing that would be introduced by sam-
pling the sensed data at a reduced rate. This is due to the effects of the averaging
step in the consolidation process. For the one-dimensional case where

o) o %[f(x) + FGc+ 8)) (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

HGw) = 21+ e () (3.64)

which has magnitude |H («)| = coslw (u/u,)] and phase — (u/u,). The sampling
frequency u, = 1/A where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F(u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation

With correlation matching, the use of multiple resolution techniques can some-
times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

Flu) | H{w) |

ty u Uy

(a) (b)

{c)

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain. (a) Original
transform. (b) Transform of averaging operator. (c) Transform of averaged image.
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patterns. The algorithm partakes of the computational efficiency of binary (as op-
posed to linear) search [Knuth 1973]. Further, the low-resolution correlation
operations at high levels in the pyramid ensure that the earlier correlations are on
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown loca-
tion in the input image. The reference version of the feature originates in another
image, the reference image. The feature in the reference image is contained in a
window of n X #n pixels. The task of the correlator is to find an n x n window in
the input image that best matches the reference image window containing the
feature. The details of the correlation processes are given in the following algo-
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference:  an N X Nimage containing a feature centered at (Fea-
tureX, FeatureY).

Origlnput:  an M X M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

n: a window size; an n X n window in OrigReference is
large enough to contain the Feature.
Window: an m X n array containing a varying-resolution subim-
age of OrigReference centered on the Feature.
Input:  a 2n X 2parray containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference:  atemporary array.

Algorithm

1. Input:= Consolidate Origlnput by a factor of 21/ M to size 2n X 2n.

2. Reference := Consolidate OrigReference by the same factor 2n/M to size
2nN/M % 2nN/M. This consolidation takes the Feature'to a new (FeatureX,
Feature 1).

3. Window := n X n window from Reference centered on the new (FeatureX,

Feature ¥).
4. Calculate the match metric of the window at the (n + 1)? locations in Input at

which it is wholly contained. Say that the best match occurs at (BestMatch.X,
BestMatch ¥) in Input.
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5. Input := p X n window from Input centered at (BestMatchX, BestMatch ¥),
enlarged by a factor of 2.

6. Reference := Reference enlarged by a factor of 2. This takes Feature to a new
(FeatureX, Feature ¥).

7. Goto3.

Through time, the algorithm uses a reference image for matching that is al-
ways centered on the feature to be matched, but that homes in on the feature by
being increased in resolution and thus reduced in linear image coverage by a factor
of 2 each time. In the input image, a similar homing-in is going on, but the search
area is usually twice the linear dimension of the reference window. Further, the
center of the search area varies in the input image as the improved resolution
refines the point of best match.

Binary search correlation is for matching features with context. The template
at low resolution possibly corresponds to much of the area around the feature,
while the feature may be so small in the initial consolidated images as to be invisi-
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gross
features to be matched first and to guide the later high-resolution search for best
match. Such matching with context is less useful for locating several instances of a
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use of
such structures in edge detection. This application, after [Tanimoto and Pavlidis
1975], uses two pyramids, one to store the image and another to store the image
edges. The idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there is
no gray-level change (edge) in the neighborhood. Of course, the low-resolution
levels in the pyramid tend to blur the image and thus attenuate the gray-level
changes that denote edges. Thus the starting level in the pyramid must be picked
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (k, x, y)
begin
if k < MaxLevel then
Sordx =0 untill do
Sordy =0 untill do
ifEdgeOp (k, x + dx, y + dy) > Threshold (x)
thentefine (k + 1, x + dx, y + dy)
end,
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Fig. 3.37 Pyramidai edge detection.
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procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
Sorx:=0until25— 1 do
Jory:=0until2’ — 1 do
ifEdgeOp (s, x, y) > Threshold(s)
thenrefine (s. x, y);
end,

Figure 3.37 shows Tanimoto’s results for a chromosome image. The table inset
shows the computational advantage in terms of the calls to the edge operator as a
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have been
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of the
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertical
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas of Egs. (3.31) to derive the digital template function for g in a 5°
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of the
“‘crack” edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine a
surface orientation. The dual of this problem uses surface orientations to determine
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.3?

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could be
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the ‘“‘grazing incidence’ phenomenon—
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how these

equations are modified when total error [i.e., £ E (x, y)]is minimized.
XV
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The idea of segmentation has its roots in work by the Gestalt psychologists (e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing sets of shapes arranged in the visual field. Gestalt principles dictate cer-
tain grouping preferences based on features such as proximity, similarity, and con-
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful units that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics (or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. At this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain. For instance, the model may supply crucial parameters to segmentation
procedures.

In the segmentation process there are two important aspects to consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the ““adjacency’ relation. The *‘dual’” of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet. Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. Of course, from the standpoint of the
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algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen-
tation enterprise.
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- Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierarchy of struc-
tures that links raw image data with their interpretation [Marr 1975]. Chapter 3
described how various operators applied to raw image data can yield primitive edge
elements. However, an image of only disconnected edge elements is relatively
featureless; additional processing must be done to group edge elements into struc-
tures better suited to the process of interpretation. The goal of the techniques in
this chapter is to perform a level of segmentation, that is, to make a coherent one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary between
scene entities. The problems that edge-based segmentation algorithms have to
contend with are shown by Fig. 4.1, which is an image of the local edge elements
yielded by one common edge operator applied to a chest radiograph. As can be
seen, the edge elements often exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount of
knowledge incorporated into the grouping operation that maps edge elements into
boundaries. ‘“‘Knowledge’ means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies that
the global form of the boundary and its relation to other image structures is very
constrained. Little prior knowledge means that the segmentation must proceed
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.
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Fig. 4.1 Edge elementsina chest
radiograph.

These constraints take many forms. Knowledge of where to expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (its parameterization or func-
tional form) as well as the relevant ‘“‘noise processes.”’ In images of polyhedra,
only straight-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows of corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall back
on general world knowledge or heuristics that are true for most domains. For in-
stance, in the absence of evidence to the contrary, the shorter line between two
points might be selected over a longer line. This sort of general principle is easily
built into evaluation functions for boundaries, and used in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are no a
priori restrictions on boundary shapes, a general contour-extraction method is
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching near an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough transform. This elegant and versatile technique appears in various
guises throughout computer vision. In this chapter it is used to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represents the image of edge elements as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.
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4. Dynamic programming. This method is also very general. It uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contour following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below ap-
plied to a lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 1977] (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular to the approximate (a priori)
boundary. An edge operator is applied to each of the discrete points along each of
these perpendicular directions. For each such direction, the edge with the highest
magnitude is selected from among those whose orientations are nearly parallel to
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. The
a priori representation thus also contains relative locations at which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application ‘‘matches’’ the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be moved
around the image, and for each location, the number of matches is computed. If
the number of matches exceeds a threshold, the boundary location is declared to
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Fig. 4.3 A template for edge-operator
application.

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary is
known to exist between two edge elements and the noise levels in the image are
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitude (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
ments formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used to outline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al. 1979].

\ Fig. 4.4 Divide and conquer technique.
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Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x' in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y’' = mx'+ c. Regarding (x/, y) as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y') will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢’) which corresponds to the line
AB connecting these points. In fact, all points on the line 4B will yield lines in
parameter space which inter$éét at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient
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exceeds some threshold, increment all points in the accumulator array along
the appropriate line, i.e.,

Ale,m)=A(, m)+1

for mand csatisfying ¢ = —mx + y within the limits of the digitization.

4. Local maxima in the accumulator array now correspond to collinear points in
the image array. The values of the accumulator array provide a measure of the
number of points on the line.

This technique is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameteri-
zation of the line is xsin® + ycos@ = r. This produces a sinusoidal curve in (7, 8)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where a is a parameter vector. (In
this chapter we often use the symbol fas various general functions unrelated to the
image gray-level function.) In the case of a circle parameterized by

(x—a)+ (y—5b) =7 4.1)

for fixed x, the modified algorithm 4.1 increments values of g, b, r lying on the sur-
face of a cone. Unfortunately, the computation and the size of the accumulator ar-
ray increase exponentially as the number of parameters, making this technique
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
a circle, imagine a template composed of a circle of 1’s (at a fixed radius R) and 0’s
everywhere else. If this template is convolved with the gradient image, the result is
the portion of the accumulator array 4 (a, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values q, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (g,4) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b) is
given by
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Fig 4.6 Reduction in computation with gradient information
a=x—rsing (4.2)
b=y +rcos¢

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations is the assumption thai the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tand, and solving for a and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics. In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or to
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
1975], the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7c, the resultant accumulator array A4 [a, b, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radii and then a set of likely circles is chosen by setting a radius-dependent
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. The
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(a) : (b)

(d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for » = 3. (d) Results of maxima detection.

circular boundaries detected by the Hough technique are overlaid on the original
image.
4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known to be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Using the equation for the ellipse together with its derivative, and substituting for
the known gradient as before, one can solve for two parameters. In the equation
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(x —XU)Z 4 (}’ —yo)z
g* b?
X is an edge point and xg, yg, @, and b are parameters. The equation for its deriva-
tive is

=1 (4.3)

(x—xg) + (y—g?n)l ﬂ=0 (4.4)
a b dx

where dy/dx = tan ¢ (x). The Hough algorithm becomes:

Algorithm 4.2: Hough technique applied to ellipses

For each discrete value of xand y, increment the point in parameter space given by
4, bs X0s Yo, Whel'e

a
= xpt+ 4.5)
T (1 + b¥a%tan’p)" (

T (1 + a’tan’¢/pY)"
that is,
A(a, b, xq, yo) = Ala, b, xo, yo) + 1

For a and beach having m values the computational cost is proportional to m?2.

Now suppose that we consider all pairwise combinations of edge elements.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter point can be determined exactly. That is, the following equations can be
solved for a unique xq, yo, a, b.

- - (4.7a)
(x> ;xO) (v2 ;yo)z i (4.7b)
) a—zxo L y1;“2yo % -0 (4.7¢c)
xz;xo yz;yo % o (4.7d)

& tan ¢ (*dJi is known from the edge operator)
dx dx
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Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edge
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough technique is so closely related to tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the R-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points in
parameter space from edge point data in image space and increment the parameter
points in an accumulator array. Figure 4.8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x., y.) are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, y) with gradient orientation ¢ constrains the
possible reference points to be at {x + r; (#) cos [a; (¢)], y + r () sin [, ($)]}
and so on.

Fig. 4.8 Geometry used to form the
R-Table.
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Table 4.1
INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary ~ Set of radii {r*} where
fo reference point r=0 a)
3 /95 ; R, 14
¢ o R
(t’m r{n, rlm; vy l.:'!

m

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make a table (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A (X min * Xemaxs Yemin  Yemay) iDitialized to zero.

Step 2. For each edge point do the following:
Step2.1. Compute ¢ (x)

Step 2.2a. Calculate the possible centers, that is, for each table entry for
¢, compute

x, =x+r ¢ cosla(s)]

Yo =y+r ¢ sinla(p)]

Step 2.2b. Increment the accumulator array
Alx, y) = A, y) + 1

Step 3. Possible locations for the shape are given by maxima in array 4.

The results of using this transform to detect a shape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, 4 (x,, y.)
displayed as an image. Figure 4.9c shows the shape given by the maxima of
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(a)

{c)

Fig. 4.9 Applying the Generalized Hough technique. (a) Synthetic image. (b) Hough
Transform A (x,, y.) for middle shape. (c) Detected shape. (d) Same shape in an aerial
image setting.

A (x., y,) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, S and 8 ? These are readily
accommodated by expanding the accumulator array and doing more work in the in-
crementation step. Thus in step 1 the accumulator array is changed to

(xcmin *Xemaxs Yemin - Yemax Smin : Smax: Gmin :Gmax)

and step 2.2a is changed to
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for each table entry for ¢ do
foreach S and 9
x. = x+r(p)Scos [a(p) + 0]
v, =y +r(p)Ssinla(p) + 0]
Finally, step 2.2b is now
Alx, y., 8 60) = A(x,, y,, 5, 68) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n;} and arcs between
nodes <n;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x;), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, x; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x,) and, furthermore, g (x;)

|
s

ARrdasrd
l

i

=N INE=

N i ©

Fig. 4.10 Interpreting a gradient image as a graph (see text).
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> Tt g(x;) > T, where T'is a chosen constant, and|{ [¢ (x,) — ¢ (x,)] mod 27}| <
m/2. (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)
To generate a path in a graph from x4 to xz one can apply the well-known

technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x4 to X

2. That we have a method for generating the successor nodes of a given node
(such as the heuristic described above)

3. That we have an evaluation function f(x;) which is an estimate of the optimal
cost path from x4 to x5 constrained to go through x;

Nilsson expresses f(x;) as the sum of two components: g(x;), the estimated cost
of journeying from the start node x4 to x;, and k (x;), the estimated cost of the path

from x; to x, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. ““Expand” the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum ffrom OPEN. If x; = xj, then stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x;, putting successors on OPEN with pointers back to x;. Go
to step 2.

The component /4 (x;) plays an important role in the performance of the algorithm;
if 4 (x;) = 0 for all i, the algorithm is a minimum-cost search as opposed to a heuristic
search. If h(x;) > h*(x;) (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If #(x,) < h*(x,), the search will always
produce a minimum-cost path, provided that 4 also satisfies the following con-
sistency condition:

If for any two nodes X; and X;, k (X;, X,) is the minimum cost of getting from
X; to X; (if possible), then
k(Xj, Xj) = h*(x,-) = h*(xj)

With our edge elements, there is no guarantee that a path can be found since
there may be insurmountable gaps between x, and x. If finding the edge is cru-
cial, steps should be taken to interpolate edge elements prior to the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines
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edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well as
components that are relatively task-independent. The latter components are dis-
cussed here.

1. Edge strength. If edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M — s(x) where M = max s(x)
X

2.  Curvature. If low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increasing function of
difflé (x) — ¢(x))]
where diff measures the angle between the edge elements at x; and x;.
3. Proximity to an approximation. If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:
d = dist (x,,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x; to the approximate boundary B.

4.  Estimates of the distance to the goal. If the curve is reasonably linear, points near
the goal may be favored by estimating / as d (x;, X,.,), Where d is a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Lester et al. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to find all boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel’s operator (Chapter 3) is used to obtain

. 5

(a) (b) {c)

Fig. 4.11 Successor conventions in heuristic search (see text).
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strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search to form sequences
of edge elements called streaks. Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exist (i.e., a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.

If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-

e
a
4
%, S
//
Ve
e
=%
/r_,/r—‘* . 1;”)—&‘:-\
\ \ .
S '

f \

Fig.' 4,12 Operations in the creation of prime streaks.
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(c) (d)

(e) | (f)

Fig. 4.13 Ramer’s results.

laxation operations described in Section 3.3.5. The resultant streaks must still be
analyzed to determine the objects they represent. Nevertheless, this method
represents a cogent attempt to organize bottom-up edge following in an image. Fig.

4.13 shows an example of Ramer’s technique.
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4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nodes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared to tip nodes near the start
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
tages, other less rigorous search procedures have proven to be more practical, five
of which are described below.

Pruning the Tree of Alternatives

At various points in the algorithm the tip nodes on the OPEN list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation can be carried out
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree. Depth-first search means always evaluating the most recent expanded son.
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation function f to rate the successor nodes and expand the best of
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 1978], only the maximum-cost arc of each path is
kept as an estimate of g. This is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the search
tree, so that good paths may be followed for a long time. This technique has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this method is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally generating a path between the desired end points. Also, the evaluation func-
tion must be monotonically increasing with the length of the path. With these con-
ditions we start generating paths, excluding partial paths when they exceed the
current bound.

Modified Heuristic Search

Sometimes an evaluation function that assigns negative costs leads to good
results. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.
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Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max h (xl, X2, X3, X4) (48)

X

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xq,.. ., xa.
Suppose that

h() = f’l] (xl, xz) e hz (x;, X3) I h3 (X3, X4) (49)

x; only depends on x; in A,. Maximize over x, in /4, and tabulate the best value of
hy (x;, xy for each x;:

S1(x3) = max Ay (x), x3) (4.10)
X1

Since the values of 4, and A3 do not depend on x;, they need not be considered at
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this point. Continue in this manner and eliminate x, by computing £, (x3) as

fz (X3) = maX[fl (x;) + hy (XQ, X3)] (4.11)
and
f3 (X4) = max {fz (JC3) + h3(X3, X4)I (412)
*3
so that finally
max h = max f3 (x4) (4.13)
X‘: .\.’4
Generalizing the example to N variables, where f; (x;) = 0,
foor () = max [f,— Oe,—1) + A,—1(x,-1, x,)] (4.14)
n—1
max i (x;, ..., xy) = max fy—; (ey)
I,- XN

If each x; took on 20 discrete values, then to compute fy (xy,;) one must evaluate
the maximand for 20 different combinations of xy and xy.i, so that the resultant
computational effort involves (N — 1)20? + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
h!

Consider the artificial example summarized in Table 4.2. In this example,
each x can take on one of three discrete values. The A; are completely described by
their respective tables. For example, the value of 4,(0, 1) = 5. The solution steps
are summarized in Table 4.3. In step 1, for each x, the value of x, that maximizes
h1(x,, x4) is computed. This is the largest entry in each of the columns of 4. Store
the function value as £, (x,) and the optimizing value of x; also as a function of x,.
In step 2, add f;(x,) to h,(x,, x3). This is done by adding f; to each row of A,
thus computing the quantity inside the braces of (4.11). Now to complete step 2,
for each x;, compute the x, that maximizes 4, + f, by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables. For
example, for x4, = 2 we see that the best x; is —1, and therefore the best x, is 3 and
x1 is 1. This step is denoted by arrows.

Table 4.2
DEFINITION OF A

138

X2 X3 X4
X, 1 2 3 X —=] 0 1 X5 1 2 3
0 5 7 3 1 1 7 1 =4 7 9 8
1 2 1 8 2 1 1 3 0 2 3 6
2 6 3 3 3 b 6 2 1 5 4 1
hy hy hy

Ch. 4 Boundary Detection



Table 4.3
METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

X2 fy X4
1 3] 2
Step 1
2 7 0
(3] s |O
-
fi
%
\“*__‘
———
s
~
\\
W \
X =1 0 1 X3 fa Xy :
/
1 7 | 13 7 ,@ 13 @/
Step 2 F/
2 8 8 | 4] 14 3
\
@ NIGE
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N
N
N
~
~
~
%
~
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~
~
Xy N
% 1 2 | 3 X | f | X N
\
\
EE® ICIER
Step 3 /"
IDEE oIk
1 15 14 11 3 21 -1

Step 4:  Optimal x;’s are found by examing tables
(dashed line shows the order in which they
are recovered),

Solution: h* =22
x1=1,x3=3,x3=-1,x5=2
4.5.2 Dynamic Programming for Images
To formulate the boundary-following procedure as dynamic programming, one

must define an evaluation function that embodies a notion of the ““best boundary”’
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-
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plied to a gray-level picture to produce edge magnitude and direction information.
Then one possible criterion for a “‘good boundary”’ is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an n-segment
curve,

n h—1
hixg,...,x,) = 2 s(x,) +a) qx, x4 (4.16)
k=1 k=1
where the implicit constraint is that consecutive x;’s must be grid neighbors:
Ixy — X441 <+/2 (4.17)
q (g, Xp1) = diff [ (x,), b (x441)] (4.18)

where « is negative. The function g we take to be edge strength, i.e., g (x) = s(x).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

fo(x))=0 (4.19)

f1(x3) = max [s (x)) + ag(x], x3) + folxp)] (4.20)
25

fk (Xk+1) = max [S (xk) + aq(xk, Xk+1) + fk,l(xk)] (421)
Xk

These equations can be put into the following steps:

Algorithm 4.5: Dynamic Programming for Edge Finding

1. Setk = 1.

Consider only x such that s (x) > T. For each of these x, define low-curvature
pixels “‘in front of >’ the contour direction.

3. Each of these pixels may have a curve emanating from it. For k=1, the curve
is one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equation.

4. If k= N, pick the best fy_, and stop. Otherwise, set kK = k +1 and go to step
2.

This algorithm can be generalized to the case of picking a curve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are

Ch. 4 Boundary Detection



i

\

s SN e

T

~
AN
~

e

Fig. 4.15 DP optimization for boundary tracing.

fo(X;) =0

fi (xpe) = max[s(x;) + aq (x;, t(x,41))
Xk

+ fi-1 (x)] (4.22)

where the curve length n is related to « by a building sequence # () such that » (1)
=1,n(L) = N,and n(]) — n(i—1) is a member of {n(k) |k =1, ..., I —1}.
Also, t(x,) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of this
method’s performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, so that circular cues can be used to assist the search. In Fig.
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components g (x,)
and g (x,, X441) in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nique. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and
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Elschlager 1973]. The Fischler and Elschlager formulation models an object as a
set of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model matches a part of the
image at the point x. (These local functions may be defined in any manner whatso-
ever.) “‘Relational functions,” denoted by g, (x, y), measure how well the posi-
tion of the match of the kth part at (x) agrees with the position of the match of the
Jjthpart at (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lower
corners. To locate these points, local functions g (x,) are defined which should be
maximized when the corresponding point x; is correctly determined. Similarly,
q (xy, xJ,—) is a function relating points x; and x;. In their case, Chien and Fu used
the following functions:
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T(x) = template centered at x computed as
an aggregate of a set of chest radiographs
T(x — x.)f(x)
80 = X~}

and

6(x,, x;) = expected angular orientation of x; from x;

g (x; x;) = |6 (x, x;) — arctan %
With this formulation no further modifications are necessary and the solution may
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu’s results using this method with five template
functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective func-
tion. In the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

h() = h] (X], X2) *+ hz (X2, X3, X4) + h; (X:;’ X4, Xs, x6)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, to eliminate x, in h,, all possible combinations of x; and x4 must be con-
sidered. To eliminate x3 in A3, all possible combinations of x4, xs, and x4, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
two points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristic
were available.

4.6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-

tions: “‘blob finding’’ in images. The ideas are easiest to present for binary images:
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Fig. 4.17 Results of using local templates and global relations. (a) Model. (b) Results.

Given a binary image, the goal is find the boundaries of all distinct regions in the
image.

This can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 1973]:

1. Scan the image until a region pixel is encountered.
2. Ifitis aregion pixel, turn left and step; else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 shows the path traced out by the procedure. This procedure requires
the region to be four-connected for a consistent boundary. Parts of an eight-
connected region can be missed. Also, some bookkeeping is necessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due to [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding a four-connected background
pixel from a known boundary pixel. The next boundary pixel is the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have to be introduced into algorithms
that follow contours of irregular eight-connected figures. A good exposition of
these is given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is to start with a point that is believed to
be on the boundary and to keep extending the boundary by adding points in the
contour directions. The details of these operations vary from task to task. The gen-
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Fig. 4.18 Interaction graphs for DP (see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s (x) and direction ¢ (x) associated with each point x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢ (x) + @/2, as shown by Fig. 4.20. A representative procedure is

adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x;. Move to the point x;
adjacent to x; in the direction perpendicular to the gradient of x;. Apply the
gradient operator to x; if its magnitude is greater than (some) threshold, this

point is added to the edge.

2. Otherwise, compute the average gray level of the 3 x 3 array centered on x,,
compare it with a suitably chosen threshold, and determine whether x; is in-

side or outside the object.

3. Make another attempt with a point x, adjacent to x; in the direction perpendic-
ular to the gradient at x; plus or minus (w/4), according to the outcome of the

previous test.

Sec. 4.6 Contour following

Fig. 4.19 Finding the boundary in a

binary image.
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4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradient is the same (a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries.
In four dimensions, ‘‘edge elements” are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no ‘“‘spurious’” boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempt to overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with *‘crack’’ edges such as those in
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation A (xl, X6) is added to the model described by Fig. 4.18a so
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described by Eqgs. (4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).

Ch. 4 Boundary Detection



4.5 Extend the Hough technique for ellipses described by Egs. (4.7a) through (4.7d) to
ellipses oriented at an arbitrary angle @ to the xaxis.

4.6 Show how to use the generalized Hough technique to detect hexagons.
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Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that often correspond to object boundaries, interesting surface detail, and so on.
The ““‘dual’”’ problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris-
tics to map individual pixels in an input image to sets of pixels called regions. An
image region might correspond to a world object or a meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
tation techniques despite their redundant-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered to be connected two-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region —they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-
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cated techniques ‘‘grow’’ regions by merging more primitive regions. To do this in
a structured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary structure separating regions in addition to the region semantics. A
good survey of early techniques is [Zucker 1976].

The techniques we consider are:

1. Local techniques. Pixels are placed in a region on the basis of their properties or
the properties of their close neighbors.

2. Global techniques. Pixels are grouped into regions on the basis of the properties
of large numbers of pixels distributed throughout the image.

3. Splitting and merging techniques. The foregoing techniques are related to indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and global
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this event, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R, are considered to be sets of points with the following properties:

x; inaregion R is connectedto x, iff there
is a sequence {x;, ..., X;1 such that x; and X, (5.1
are connected and all the points are in R.

R is a connected region if the set of points x in R has the (5.2)
property that every pair of points is connected.

m
I, the entire image = |J R, (5.3)
k=1

R R=d¢s %} G4

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That is,
for some Boolean function A (R) that measures region homogeneity,

H(R,) = trueforall k (5.5)
H(R;\J R)) = false for i= (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion is
that neighboring regions not be homogeneous.

Ch. 5 Region Crowing



5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connected blobs of 1’s on a back-
ground of 0’s, the objective is to “‘color each blob”’; that is, assign each blob a
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Fig. 5.1. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k = 1. Scan the image from left to right and top to bottom.
If £ (xc) = 0 then continue

else
begin

if (f(xy) =1and f(x;) =0)
then color (x¢) := color (xy)

if (f(x,) = 1and f(xy) =0)
then color (x¢) := color (x;)

if (f(x,) =1and f(x,) = 1)

then begin
color (x¢) := color (x;)
color (x;) is equivalent to color (x )
end

comment: two colors are equivalent.

if (f(x;) =0and f(xy) =0)
then color (x;) := k; k:= k+1

comment: new color

end

After one complete scan of the image the color equivalences can be used to assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. If in a

.

Xg X Fig. 5.1 L-shaped template for blob
coloring.
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gray-level image f(x.) is approximately equal to £ (x ), assign X to the same re-
gion (blob) as x; . This is equivalent to the condition f (x¢) = f(x;) = 1in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number
of
pixels

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into either object or background:

x is part of the Object iff f(x) > T
Otherwise it is part of the Background

The best way to pick the threshold T'is to search the histogram of gray levels,
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig.
5.2. Finding the right valley between the peaks of a histogram can be difficult when
the histogram is not a smooth function. Smoothing the histogram can help but
does not guarantee that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composite
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary to smooth region boundaries and re-
move noise. A common problem with this technique occurs when the image has a
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image to
deemphasize the low-frequency background variation and then try the original
technique; and (2) use a spatiaily varying threshold method such as that of [Chow
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have a
threshold if its gray-level histogram is not bimodal. Such subimages receive inter-

Gray level
Fig. 5.2 Threshold determination

Threshold from gray-level histogram.
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polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; the
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parame-
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blue color components; the intensity, saturation,
and hue components; and the N.T.S.C. Y, I, O components (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
extension in this algorithm is the recursive application of this technique to nonrec-
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2: Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of the
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passes
the test, pick the component with the most significant peak and determine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds to
divide the region into subregions.

3. Each subregion may have a “‘noisy’’ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld and
Kak 1976].

4. Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in the
same histogram peak when a single measurement is used. The advantage of the
multimeasurement histograms is that these different regions are often separated
into individual peaks, and hence the segmentation is improved. Figure 5.4 shows
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many
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Fig. 5.3 Peak detection and threshold determination. (a) Original image. (b) Histograms. (c) Image segments

resulting from first histogram peak.
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Fig. 5.3 (d) Final segments.

(d)

dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions. The region-growing process is then re-
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this struc-
ture.

5.4 SPLITTING AND MERGING

Given a set of regions R, k = 1,...,m, alow-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties from
the standpoint of segmentation are Egs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some i
and j, then regions iand jare collectxvely homogeneous and should be merged into
asingle region.

In our previous dlscussmns we used

true if all neighboring pairs of points
H(R) = in R aresuchthat f(x) — f(y) < T (5.7
false otherwise

and

true if the pointsin R passa
H(R) = bimodality or peak test (5.8)
false otherwise
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Fig. 5.4 Multi-dimensional

histograms in segmentation. (a) Image.
(b) RGB histogram showing successive
planes through a 16 x 16 x 16 color
space. (c) Segments. (See color inserts.) (c)
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Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions (except a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H (R) = false, split that region into four subregions. If for any
four appropriate regions Ry ..., Rya, H(Ri1 \J Rz | Ris U Ris) = true,
merge them into a single region. When no regions can be further split or
merged, stop.

2. If there are any neighboring regions R; and R; (perhaps of different sizes) such
that H (R, |J R;) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The “‘classical’’ state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
two-dimensional image as a discrete state, where every sample point is a separate
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.
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An important part of the state-space approach is the use of data structures to
allow regions and boundaries to be manipulated as units. This moves away from
earlier techniques, which labeled each individual pixel according to its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970]. This representation in-
troduces the notion of a supergrid S to the image grid G. These grids are shown in
Fig. 5.6, where - and + correspond to supergrid and O to the subgrid. The
representation is assumed to be four-connected (i.e., x1 is a neighbor of x2 if||x1 —
x2[[< 1).

With this notation boundaries of regions are directed crack edges (see Sec.
3.1) at the points marked +. That is, if point x,, is a neighbor of x;and x; isina
different region than x j, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R,, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
gions, reflecting a transition from local measurements to global measurements.
These criteria use measures of boundary strength s;; and w;; defined as

s =f&x) — fx))| (5.9)
l] if Sk < T]
W, =

x;,l . ;L_lﬁ_T EF“‘TZTLT
I [ S A B
Lt -

(a)

Fig. 5.7 Region operations on the grid structure of Fig. 5.6.
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where x; and x ; are assumed to be on either side of a crack edge (Chapter 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (7}, k = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x; and x; if
i#jand w; = 1. When no more boundaries can be removed, go to step 2.

2. Remove the boundary between R; and R; if

4

min [P,.‘, PJ'] T2 S

where Wis the sum of the w; on the common boundary between R; and R,
that have perimeters p; and p; respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary between R; and R; if
W =z T; (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph called the region adjacency graph, and
its “‘dual graph.”” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).
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Consider the regions of an image shown in Fig. 5.8a. The region adjacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment. To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plane with no arcs intersecting)
and its edges are undirected. The “‘dual” of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junction between three or more
boundary segments. By maintaining both the region adjacency graph and its dual,
one can merge regions using the following algorithm:

Algorithm 5.5: Merging Using the Region-Adjacency Graph and Its Dual

Task: Merge neighboring regions R; and R;.

Phase 1. Update the region-adjacency graph.

1. Place edges between R; and all neighboring regions of R; (excluding, of

course, R;) that do not already have edges between themselves and R;.
2. Delete R, and all its associated edges.

Phase 2. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between R, and R;.
2. Foreach of the nodes associated with these edges:

(a) if the resultant degree of the node is less than or equal to 2, delete the
node and join the two dangling edges into a single edge.

(b) otherwise, update the labels of the edges that were associated with j
to reflect the new region label i

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent ‘‘seman-
tics”” has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability about
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensity
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(a)

(b)

Fig. 5.8 (a) Animage partition. (b)

\\ \-.\_ g __// _____,/ The region adjacency graph (solid lines).
Ptz 1 SRS (c) The dual of the adjacency graph
{c) (solid lines).

and hue. An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic cri-

(a) (b}

Fig. 5.9 Merging operations using the region adjacency graph and its dual. (a) Before
merging regions separated by dark boundary line. (b) After merging.
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teria are used. The region growing consists of four steps, as summed up in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
Ty and T, are preset thresholds

1. Merge regions i, j as long as they have one weak separating edge until no two
regions pass this test.

2. Merge regions i, jwhere S(i, j) < T,where

Ci + QU

S j) = ¥ B

where ¢ and c; are constants,

(area;)” + (area;)”
perimeter; - perimeter;

alj =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let B; be the boundary between R; and R;. Evaluate each B;; with a Bayesian
decision function that measures the (conditional) probability that B,; separates
two regions R; and R; of the same interpretation. Merge R, and R; if this condi-
tional probability is less than some threshold. Repeat step 3 until no regions
pass the threshold test.

4. Evaluate the interpretation of each region R; with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments.

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. An
expression for the evaluation function is (for a given partition and interpretations X
and ¥):

max IT {P[B; isaboundary between X and Y | measurementson B;]}
B LJ

x 11 {PIR, isan X | measurementson R,}}

x I1 {P[R; isan Y | measurements on R;]}
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where P stands for probability and I1 is the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms can
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974] is to quantize the mea-
surements and represent them in terms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of intensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and » and the same interpretations. These two
figures indicate that P[R, isa CAR |0 £ i< 1,0 £ h < H|] = , and P[B;; divides
two car regions | M, < m < My, Ny < n < Ny, = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary B;; between regions R, and R; is false is given by

Pryse = P,PTJPf (5.13)
where
P, = Y {P[B; is between two subregions X | B;’s measurements]} (5.14a)
x{P[R; is X | measl}x{P[R; is X | meas]}
P,= Y [PIB; isbetween X and Y | meas]] (5.14b)
Xy
x {PIR; is X | meas 1}x{P[R; is Y | meas]} .

Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.
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4 Road/sky
1 Road/car
3 Sky/car

2 Road/road
2 Car/car
1 Sky/sky

Fig. 5.11 Hypothetical classification
tree for boundary measurements
showing a specific branch for specific
ranges of two measurements mand n.

And for step 4 of the algorithm,

P[R,; is X1 | meas]
PR, is X2 | meas]

Confidence; = (5.15)

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X1, the neighbors are updated using

51

5.2

5.3

5.4

5.5

5.6

5.7

P[R; is X | meas]:=Prob [Rj is X | meas] (5.16)

x P[B; is between X and X1 |meas]

EXERCISES

In Algorithm 5.1, show how one can handle the case where colors are equivalent. Do
you need more than one pass over the image?

Show for the heuristic of Eq. (5.11) that
(@ IT, 2 WT, > P,
) P, <P +1I(1/T,-2)

where P, is the perimeter of R;|J R j» I is the perimeter common to both jand j
and P, = min (P; P;). What does part (b) imply about the relation between T’ and
Pt

Write a ‘‘histogram-peak’ finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.

Suppose that regions are represented by a neighbor list structure. Each region has an
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.

Why do junctions of regions in segmented images tend to be trihedral?

Regions, boundaries, and junctions are the structures behind the region-adjacency
graph and its dual. Generalize these structures to three dimensions. Is another struc-
ture needed?

Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)
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Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of texture admits to no rigid description, but a dictionary definition of
texture as ‘‘something composed of closely interwoven elements’ is fairly apt.
The description of interwoven elements is intimately tied to the idea of texture
resolution, which one might think of as the average amount of pixels for each dis-
cernable texture element. If this number is large, we can attempt to describe the
individual elements in some detail. However, as this number nears unity it be-
comes increasingly difficult to characterize these elements individually and they
merge into less distinct spatial patterns. To see this variability, we examine some
textures.

Figure 6.1 shows ‘‘cane,”” ““paper,” ‘“‘coffee beans,’” “‘brickwall,’’ “‘coins,”’
and “‘wire braid”’ after Brodatz’s well-known book [Brodatz 1966]. Five of these
examples are high-resolution textures: they show repeated primitive elements that
exhibit some kind of variation. “‘Coffee beans,”” ““brick wall’’ and “‘coins’” all have
obvious primitives (even if it is not so obvious how to extract these from image
data). Two more examples further illustrate that one sometimes has to be creative
in defining primitives. In ‘‘cane’’ the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in “‘wire braid’’ it might be better to model
the physical relations of a loose weave of metallic wires. However, the paper tex-
ture does not fit nicely into this mold. This is not to say that there are not possibili-
ties for primitive elements. One is regions of lightness and darkness formed by the
ridges in the paper. A second possibility is to use the reflectance models described
in Section 3.5 to compute ‘‘pits’” and “‘bumps.”’ However, the elements seem to
be ““just beyond our perceptual resolving power’’ [Laws 19801, or in our terms, the
elements are very close in size to individual pixels.
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Brick wall. (e) Coins. (f) Wire braid.

Fig. 6.1

The exposition of texture takes place under four main headings:

Texture primitives

L.

Structural models

2

Statistical models

3;

Texture gradients

4.
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We have already described texture as being composed of elements of texture primi-
tives. The main point of additional discussion on texture primitives is to refine the
idea of a primitive and its relation to image resolution.

The main work that is unique to texture is that which describes how primi-
tives are related to the aim of recognizing or classifying the texture. Two broad
classes of techniques have emerged and we shall study each in turn. The structural
model regards the primitives as forming a repeating pattern and describes such pat-
terns in terms of rules for generating them. Formally, these rules can be termed a
grammar. This model is best for describing textures where there is much regularity
in the placement of primitive elements and the texture is imaged at high resolu-
tion. The “‘reptile’” texture in Fig. 6.9 is an example that can be handled by the
structured approach. The sratistical model usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The “‘paper’” tex-
ture is such an example. As we shall see, we cannot be too rigid about this division
since statistical models can describe pattern-like textures and vice versa, but in
general the dichotomy is helpful.

The examples suggest that texture is almost always a property of surfaces.
Indeed, as the example of Fig. 6.2 shows, human beings tend to relate texture ele-
ments of varying size to a plausible surface in three dimensions [Gibson 1950;
Stevens 1979]. Techniques for determining surface orientation in this fashion are
termed texture gradient techniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial place-
ment of primitives. The notion of a gradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point in
the image. The chapter concludes with algorithms for computing this gradient.
The gradient may be computed directly or indirectly via the computation of the
vanishing point.

/_\ Fig. 6.2 Texture as a surface property.
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6.2 TEXTURE PRIMITIVES

The notion of a primitive is central to texture. To highlight its importance, we shall
use the appelation texel (for texture element) [Kender 1978]. A texel is (loosely)
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One basic
invariant property of such a unit might be that its pixels have a constant gray level,
but more elaborate properties related to shape are possible. (A detailed discussion
of planar shapes is deferred until Chapter 8.) Figure 6.3 shows examples of two
kinds of texels: (a) ellipses of approximately constant gray level and (b) linear edge
segments. Interestingly, these are nearly the two features selected as texture prim-
itives by [Julesz, 1981], who has performed extensive studies of human texture
perception.

For textures that can be described in two dimensions, image-based descrip-
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels such
as curve segments or regions. The “‘coffee beans’ texture can be described by an
image-based model: repeated dark ellipses on a lighter background. These models
describe equally well an image of texture or an image of a picture of texture. The
methods for creating these aggregates were discussed in Chapters 4 and 5. As with
all image-based models, three-dimensional phenomena such as occlusion must be
handled indirectly. In contrast, structural approaches to texture sometimes require
knowledge of the three-dimensional world producing the texture image. One ex-
ample of this is Brodatz’s “‘coins’’ shown in Fig. 6.1. A three-dimensional model of
the way coins can be stacked is needed to understand this texture fully.

An important part of the texel definition is that primitives must occur repeat-
edly inside a given area. The question is: How many times? This can be answered
qualitatively by imagining a window that corresponds approximately to our field of
view superimposed on a very large textured area. As this window is made smaller,
corresponding to moving the viewpoint closer to the texture, fewer and fewer tex-
els are contained in it. At some distance, the image in the window no longer

Fig. 6.3 Examples of texels. (a) Ellipses. (b) Linear segments.
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appears textured, or if it does, translation of the window changes the perceived tex-
ture drastically. At this point we no longer have a texture. A similar effect occurs if
the window is made increasingly larger, corresponding to moving the field of view
farther away from the image. At some distance textural details are blurred into
continuous tones and repeated elements are no longer visible as the window is
translated. (This is the basis for halftone images, which are highly textured pat-
terns meant to be viewed from enough distance to blur the texture.) Thus the idea
of an appropriate resolution, or the number of texels in a subimage, is an implicit
part of our qualitative definition of texture. If the resolution is appropriate, the tex-
ture will be apparent and will “‘look the same’’ as the field of view is translated
across the textured area. Most often the appropriate resolution is not known but
must be computed. Often this computation is simpler to carry out than detailed
computations characterizing the primitives and hence has been used as a precursor
to the latter computations. Figure 6.4 shows such a resolution-like computation,
which examines the image for repeating peaks [Connors 1979].

Textures can be hierarchical, the hierarchies corresponding to different reso-
lutions. The “‘brick wall’’ texture shows such a hierarchy. At one resolution, the
highly structured pattern made by collections of bricks is in evidence; at higher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT

Highly patterned textures tesselate the plane in an ordered way, and thus we must
understand the different ways in which this can be done. In a regular tesselation the
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Fig. 6.4 Computing texture
resolutions. (a) French canvas. (b)
Resolution grid for canvas. (c) Raffia.

(d) Grid for raffia.
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polygons surrounding a vertex all have the same number of sides. Semiregular
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2.11 depicts the regular tesselations of the plane. There are eight
semiregular tesselations of the plane, as shown in Fig. 6.5. These tesselations are
conveniently described by listing in order the number of sides of the polygons sur-

(3, 3, 3 4, 4 3, 3 4,3 4

Fig. 6.5 Semiregular tesselations.
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rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6) and
every vertex in the tesselation of Fig. 6.5 can be denoted by the list (3,12,12). It is
important to note that the tesselations of interest are those which describe the
placement of primitives rather than the primitives themselves. When the primitives
define a tesselation, the tesselation describing the primitive placement will be the
dual of this graph in the sense of Section 5.4. Figure 6.6 shows these relationships.

Texel Placement
tesselation Fig. 6.6 The primitive placement

tesselation as the dual of the primitive
tesselation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through a
grammar. A grammar describes how to generate patterns by applying rewriting rules
to a small number of symbols. Through a small number of rules and symbols, the
grammar can generate complex textural patterns. Of course, the symbols turn out
to be related to texels. The mapping between the stored model prototype texture
and an image of texture with real-world variations may be incorporated into the
grammar by attaching probabilities to different rules. Grammars with such rules
are termed stochastic [Fu 1974].

There is no unique grammar for a given texture; in fact, there are usually
infinitely ‘many choices for rules and symbols. Thus texture grammars are
described as syntactically ambiguous. Figure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture is also semanti-
cally ambiguous [Zucker 1976] in that alternate ridges may be thought of in three
dimensions as coming out of or going into the page.

There are many variants of the basic idea of formal grammars and we shall
examine three of them: shape grammars, tree grammars, and array grammars. For
a basic reference, see [Hopcroft and Ullman 1979]. Shape grammars are dis-
tinguished from the other two by having high-level primitives that closely
correspond to the shapes in the texture. In the examples of tree grammars and ar-
ray grammars that we examine, texels are defined as pixels and this makes the
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Fig. 6.7 Ambiguous texture.

grammars correspondingly more complicated. A particular texture that can be
described in eight rules in a shape grammar requires 85 rules in a tree grammar [Lu
and Fu 1978]. The compensating trade-off is that pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives used
by the shape grammar.

6.3.2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-tuple <V, V,,, R, §>
where:

1. V,isafinite set of shapes
2. V,isafinite set of shapessuchthat ¥, () V,, = ¢

3. Ris a finite set of ordered pairs (», v) such that u is a shape consisting of ele-
ments of ¥;" and v is a shape consisting of an element of ¥," combined with an
element of ¥,

4. Sis ashape consisting of an element of ¥, combined with an element of V,.

Elements of the set ¥, are called terminal shape elements (or terminals). Elements
of the set V,, are called nonterminal shape elements (or markers). The sets ¥, and
V,, must be disjoint. Elements of the set ¥,* are formed by the finite arrangement
of one or more elements of V, in which any elements and/or their mirror images
may be used a multiple number of times in any location, orientation, or scale. The
set ¥, = ¥,;” |J (A}, where A is the empty shape. The sets ¥, and V,, are
defined similarly. Elements (u, v) of R are called shape rules and are written u v.
uis called the left side of the rule; v the right side of the rule. v and v usually are en-
closed in identical dashed rectangles to show the correspondence between the two
shapes. S is called the initial shape and normally contains a » such that there is a
(u, v) which is an element of R.
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A texture is generated from a shape grammar by beginning with the initial
shape and repeatedly applying the shape rules. The result of applying a shape rule
R to a given shape sis another shape, consisting of s with the right side of R substi-
tuted in S for an occurrence of the left side of R. Rule application to a shape
proceeds as follows:

1. Find part of the shape that is geometrically similar to the left side of a rule in
terms of both terminal elements and nonterminal elements (markers). There
must be a one-to-one correspondence between the terminals and markers in
the left side of the rule and the terminals and markers in the part of the shape
to which the rule is to be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the left side of the rule identical to the corresponding part in
the shape.

3. Apply those transformations to the right side of the rule.
Substitute the transformed right side of the rule for the part of the shape that
corresponds to the left side of the rule.

The generation process is terminated when no rule in the grammar can be applied.
As a simple example, one of the many ways of specifying a hexagonal texture

[Vn Vms R, S} is
k= {O}

' R:O—*@;@;etc_
s={(3)

Hexagonal textures can be generated by the repeated application of the single rule
in R. They can be recognized by the application of the rule in the opposite direction
to a given texture until the initial shape, [, is produced. Of course, the rule will
generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a will
be recognized but the variants in Fig. 6.8b will not.

7 B

(b}

Fig. 6.8 Textures to be recognized (see text).
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A more difficult example is given by the “‘reptile’’ texture. Except for the oc-
casional new rows, a (3, 6, 3, 6) tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol-
ygon splits into a six-sided polygon and a five-sided polygon. To capture this with a
shape grammar, we examine the dual of this graph, which is the primitive place-
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extra
row is created; that is, the diamond pattern splits into two. Notice that the dual
graph is composed solely of four-sided polygons but that some vertices are (4, 4, 4)
and some are (4,4,4,4,4,4). A shape grammar for the dual is shown in Fig. 6.10.
The image texture can be obtained by forming the dual of this graph. One further
refinement should be added to rules (6) and (7); so that rule (7) is used less often,
the appropriate probabilities should be associated with each rule. This would make
the grammar stochastic.

(a) (b)

Fig. 6.9 (a) The reptile texture. (b) The reptile texture as a (3, 6, 3, 6) semireg-
ular tesselation with local deformations.

6.3.3 Tree Grammars

The symbolic form of a tree grammar is very similar to that of a shape grammar. A
grammar

G; = (I/:; Vm’ r.! Rr S)
is a tree grammar if

V, is a set of terminal symbols
V.. is a set of symbols such that
L n Vi=¢
r: V,— N (where Nis the set of nonnegative integers)
is the rank associated with symbols in ¥,
Sis the start symbol
R is the set of rules of the form
X 7;( or Xo—x
Xo o Xp )
with xin ¥, and X ... X, () in ¥V,

For a tree grammar to generate arrays of pixels, it is necessary to choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.
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Fig. 6.10 Shape grammar for the reptile texture.

In the application to texture [Lu and Fu 1978], the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the place-
ment of repeating patterns in texture windows—a rectangular texel placement
tesselation—and another level describes texels in terms of pixels. We shall illus-
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Fig. 6.11 Two ways of embedding a tree structure in an array.

trate these ideas with Lu and Fu’s grammar for ““wire braid.”® The texture windows
are shown in Fig. 6.12a. Each of these can be described by a “‘sentence’’ in a
second tree grammar. The grammar is given by:

G,=(V,V, R, S)

where
V,=1{4, C{}
Vo =1{X, ¥, Z} (6.2)

r=1{0, 1, 2

R.X;/l{y or;j{l

Y— i or C;
z

Z — A or 4,
v

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win-
dows is specified by another grammatical level:

G=(V,V,rRS)
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where
v, ={1, 0}
V,, = (A1, A2, A3, A4, As, A, A7, C1, Ca, C3, Cy, Cs, Cg, C1,
Ny, Ny, Ny, N3, N4}
r=1{0,1,2)
S ={4,, Ci}

\ “/i\ L S

1
I
Ay Mo Ny € N N,

1 0
A, + /l\ c, /l\ L ' ; 1
No Ay N

s Nh CS Nli

0 0
C, =+ l N, + 1

1
Ry® |\ 3 N\
“o/“u "u/ch Ny Ny

0 0 0

i I " % CRE
Ny A M Ny €5 N N,

0 0 0

/IN ST/IN W

N, Ag Ky Ny G My Ny

0 [}
/1N “ /N
N3 A? H3 Nl C;r N]
0

1 1
A -+ I 4 / \ C, +* I H /
NH/A\NQ H" "k Nu/c7.\N0 HO \NO

The application of these rules generates the two different patterns of pixels
shown in Fig. 6.13.

6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971]. Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigious
use of a blank or null symbol is used to make sure the rules are applied in appropri-
ate contexts. A simple array grammar for generating a checkerboard pattern is

G =1{¥, V. R}
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Fig. 6.12 Texture window and grammar (see text).

where

v, = {0, 1} (corresponding to black and white pixels, respectively)
V,=1{b, S}

b is a ““blank” symbol used to provide context for the application of the rules.
Another notational convenience is to use a subscript to denote the orientation of
symbols. For example, when describing the rules R we use

0,6 —0.1 where x is one of {U, D, L, R}

to summarize the four rules

00 b5_1 N £l
i | 0”0 05—01, b0—10

Thus the checkerboard rule set is given by
R:5—0orl
0,6 —0,1 xin{U D, L, R}
1L.b— 1.0

A compact encoding of textural patterns [Jayaramamurthy 1979] uses levels of ar-
ray grammars defined on a pyramid. The terminal symbols of one layer are the start
symbols of the next grammatical layer defined lower down in the pyramid. This
corresponds nicely to the idea of having one grammar to generate primitives and
another to generate the primitive placement tesselations.

As another example, consider the herringbone pattern in Fig. 6.14a, which is
composed of 4x3 arrays of a particular placement pattern as shown in Fig. 6.14b.
The following grammar is sufficient to generate the placement pattern.

Q= {Vr, Vs R, S}
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Fig. 6.13 Texture generated by tree
grammar.

ahb — a.a x in{U D, L, R)

We have not been precise in specifying how the terminal symbol is projected onto
the lower level. Assume without loss of generality that it is placed in the upper
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim-

ple grammar for the primitive is

G, =1V, V, R S}

#*

% 0|
% %%

#*
#
#*
*

* %%

INITIAL ARRAY AT LEVEL1

a' a ' a'

a' a' a' a'

) a' ] 1

a' a a' | o
TERMINAL ARRAY AT LEVEL FINAL ARRAY

Fig. 6.14 Steps in generating a
herringbone texture with an array
grammar.
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6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of ‘“‘reptile’’ or “‘wire
braid’’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical pattern recognitionis a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes “‘orchard,” ‘‘field,”
“residential,”” “‘water.”’

The basic notion of pattern recognition is the feature vector. The feature vec-
tor v is a set of measurements {v; --- v,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Seature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].
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Fig. 6.15 (cont.)

One popular way of doing this is to use prototype points for each class and a

nearest-neighborrule [Cover 1968]:
assign v to class w; if i minimizes
mind(v, v,,)

i !

where A is the prototype point for class w;.
Parametric techniques assume information about the feature vector probabil-

ity distributions to find rules that maximize the likelihood of correct classification:

assign v to class w; if i maximizes

max p (w;|v)
!
Vs 2]
+ o+
++ o o © o)
o ¢ om+0+
+ o B o o
o o o 4
+
9 m 9 Ry 0o g ©
o o] OO +
- v

{a) (b)
Fig. 6.16 Feature space for texture discrimination. (a) effective features (b)

ineffective features.
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Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate texture
classes.

The ensuing subsections describe features that have worked well. These sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixels—Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to a
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form the
basis of features of a pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]. Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used to define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by |F|%.

Radial features are given by

vy = J J1F G )2 du av (6.5)
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Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
rt <u?+ v < rd
0 uv<n-l
where [r; r,l is one of the radial bins and v is the vector (not related to v) defined

by different values of r; and r,. Radial features are correlated with texture coarse-
ness. A smooth texture will have high values of V, , for small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by

Vo0, = ff{F(u, v) |2 du dv (6.6)

where the limits of integration are defined by

9] ‘S tan‘l

< 6,

0O<uv<n-—1

where [0, 8,) is one of the sectors and v is defined by different values of 8, and 6.
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, | F|? will
tend to have high values clustered around the direction in frequency space § +
/2.

Texture Energy in the Spatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [Laws 1980]. The advantage
of this approach is that the basis is not the Fourier basis but a variant that is more
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matched to intuition about texture features. Figure 6.19 shows the most important
of Laws’ 12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (.e., f;, =
f * h, for basis functions ki, ..., #1;). Then each of these images is transformed
into an “‘energy”’ image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 x 15 pixels centered over the pixel:

HG= 3%  (fly)

x'p" in window

) 6.7)

The transformation f— f;, k = 1, ... 12 is termed a ‘“‘texture energy transform’’
by Laws and is analogous to the Fourier power spectrum. The £, k = 1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Our in-
terestis in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used in
Laws’s experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and each pixel was
classified into one of the eight categories. The average classification accuracy was
about 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLD approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix.
Given an image f with a set of discrete gray levels I, we define for each of a set of
discrete values of dand # the intermediate matrix S (d, 9) as follows:

S(i, j|d, @), an entry in the matrix, is the number of times gray level i is
oriented with respect to gray level jsuch that where
f(x)=1i and f(y) =, then
y=x + (dcos, dsiné)

-1 -4 -6 -4 —1 1 -4 6 -4 1
-2 -8-12 -8 -2 -4 16 -24 16 -4
00 0 0 O 6-24 36-24 6
2 8 12 8 2 -4 16 -24 16 —4
1 4 6 4 1 L1 4 6 -4 1

-1 0 2 0 -1] 1 0o 2 o0 -1

-2 0 4 0 -2 -4 0 8 0 —4

6 0 0 0 O 6 012 0 -6 Fig. 6.19 Laws’ basis functions (these
2 0-4 0 2 -4 0 8 0 —4| arethe low-order four of twelve actually
1 0-2 0 1] -1 0 2 0 -1 ] ysed).
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Fig. 6.20 (a) Texture composite. (b) Classification.

Note that we the gray-level values appear as indices of the matrix S, implying that
they are taken from some well-ordered discrete set 0, ..., K. Since
S5(d, 0)=58(d 0+ ).

common practice is to restrict  to multiples of w/4. Furthermore, information is
not usually retained at both @ and 8 + =. The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

S(d0)=%1[5d0)+Sdo+m)]

The intermediate matrices S yield potential features. Commonly used features are:

1. Energy
K K
Ed6)=73% 3 [SG jld 0] (6.8)
i=0 j=0
2. Entropy
K K
H(d,0) =Y Y S jld 6) log £, jld, 0) (6.9)
i=0 j=0
3. Correlation
K X
_):, 2 (i—p ) G—p,)SC jld, 6)
Cld, 0) = =22 (6.10)
T,
4. Inertia
K K
1do)=3% Y (i-)25G jld 0 (6.11)
i=0 j=0
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5. Local Homogeneity

L(d, 6)—-22—-———S(:J|d 9) (6.12)
i=0 j=0 14 (
where S (i, j|d, 8) is the (i, /) th element of (d, #), and
K K
=2 iy SG jld ) (6.13a)
i=0 j=0
K K
my=2Jj 2 S0 jld 0) (6.13b)
f=0 j=0
E (i—p,)? 2 £, jld, 8) (6.13c)
i=0 j=
and
ef= f‘. (G —pp)? E fG, jld, 6) (6.13d)

i=0

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of “‘rough”
or “‘smooth.” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 1976].

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977]. In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only define gross region shape, but the five-parameter primi-
tives seem to work well for many domains. The texture image is segmented into
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of “‘straw’’ texture. Next, parameters of the region grower are
controlled so as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipses for the “‘straw’’ texture. One set of ellipse parameters
is xo, a, b, 8 where xq is the origin, @ and b are the major and minor axis lengths
and # is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are also described by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on feature values reflect different tex-
els.
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Fig. 6.21 Region stgmentation for straw texqure,

(a) Image

6.5 THE TEXTURE GRADIENT

The importance of texture in determining surface orientation was described by
Gibson [Gibson 1950]. There are three ways in which this can be done. These
methods are depicted in Fig. 6.24, Ali these methods assume that the texture is
embedded on a planar surface.

Fig. 6.22 Ellipses for straw texture,
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Average eccentricity Fig. 6.23 Features defined on ellipses.
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the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the texture gradient. The orientation of
this direction with respect to the image coordinate frame determines how much
the plane is rotated about the camera line of sight. The magnitude of the gradient
can help determine how much the plane is tilted with respect to the camera, but
knowledge about the camera geometry is also required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a polar
coordinate representation of gradients.

(a) (b) (c)

Fig. 6.24 Methods for calculating surface orientation from texture.
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The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The orientation of the principal axes defines rotation with respect
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed of a regular grid of texels, we can compute
vanishing points. For a perspective image, vanishing points on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments on a
plane that are oriented in two orthogonal directions in the physical world. The gen-
eral method applies whenever the placement tesselation defines lines of texels.
Two vanishing points that arise from texels on the same surface can be used to
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the z axis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown in
Fig. 6.25, these segments could arise quite naturally from an urban image of the
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm. For example, by using the line parameteriza-
tion

x cosf + ysinf = r

and by knowing the orientation of the line in terms of its gradient g = (Ax, Ay), a
line segment (x, y, Ax, Ay) can be mapped into r, 6 space by using the relations

- Axx + Ay (6.14)
VAx? + Ay’
i = g |2 (6.15)
Ax

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—6 space vector are given by

g (6.16)

Fig. 6.25 Orthogonal line segments comprising a texture.
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Ay
(x, y) \ Ax

N Fig. 6.26 -0 transform.

Using this transformation, the set of line segments L, shown in Fig. 6.27 are all
mapped into a single point in r—# space. Furthermore, the set of lines L, which
have the same vanishing point (x, y,) project onto a circle in r—8 space with the
line segment ((0, 0), (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity .are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) —

—'IE, ¢| for some constant k. Now vanishing points at infinity are projected into the
-

origin and the locus of the set of points L, is now a line. This line is perpendicular

to the vector x, and - units from the origin, as shown in Fig. 6.28. It can be

lIx, I

detected by a second stage of the Hough transform; each point a is mapped into an
r'—8@' space. Forevery a, compute all the ¢’, 8’ such that

acosf’ + bsing’ = ¢’ (6.17)

and increment that location in the appropriate r, 8" accumulator array. In this
second space a vanishing point is detected as

r’= ||x_k|| (6.18)
8’ = tan™! -:in (6.19)

(x,. v,)

(a) {b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.
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(a) (b)

Fig. 6.28 Vanishing point loci.

In Kender’s application the texels and their placement tesselation are similar in
that the primitives are parallel to arcs in the placement tesselation graph. In a more
general application the tesselation could be computed by connecting the centers of
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from each of a set of different
“windows’” of the textured image, checks to see of the resolution is appropriate. In
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.e.,
parallel application of rules)? Discuss, illustrating your arguments with examples or
counterexamples from each of the three main grammatical types (shape, tree, and ar-
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defined?
Can such grammars be translated into ‘‘traditional’” (string) grammars? If not, how
are they different; and if so, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to texel
detection.

In an outdoors scene, there is the problem of different scales. For example, consider
the grass. Grass that is close to an observer will appear ““sharp’ and composed of
primitive elements, yet grass distant from an observer will be much more ‘‘fuzzy”
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-domain
operations. How do the texture energy features compare with the ring and sector
features?

The texture gradient is presumably a gradient in some aspect of texture. What aspect
is it, and how might it be quantified so that texture descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes.
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Motion /

7.1 MOTION UNDERSTANDING

Motion imagery presents many interesting challenges to computer vision, but
static scene analysis received more attention in the 1960’s and 1970’s. In part, this
may have been due to a technical problem: With most types of input media and
domains, motion vision input is much more voluminous than static vision input.
However, we believe that a more basic problem has been the assumption that mo-
tion vision could best be understood (or implemented) as many static frames
analyzed very quickly, with results linked up in temporal sequence. This character-
ization of motion vision is extreme but perhaps illuminating. First, it assumes that
vision involves processing static scenes. Second, it acknowledges that massive
amounts of data may be required. Third, in it motion understanding degenerates
to a postprocessing step which is mostly a matching operation—the differences or
similarities between (understood) frames are analyzed and recorded. The extreme
“‘static is basic’’ view is that motion is an unnaturally complex or difficult problem
because it is ill suited to the techniques available.

A modified view is that object motion provides good image cues for segmen-
tation, much as color might. This approach leads to the use of motion for segmen-
tation, so that motion gets a more basic role in the understanding process. In this
view, motion as such is useful for basic image understanding; a motion image se-
quence may actually be easier to understand than a static image, because the
effects of motion can help in segmentation. Recent examples may be found in
[Snyder 1981].

A further departure from the ‘‘static is basic’ view is that motion under-
standing is qualitatively different from static vision. A Jogical extreme of this view
is that there are many visual processing operations whose primitives are points in
motion, and that in fact static vision is the puzzle, being ill-suited to the needs and
mechanisms of biological systems. Serious work in computer motion understand-
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ing has begun even more recently than computer vision as a whole, and it is too
early to dismiss any approach out of hand. There are domains and applications in
which the “‘static is basic’’ paradigm seems natural, but it also seems very reason-
able that animals have perceptual systems or subsystems for which ‘“‘motion is
basic.”

Section 7.2 is concerned with processing and understanding the “‘flow’” of the
world image across the retina. Section 7.3 considers several techniques for under-
standing sequences of static images.

7.1.1 Domain Independent Understanding

Domain independent motion processing extracts information from time-varying
images using the weakest possible assumptions about the world. Processing that
merely transforms the input data into another image-like structure is in the pro-
vince of generalized image processing. However, if the motion processing aggre-
gates spatial information on the basis of a common feature, then the processing is a
form of segmentation.

The basic visual input for domain-independent work in motion vision under-
standing is optical flow. Although Helmholtz noted the striking immediacy of
three-dimensional perception mediated through motion [Helmholtz 1925], Gib-
son is usually credited with pioneering the theory that a primary visual stimulus for
motion is the flow of elements in the optic array, or pattern of luminance in the full
sphere of solid angle surrounding the observer [Gibson 1950, 1957, 1965, 1966].
Human beings undoubtedly are sensitive to optical flow, as evidenced by the
“looming”’ reflex [Schiff 1965], the effect of flow on balance [Lee and Lishman
1975], and many other documented phenomena [Nakayama and Loomis 1974].
The basic input to an ““optical flow understander’ is a continuously changing
visual field, which may be considered a field of vectors, each expressing the instan-
taneous change of position on the optic array of the image of a world point. A field
of such vectors is shown in Fig. 7.1. The extraction of the vectors from the chang-
ing image is a low-level operation often posited by optical flow research; one com-
putational mechanism was given in Chapter 3. Flow may also be approximated in
an image sequence by matching and difference operations (Section 7.3.1).

Computer vision researchers have recently begun to concern themselves
with both the geometry and computational mechanisms that might be useful in the
understanding of optical flow [Horn and Schunck 1980; Clocksin 1980; Prager
1979; Prazdny 1979; Lawton 1981]. Many formalisms are in use. Cartesian, polar
space, and spherical coordinates all have their appeal in different situations;
differential vector geometry and simple analytic geometry are both used; even the
geometry of the eye or camera varies from one study to another. This chapter does
not contain a *“‘unified flow theory;”’ instead it briefly describes several approaches,
each of which uses a different aspect of optical flow.

7.1.2 Domain Dependent Understanding

The use of models, or at least stronger assumptions about the world, is comple-
mentary to domain-independent processing. The changing image, or even the field
of optical flow, can be treated as input to a model-driven vision process whose goal
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Fig. 7.1 An example of an optical flow field for an approaching “*hill.”” {a) The hill. (b)
Flow field.

is typically to segment the input into areas corresponding to meaningful world ob-
jects. The optical flow field becomes just another component of the generalized im-
age, together with intensity, texture, or color. Motion often reveals information
similar to that from range data; flow and range are discontinuous at object boun-
daries, surface orientation may be derived, and so forth. Object (or world) mo-
tions determine image (or retinal) motions; we shall be explicit about which
motion we mean when confusion can occur.

Section 7.3 describes how knowledge of object motion phenomena can help
in segmenting the flow field. One useful assumption is that the world contains rigid
bodies. Tests for rigid bodies and calculations using data from them are quite
useful—for example, the three-dimensional position of four points on a rigid ob-
ject may be determined uniquely from three views (Section 7.3.2). A weaker ob-
ject model, that they are assemblies of compound rigid pendula (linkages), is
enough to accomplish successful segmentation of very sparse motion input which
consists only of images of the end points of links (Section 7.3.3). Section 7.3.4
describes work with a highly specific and detailed model which is used in several
ways to restrict low-level image processing and aid in three-dimensional interpreta-
tion of human motion images. Section 7.3.5 considers the processing of sequences
of segmented images.

The coherence of most three-dimensional objects and their continuity
through time are two general principles which, although occasionally violated,
guide many segmentation and point-matching heuristics. The assumed correspon-
dence of regions in images with objects is one exampie. Motion images provide
another example; object coherence implies the likelihood of many *‘continuity’”
(actually similarity) conditions on the positions and velocities of neighboring
image points.
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Here are five heuristics for use in matching points from images separated by a
small time interval [Prager 1979] (Fig. 7.2).

1. Maximum velocity. If a world point is known to have a maximum velocity V
with respect to a stationary imaging device, then it can move at most V dt
between two images made dr time units apart. Thus given the location of the
point in one image (and some assumptions about depth), this constraint limits
where the point can appear on the second image.

2. Small velocity change. Since most visible physical objects have finite mass, this
heuristic is a consegence of physical laws and the assumption of a ““small inter-
val’’ between images. Of course, the definition of ‘‘small interval” depends on
the definition of the velocity changes one desires to measure.
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Fig. 7.2 Five heuristics.
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3. Common motion. Spatially coherent objects often appear in successive images
as regions of points sharing a ‘‘common motion.”” It is interesting that such a
weak notion as common motion (and the related ““common position”’) actu-
ally can serve to segment very sparse scenes of a few points with very complex
motion behavior if a long-enough sequence of images is used (Sections 7.3.3
and 7.3.4).

4. Consistent match. Two points from one image generally do not match a single
point from another image (exceptions arise from occlusions). This is one of
the main heuristics in the stereopsis algorithm described in Chapter 3.

5. Known motion. If a world model can supply information about object motions,
perhaps retinal motions can be derived, predicted, and recognized.

In the discussions to follow these heuristics (and others) are often used or
implicitly taken as principles. A careful catalog of the probable behavior of objects
in motion is often a useful practical adjunct to a mathematical treatment. The
mathematics itself must be based on a set of assumptions, and often these are
closely related to the phenomenological heuristics noted above.

7.2 UNDERSTANDING OPTICAL FLOW

This section describes some more direct calculations on optical flow, using no
other input information. Information may be obtained from flow that seems useful
both for survival in the world and (on a less existential level) for automated image
understanding. As with shape from shading research (Chapter 3), the paradigm
here is often to see mathematically what information resides in the input and to use
this to suggest mechanisms for doing the computation. The flow input is assumed
to be known (Chapter 3 showed how to derive optical flow by local analysis of
changing intensity in the image).

7.2.1 Focus of Expansion

As one moves through a world of static objects, the visual world as projected on the
retina seems to flow past. In fact, for a given direction of translatory motion and
direction of gaze, the world seems to be flowing out of one particular retinal point,
the focus of expansion (FOE). Each direction of motion and gaze induces a unique
FOE, which may be a point at infinity if the motion is parallel to the retinal (image)
plane.

These aspects of optical flow have been studied by computing the simulated
flow pattern an observer would see while moving through a *‘forest’ of vertical
cylinders [Prager 1979] or Gaussian hills and valleys [Lawton 1981]. Some sample
FOEs are shown in Fig. 7.3. Figure 7.3¢ shows a second FOE when the field of view
contains an object which is itself in motion.

Our first model of the imaging situation is a simplification of the imaging
geometry given in Appendix 1. Let the viewpoint be at the origin with the view
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(c)

Fig. 7.3 FOE for rectilinear observer motion. (a) An image. (b) Later image. (c) Flow
shows different FOEs for static floor and moving object.

direction out along the positive Z axis, and let the focal length £ = 1. Then the per-
spective distortion equations simplify to

X (1.1)
z

I

¥= (7.2)

In the next two sections the letters u, v, and w (sometimes written as func-
tions of #) denote world point velocity components, or the time derivatives of
world coordinates (x, y, z). Observer motion with instantaneous velocity (—dx/d,
—dy/dt, —dz/dt) = (—u, —v, —w), keeping the coordinate system attached to the
viewpoint, gives points in a stationary world a relative velocity {(u, v, w). Consider a
point located at (xg, yg, zo) at some initial time. After a time interval ¢, its image
will be at

Xo+ ut yo+ vt
zo + W[’Zo'f‘wl

(x, y) = (7.3)
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As tvaries, this parametric “‘flow-path” equation is that of a straight line; as ¢ goes
to minus infinity, the image of the point travels back along the straight line toward
a particular point on the image, namely,

(7.4)

FOE = | ¥,
w

Y
w

This focus of expansion is where the optical flow originates on the image. If the ob-
server changes direction (or objects in the world change their direction), the FOE
changes as well.

7.2.2 Adjacency, Depth, and Collision

The flow path equation of a point moving with a constant velocity reveals informa-
tion about its depth in z. The information is not provided directly, since all flow
paths for points at a given depth do not look alike. However, there is the elegant re-
lation

D) _ z()
ZOREI0 @3

Here again wis dz/dt, and Vis dD/dr. Dis the distance along the straight flow path
from the FOE to the image of the point. Thus the distance/velocity ratio of the
point’s image is the same as the distance/velocity ratio of the world point. This
result is basic, but perhaps not immediately obvious.

The above relation is called the time-to-adjacency relation, because the
right-hand side, z/w, is the z-distance of the point from the image plane divided by
its velocity toward the plane. It is thus the time until the point passes through the
image plane. This basic time interval is clearly useful when dealing with world ob-
jects; it changes when the magnitude of the world point’s velocity (or the
observer’s) changes.

Knowing the depth of any point determines the depth of all others of the
same velocity w, for it follows from the two time to adjacency equations of
the points that

Z] (I)Dz(f) Vl (t)
V2 (1)D 1 (I)

The time-to-adjacency equation allows easy determination of the world coor-

dinates of a point, scaled by its z velocity. If the observer is mobile and in control of

his own velocity, and if the world is stationary, such scaled coordinates may be use-
ful. Using the perspective distortion equations,

(7.6)

Zz(l) =

2 {f) = S (rt/)(?)(t) 2.7

i = i’i‘);‘;g)%(” (7.8)

#hd) = L(’)—‘;L%P—(Q (7.9)
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As a last example, let us relate optical flow to the sensing of impending colli-
sions with world objects. The focal point of the imaging system, or origin of coordi-
nates, is at any instant headed ‘‘toward the focus of expansion,”” whose image
coordinates are (u/w, v/w). It is thus traveling in the direction

o=, X (7.10)
w w

and is following at any instant a path in the environment instantaneously defined
by the parametric equation

(x, 9, 2z) =10 = i L g3 (7.11)
w'ow

where tacts like a real scalar measure of time. Given this vector expression for the
path of the observer, one can apply well-known vector formulas from analytic solid
geometry to derive useful information about the relation of this path to world
points, which are also vectors.

For example, the position P along the observer’s path at which a world point
approaches closest is given by

0(0 - x)
P=——- 7.12
© 0 1o
where O is the direction of observer motion and x the position of the world point.
Here the period (.) is the dot product operator. The squared distance Q? between

the observer and the world point at closest approach is then
Q*= (x-x) — (x-0)*/(0-0) (7.13)

7.2.3 Surface Orientation and Edge Detection

It is possible to derive surface orientation and to characterize certain types of sur-
face discontinuities (edges) by their motion. A formalism, computer program, and
biologically motivated computational mechanism for these calculations was
developed in [Clocksin 1980].

This section outlines mainly the surface orientation aspect of this work. As
usual, the model is for a monocular observer, whose focal point is the origin of
coordinates. An unusual feature of the model is that the observer has a spherical
retina. The world is thus projected onto an ‘‘image unit sphere’” instead of an im-
age plane. World points and surface orientation are represented in an observer-
centered Cartesian coordinate system. The image sphere has a spherical coordi-
nate system which may be considered as ‘‘longitude” 8 and ‘‘latitude’ ¢. These
coordinates bear no relation to the orientation of the retina. World points are then
determined by their image coordinates and a range r. An observer-centered Carte-
sian coordinate system is also useful; it is related to the sphere as shown in Fig. 7.4,
and by the transformations given in Appendix 1.

The flow of the image of a freely moving world point may be found through
the following derivation. As before, let the world velocity of the point (possibly in-
duced by observer motion) (dx/dt, dy/dt, dz/df be written (u, v, w). Similarly,

Ch. 7 Motion



Fig. 7.4 Spherical coordinate system, and the definition of o and 7.
write the angular velocities of the image point in the # and ¢ directions as

dae
oy SV 7.
b px (7.14)

_ 4o
B (7.15)

Then from the coordinate transformation equations of Appendix 1,
y = xtan# (7.16)

Differentiating and solving for d6/dr (written as 8) gives
B s v——utzar}i (7.17)
x secd

Substituting for x its spherical coordinate expression r sin¢ cos@ and simplifying
yields the general expression for flow in the # direction:

5 = vcosﬂ.—usmﬂ (7.18)
r sing
The derivation of € proceeds from the coordinate transformation equation
z=rcos¢ (7.19)

Differentiating, solving for d¢/dt (written as €), and using
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dar _ xu + yv + zw (7.20)
dt r '

yields the general expression for flow in the ¢ direction:

€ = (xu + yv -’;z?v) cosp — rw (7.21)
resing
As usual, general point motions are rather complicated to deal with, and
more constraints are needed if the optic flow is to be ““inverted’’ to discover much
about the outside world. Let us then make the simplification that the world is sta-
tionary and the observer is traveling along the z direction at some speed S (This as-
sumption is briefly discussed below.) Explicitly, suppose that

=0 v=0 w=-8§

Substituting these into the general flow equations (7.18) and (7.21) yields
simplified flow equations:

8=10 (7.22)

S sin¢g
r

E= (7.23)
Thus ris a function of @ and ¢ and therefore soise.

It is this simplified flow equation which forms the basis for surface orientation
calculation and edge detection. The goals are to assign to any point in the flow field
one of three interpretations: edge, surface, or space and also to derive the type of
edge and the orientation of the surface.

To find surface orientation, represent the surface normal of a surface I by
two angles o and 7 defined as in Fig. 7.4 with the two planes of o and 7 being the
RZ and QR planes, respectively. The slant is measured relative to the line of sight,
denoted by R in the figure. ¢ and 7 correspond to depth changes in ‘‘depth
profiles’’ oriented along lines of constant # and ¢, respectively. Thus,

= 1x _‘?L
tano ol (7.24)
11 ar
T 7.25
tant [ r] 50 ( )

Surface orientation is defined by o and 7 or equivalently by their tangents. A
surface perpendicular to the line of sight haso = 7 = 0.

Equations (7.24) and (7.25) assume the range ris known. However, one can
determine them without knowing r through the simplified flow equation, Eq.
(7.23). The latter may be written

_ Ssing

"7 e, ¢

where € (9, ¢) gives the flow in the ¢ direction. Differentiating this with respect to
# and ¢ gives
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dr _ o €cos¢ —sin ¢ (3e/dd)

36 =5 " (7.26)
dr _ _ Ssing (9¢/08)

& . (7.27)

These last three equations may be substituted into Egs. (7.24) and (7.25), and the
results may then be simplified to the following surface orientation equations:

- _ 8
tano = cot¢ 9% Ine (7.28)
tant = el (Ine) (7.29)
00

These tangents are thus easily computed from optical flow. The result does
not depend on velocity, and no depth scaling is required. In fact, absolute depth is
not computable unless we know more, such as the observer speed.

Turning briefly to edge perception: Although physical edges are a depth
phenomenon, in flow they are mirrored by €, the flow measure that allows deter-
mination of orientation without depth. In particular, it is possible to demonstrate
that the Laplacian of € has singularities where the Laplacian of depth has singulari-
ties. An arc on the sphere projects out onto a ‘‘depth profile” in the world, along
which depth may vary. If the arc is parameterized by «, relations among the depth
profile, flow profile, and the singularities in flow are shown in Fig. 7.5. Thus the
Laplacian of € provides information about edge type but not about edge depth.

The formal derivations are at an end. Implementing them in a computer pro-
gram or in a biological system requires solutions to several technical problems.
More details on the implementation of this model on a computer and a possible
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implementation using low-level physiological vision primitives appear in [Clocksin
1980]. There are some data on human performance for the types of tasks at-
tempted by the program. The assumption of a fixed environment basically implies
that flow motions in the environment are likely to be interpreted as observer mo-
tions. This view is rather strikingly borne out by “‘swaying room” experiments
[Lee and Lishman 1975], in which a subject stands in a swayable visual environ-
ment. (A large, low-mass bottomless box suspended from above may be lowered
around the subject, giving him a room-like visual environment.) When the hang-
ing ‘“‘room’” is made to sway, the subject inside tends to lose balance. Further,
moving surfaces in the real world are quite often objects of interest, such as an-
imals.

A survey of depth perception experiments [Braunstein 1976] points to mo-
tion as the dominant indicator of surface orientation perception. Random-dot
displays of monocular flow patterns [Rogers and Graham 1979] evoke striking per-
ceptions of solid oriented surfaces; flow may be adequate for shape and depth per-
ception even with no other depth information. The experiments on perception of
“‘edges,”” or discontinuities in flow caused by discontinuities in depth of textured
surfaces, are less common. However, there have been enough to provide some
confirmation of the model.

The computational model is consistent with and has correctly predicted
psychological data on human thresholds for slant and edge perception in optical
flow fields. (The thresholds are on the amount of slant to the surface and the depth
difference of the edge sides.) The computational model can be used to determine
range, but only to poor accuracy; this happens to correspond with the human trait
that orientation is much more accurately determined by flow than is range. Quanti-
tatively, the accuracy of orientation and range determinations are the same for the
model and for human beings under similar conditions.

7.2.4 Egomotion

It is possible to extract information about complex observer motions from optical
flow, although at considerable computational cost. In one formulation [Prazdny
1979], a model observer is allowed to follow any space curve in an environment of
stationary objects, while at the same time turning its head. It is possible to derive
formulae that determine the observer’s instantaneous velocity vector and head ro-
tational vector from a small number (six) of flow vectors in the image on a (stand-
ard flat) retina.

The equations that describe flow given observer motion and head rotation
can be quite compactly written by using vector operators and a polar coordinate
system (similar to that of the last section). The inherent elegance and power of the
vector operations is well displayed in these calculations. Inverting the equations
results in a system of three cubic equations of 20 terms each. Such a system can be
solved by normal methods for simultaneous nonlinear equations, but the solutions
tend to be relatively sensitive to noise. In the noise-free case, the method seems to
perform quite adequately.

The calculation yields a method for deriving relative depth, or the ratio of the
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distances of points from the observer. An approximation to surface orientation
may be obtained using several relative depth measurements in a small area and as-
suming that the surface normal varies slowly in tne area.

7.3 UNDERSTANDING IMAGE SEQUENCES

An image sequence is an ordered set of images. The image sequences of interest
here are samplings of four-dimensional space-time. Commonly, as in a movie, the
images are two-dimensional projections of a three-dimensional physical world, se-
quenced through time. Sometimes the sequence consists of two-dimensional im-
ages of essentially two-dimensional slices of the three-dimensional world, se-
quenced through the third spatial dimension. Some of the techniques in this sec-
tion are useful in interpreting the three-dimensional nature of objects from such
spatial image sequences, but the main concern here is with temporal image se-
quences. In many practical applications, the input must be such a sequence, and
continuous motion must be inferred from discrete location differences of image
points. The thrust of work under these assumptions is often to extend static image
understanding by making models that incorporate or explain objects in motion, ex-
tending segmentation to work across time [Thompson 1979, Tsotsos 1980].

When asked why he was listening to a metronome ticking, Ezra Pound is said
to have replied that he did not listen to the ticks, but to the ‘‘spaces between
them.”” Like Pound, we take the ticks, or images, as given, and are really in-
terested in what goes on ‘‘between the ticks.”” We usually want to determine and
describe how the images are related to each other. This information must be
derived from the static images, and two approaches immediately present them-
selves: broadly, the first is to look for differences between the images, and the
second is to look for similarities.

These two approaches are complementary, and are often used together. A
general paradigm for object-oriented motion analysis is the following:

1. Segment (describe) the individual images. This process may be complex,
yielding a relational structure or a segmentation into regions or edges. An im-
portant special case is the one in which the description (segmentation) process
is null and the description is just the image itself. For example, an initial high-
level static description is impossible if motion is to be used as an aid to seg-
mentation.

2. Compute and describe the differences or similarities between the descriptions
(or undescribed images).

3. Build a description of the sequence as a whole from the single-frame primitives
and descriptions of difference or similarity that are relevant to the purpose at
hand.

7.3.1 Calculating Flow from Discrete Images

This method is a form of disparity calculation that is not only used for flow calcula-
tions, but may also be used for stereo matching or tracking applications. The com-
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putations are implemented with “‘relaxation’’ techniques.

The flow calculations have so far assumed an underlying continuous image
which was densely sampled. With those assumptions and a few more the funda-
mental motion equation allows the calculation of flow (Chapter 3). The approach
of this section is to identify discrete points in the image that are very different from
their surround. Given such discrete points from each of two images at different
times, the problem becomes one of matching a point in one image with the right
point (if it exists) in the other image. This matching problem is known as the
correspondence problem [Duda and Hart 1973, Aggarwal et al 1981]. The solution
to the correspondence problem in the case of motion is, of course, the optic flow.

One algorithm for matching distinct points from two different frames [Bar-
nard and Thompson 1979] breaks the matching problem into two steps. The first is
the identification of candidate match points in each of the two frames. The second
is an iterative algorithm which adjusts match probabilities for pairs of match points.
After successful termination of the algorithm, correct matches have high probabil-
ities and incorrect matches have very low probabilities.

The Moravec interest operator ([Moravec 1977]; Section 3.2) produces can-
didate match points by measuring the distinctness of a local piece of the image
from its surround. Each frame is analyzed separately so that the end result is two
sets of points §; and S,, one from each frame, which are candidates to be matched.
Candidates in S, are indexed by /and those in S, by J.

The iterative part of the algorithm is initialized with a data structure for the
possible matches that exploits the heuristic that a point in the world does not move
large distances between frames. Potential matches for a given point x; in S, the
first image, are all points y; in S such that

IIx,- - y_,'” < Vmax - (7.30)

where v, is the maximum disparity allowed between points. All points that are
selected by the Moravec operator have a given disparity vector v; and are kept as
possible matches. Each disparity has an associated probability P;; which changes
through time as the most likely disparities are found. The information kept for
each point x; in § looks like

(x; (vy, Py) vy, Py)--- (V% P¥) (7.31)

where V*is a special symbol that denotes ‘“‘no match,”” and all the j, are members
of §,. Storing the flow vectors v implicitly stores the corresponding point in S,
since y; = x; + v;. Since the probabilities are adjusted iteratively, one final index
is needed to denote the iteration value so that P;; actually becomes P} for n = 0.

The initial approximation for the probabilities P,-j’ takes advantage of the
‘““common motion heuristic: If y, is the correct match point for x;, the image near
y; should look like the image near x;. Thus P, can be defined by

iy

1 .
P,J{,]= m fOI' X In S[ (732)
where
wy= 2 [f(x; +dx, 1) = fy; + dx,0)) (7.33)
ldx| < &
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and c is constant. The updating formula is complex in form but basically is a
weighted sum of neighboring match probabilities where the neighboring match is
consistent (i.e., has nearly the same velocity). A neighboring match k is consistent
if

”vrj “ vkl" < deax (734)
The goodness of a particular match is measured by q;;, where

R 2 P! (7.35)
k aneighborof i [s.t. ki satisfies (7.34)

and the probabilities are updated by
P} = Pi~'(4 + Bgy) (7.36)
Pl = PS’

! y. B

J 8.t [j isamatch

(7.37)

where the function of Eq. (7.36) is to renormalize the probabilities and 4 and Bare
constants.

The following simplified example makes these ideas more concrete.

Consider the situation given in Fig. 7.6, where the points in (a) are from S,
and the points in (b) are from S,. Using hypothetical values for P, an initial
match data structure is, in terms of Eq. (7.31):

((4, 10) ((5,0), 0.7) ((4, =5), 0.25) ((2, —8), 0.05))
((4,6) ((5 4), 05 (4, -1, 0.3) ((2,-4), 0.2))
(2,3) 7,7, 0.3) ((6,2), 035 ((4,-1, 0.2))

Yy 4
10 |- e /=1 10 e /=1
8 sl
6 e i=2 6
'— e /=2
4 4
e /=3
2+ 2+ e j=3
R UM . Bl | " (i N NS N s
0 2 4 6 8 0 2 4 6 8 10
(a) (b)

Fig. 7.6 Discrete matching: a concrete example.

Sec. 7.3 Understanding Image Sequences 209



210

Also, Dv.x = 1, using the chessboard norm. Using the updating formula (7.35),

the first set of g;;’s is given by

03 02 0
lgll=10 09 0.25
0O 0 03
and the corresponding unnormalized probabilities, with 4 = 0.3 and B = 3, are
1.11 0.875 0.015
[P}1=10.15 2.79 0.80
0.09 0.105 0.65
which are normalized to be
0.55 0.44 0.01
[P}]=10.04 075 0.21
0.11 0.12 0.74

So after one iteration the match structure is already starting to converge to the best
match of P; = 1, P; = 0 for j # j. Note that in general P; and g;; are, in matrix
form, sparse due to the consistency condition (7.34). To see the results for an ex-
ample of a more appropriate scale, consult Fig. 7.7.

7.3.2 Rigid Bodies from Motion

The human visual system is predisposed to interpret (perceive) two-dimensional
projections of moving three-dimensional rigid objects as just that—moving rigid
objects. This facility is an interesting one, since it persists even when all three-
dimensions information is removed from any single static view. This sort of result
has been known for some time [Wallach and Q’Connell 1953; Johansson 1964].
The ability to interpret points as three-dimensional objects demonstrated by
Johansson means that the interpretation process does not rely solely on monitor-
ing the changes of angles and length of lines, as suggested by Wallach and
O’Connell.

Of course any change between two two-dimensional projections of points in
three dimensions can be explained by any number of configurations and motions.
Our visual system only accepts a few interpretations, often only one. This one is, in
the world of moving objects in which we live, usually correct. This ability to reject
unlikely interpretations is consistent with a *‘rigidity assumption’’ [Ullman 1979]:
Any set of elements undergoing a two-dimensional transformation which has a
unique interpretation as a rigid body moving in space should be so interpreted. It
seems likely that something like this rigidity assumption is built into our visual sys-
tem. However, saying that does not tell us much about how it could possibly work.
Below we consider the problem of obtaining three-dimensional structure from sets
of corresponding two-dimensional points.

One related area of work is the reconstruction of three-dimensional structure
when the corresponding points in two dimensions are not known. The reconstruc-
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Fig. 7.7 Optical flow from feature point analyses. (a) Animage. (b) Later image. (c) Opti-
cal flow found by relaxation.

tion procedure must begin by matching points in the several views. It can be shown
[Shapira 1974] that general wire-frame objects of straight wires (of which the edges
of polyhedra are only a special case) may be reconstructed from a finite number of
perspective projections, but that for general wire-frame objects, the number of
projections needed may be quite large. In fact, given any set of projections
(viewpoints and viewing planes), an object may be constructed that is only ambi-
guously specified by those projections. Further work on reconstruction from pro-
jections is reported in [Shapira and Freeman 1978, Wesley and Markovsky 1981].
If point correspondences are known, it is possible to compute a unique
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three-dimensional location of four noncoplanar points from just three (ortho-
graphic) projections [Ullman 1979]. If the projections result from noncoplanar
viewpoints, the recovery of three-dimensional structure is straightforward and is
outlined below. If the projections are from coplanar viewpoints, the computations
become more complex but still yield a unique result up to reflection. This second
case is an important one; it applies if the camera is stationary and the object re-
volves about a single axis, for instance. Since the reconstruction is unique, the
method never gets a wrong structure from accurate two-dimensional evidence
about a rigid body. The probability that three views of four nonrigidly connected
points can be interpretated as a rigid body is very low. Thus, the method is unlikely
to report structure that is not there.

The method may be heuristically extended to multiple objects. Given the ca-
pability of describing the three-dimensional structure of four points, one can seg-
ment large collections of points by treating them in groups of four, deriving their
structure and hence their motion. Groups of points that are not rigid have a very
low probability of being interpreted as rigid, and the rest will presumably cluster
into sets that share motions associated with rigid objects in the imaged scene. Thus
the method to be described may be adaptable for image segmentation.

The calculation may be applied to coplanar points. If a unique result is
derived, it is correct; otherwise, the fact that the points are coplanar is revealed.
Generally, accuracy of two-dimensional positional information can be sacrificed to
some degree if more points or more views are supplied. Perspective projections are
more difficult to analyze. Such views can easily be treated approximately by the
technique of breaking them into four element groups and treating each group as if
it were orthographically projected in a direction depending on its position in the
scene. Thus perspective may be dealt with globally, although each group is locally
treated as an orthogonal projection. The assumption of orthographic projection im-
plies that the method cannot recover relative depth of objects. The method does
not lend itself well to ““structure from receding motion’’ in which the motion infor-
mation is largely encoded in the perspective effects which render objects larger or
smaller as they advance and recede. The method does not serve well to explain hu-
man performance on moving images of a few points on nonrigid objects (such as
those in Section 7.3.3).

Assume that three orthographic projections of four noncoplanar points are
given, and that the correspondence between the points in the projection is known.
Translational motion perpendicular to a projection plane is unrecoverable, and
translation in a plane parallel to the projection plane is explicitly reproduced in the
image by the projection process. The problem thus easily reduces to the case that
one of the points is chosen as the origin of coordinates, and stays fixed throughout
the process. This treatment follows that of [Ullman 1979].

Let the four points be 0, 4, B, and C. Three orthographic views, projections
on some planes I1;, I1,, and I1;, are the input to the process. A coordinate system is
chosen with origin at 0, and a, b, and c are vectors from 0 to 4, B, and C. Then
each view has a two-dimensional coordinate system with the image of 0 at its ori-
gin. Let p, and q; be the orthogonal unit basis vectors of the coordinate systems of
the I1,. Let the image coordinates of 4, B, and Con II, be (x(g;), y (a;)), (x(8,),
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y(8)), and (x(¢;), y(c)) for i = 1, 2, 3. The calculations produce vectors u,,
which are unit vectors along the lines of intersection of IT; with IT ;.
The image coordinates are in fact

x(a) =ap;, yla)=ayg
x(b) =bp;  y(b) =brg, tL.38)
x(¢) =cp;  yle) = cg;

The unit vector uj; is on both I1; and I1 ;; hence for some r;;, s, t;;, and v;,

u; = ryp; + s;9; (7.39)
rg+st=1
Uy = LRy vy (7.40)
7+ vi=1
Equations (7.39) and (7.40) yield
ryl; t s = 4y + g (7.41)

Taking the scalar product of a, b, and ¢ with Eq. (7. 41) yields three more equa-
tions, which are linearly independent. These equations in r;, s, f;, and v;j> com-
bined with Eqgs. (7.39) and (7.40), yield two solutions differing only in sign. But
this means that (up to a’sign) u;; is determined in terms of the image coordinate
basis vectors (p;, q;) and (pj, q j). Two u vectors determine one of the planes of
orthogonal projection. For instance, u;; and uy; lie in P;. Given the plane equation
for the II;, the three-dimensional locations are computed as the intersection of
lines perpendicular to the II; and through the two-dimensional image points. Of
course, because of the ambiguity in sign, the expected mirror image ambiguity of
structure exists.

The extension to the case that u;; = uy; = u3;, where the three viewpoints
are coplanar, is not difficult. It is perhaps a little surprising that coplanar viewpoints
still yield a unique interpretation.

An extension of the mathematics to perspective imaging is not difficult to for-
mulate, but the equations are nonlinear and must be solved either conventionally,
say by the multidimensional Newton-Raphson technique of Appendix 1, or
perhaps by cooperative algorithms of a more artificial intelligence flavor [Lawton
1981].

In geometrically underconstrained situations, plausible interpretations can
sometimes be made by using other knowledge to give constraints. For example,
one can minimize a second-difference approximation to the acceleration of points
in order to use the ‘‘constraint” of smooth motion. Such a criterion may find a sin-
gle “‘best’” location for points. Another example is the use of position and velocity
commonality over time to establish rigid members in linkages (Sectlon 7334
first step to location determination.

To see how the equations might be set up, consider the perspective geometry
of Section 7.2.1. In this simplified Cartesian system, Eqs. (7.1) and (7.2) are used
as before. Since z (x), y’, 1) = (x, y, z), the location of any point is determined (up
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to a scale factor, since the focal length is not explicit) from its image coordinates
and its depth coordinate, z. For F > 1 images and N = 3 points there are FN — 1
unknowns (the ability to scale distance allows one point to be placed arbitrarily).

To apply the rigid body constraint, enough pairwise distances between points
must be specified to lock them into a rigid configuration. For three points, three
distances are necessary. Each additional point requires another three distances,
and so for each interframe interval 3(N — 2) constraints are needed, for a total of
3(F —1) (N —2) constraints. Thus, whenever

2FN —6F—3N+172=20 (7.42)

consistent equations from the constraints can be solved [Lawton 1981]. With two
views, five points are needed; with three views, four points. This is not surprising,
given the preceding analysis for orthographic projections.

Consider the simple case of two points seen in two frames. If they are rigidly
connected, one constraint equation holds. It is equivalent to

(xq) — Xlz)'(xn - Xu) = (xg1 — x22)* (xp1 — x22) (7.43)

(x;, x';; are, respectively, the world and image coordinate vectors of point j in
frame ij). Since x;; = z;X';;, (recall (7.1) and (7.2)) the constraint becomes

2 (11X + 2 (10X 1) = 22992 (KX )
== 2221 (X'zl'xrzl) e 2222 (X'gg'X’gz) + 2221222(1(’21')(’22) =0 (7.44)

A further constraint that objects only move in the ‘“‘ground plane,”’ or at a
constant y, has the effect of removing two unknowns through substitution in the
constraint equation above. Since for arbitrary mand n,

Yim = Zimyrf'm = Vi = Bl (7.45)
Zj :

I = m%; = (7.46)
Yin

As a final example, a restriction to purely translational motion of the point
configurations yields the constraint

(x11 — X)) — (x12— %) =0 (7.47)

Expanding this as the product of unknown depths (z) and known image positions
(x") yields a vector equation that may be written componentwise as three linear
equations in four unknowns. Recall that a focal length must be fixed, effectively
setting one unknown: setting one z;; to 1 gives a system of three linear equations in
the other three z;;.

7.3.3 Interpretation of Moving Light Displays— A Domain-Independent Approach
One of the domains that provides the purest aspects of motion vision is moving
light displays (MLDs). These are sequences of images which track only a few

discrete points per frame. A typical way to produce an MLD is to attach small glass
bead reflectors to a person’s major joints (shoulders, elbows, wrists, hips, knees,
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ankles), focus a strong light on him or her, and manipulate the contrast of a video-
tape recorder so as to produce on videotape a record of the movement of the
reflective points on the joints. A single frame from such a record is unrecognizable
by an inexperienced subject (Fig. 7.8).

However, a sequence of such frames quickly gives (typically in 0.4 second)
not only a compelling perception of motion of a three-dimensional body, but al-
lows recognition of the sequence as depicting a walking person, and a description
of the type of motion (walking backward, jumping, walking left). Complicated
scenes such as several independently moving bodies and couples dancing can be
recognized. Sophisticated judgments can be made, such as determining the sex of a
subject from an MLD, or recognizing the gait of a friend [Johannson 1964].

MLDs thus present quite a challenge to computer vision. It could be that
MLDs of moving people are interpreted by specialized neural mechanisms ex-
pressly tailored to the purpose of dealing with any visual input whatever that sug-
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Fig. 7.8 An MLD for a man walking his dog.
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gests moving people. MLDs certainly demonstrate that texture, continuous fields
of flow, and especially that the interpretability of static versions of the scene are not
necessary for human beings to do complex perception of certain three-dimensional
objects.

This section is concerned with MLDs of moving human beings, and the in-
terpretation we desire consists of separating images of individuals, in deriving their
“connectivity”’ (i.e., the rigid links that connect the points), and possibly in
describing the three-dimensional motion in which the subjects are engaged.

MLDs produced with perspective projection have few of the pleasant proper-
ties of the rigid orthographic projection which were used in Section 7.3.1. In partic-
ular, both translating and rotating objects are inherently ambiguous in perspective
projections [Roache and Aggarwal 1979]. The approximate method outlined in
Section 7.3.1, in which local groups of four points are considered rigid and ortho-
graphically projected, fails for MLDs of walking people. In many applications, di-
gitization error will limit severely the accuracy returned. Worse, in a typical 12-
point MLD of a moving person, there is never a rigid system of four noncoplanar
points. The small departures from rigidity occurring in 30 ms of normal walking are
enough to render the rigidity assumptions invalid [Rashid 1980].

An algorithm in [Badler 1975] extracts the trajectory of two moving points if
they move in parallel paths and are viewed by spherical projection. The projection
conditions are approximately met in typical moving-person MLDs, but the lack of
points moving in parallel paths is enough to render the algorithm inapplicable.

A good start in the interpretation of MLDs involves solving the point-
correspondence problem between frames. Knowing how points move from frame
to frame gives at least a start on perceiving the continuity of the objects in the
scene. Solving this problem from frame to frame may be attacked in any number of
ways; the relaxation approach of Section 7.2.3 is an example.

Another is to predict the location of a point in the two-dimensional image
from its velocity in the preceding frame. Velocity is computed from the
differences in position of the point in the preceding two frames. Predicting where a
point will be in frame 3 implies that one knew which point it was in frames 1 and 2.
One way of getting the process started is to associate points in frames 1 and 2 that
are nearest neighbors. Evidence suggests that human beings in fact are not infalli-
ble trackers of points in MLDs [Rashid 1980]. However, they do not let local in-
consistencies in point interpretation (say, if the ankle momentarily “‘turns into”
the knee) detract from their overall perception of a moving person. This is a good
example of how inconsistent interpretations arise in human vision.

A program can be given similar resilience by having it suspend judgment on
contradictory clues and use succeeding frames to resolve the problem [Rashid
1980; O’Rourke 1980]. Having established local point correspondences, the next
problem is to group the points into coherent three-dimensional structures and
separate individual bodies moving in the scene. When constraints on the scene are
available that make analytic techniques applicable (Section 7.3.1), explicit group-
ing of points prior to analysis may be unnecessary. In fact, with complex MLDs
such as Ullman studied (e.g. two transparent but spotty coaxial cylinders rotating
in opposite directions about an axis in the viewing plane), most naive grouping
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strategies based on two-dimensional motion in the image will fail. Ullman’s
method chooses four-tuples of points from such a scene; on the average seven-
eighths of such groups involve points from both cylinders, but with accurate data
the algorithm can identify such nonrigid four-tuples. The remaining one-eighth of
the groups have consistent interpretations as rigid rotating groups, and the groups
fall into two classes, one for each cylinder.

One straightforward heuristic approach to MLD interpretation enjoys
moderate success and does not use domain-dependent models [Rashid 1980]. It
has the characteristic that it deals exclusively with two-dimensional motions in
order to extract information about three dimensions. The approach is more heuris-
tic than Lawton’s and certainly more than Ullman’s (Section 7.3.1). It is prey to
many of the same pitfalls that threaten any image-based (as opposed to world-
based) approach to computer vision. With sparse MLDs of nonrigid objects, clus-
tering algorithms may be used to group points into related structures. Rashid’s
method computes the minimum spanning tree of points in a four-dimensional
space of two-dimensional position and two-dimensional velocity. That is, each
point in the MLD is represented at any time t by a four-vector

@), y@), u(®), v())

where u and v are the velocity in image x and y coordinates. Points may be
clustered in this position-velocity space on the basis of a four-dimensional
Euclidean metric, modified by information about distances derived from preceding
frames. Perspective distortion can affect the usefulness of two-dimensional dis-
tances computed in previous frames, and data scaling is useful to establish a rea-
sonable relation between units in the four-dimensional space. Rashid’s technique
is to scale the data in each dimension to have unit variance and zero mean, and to
compute cumulative distances between points in a frame by a function such as

D, G j)=4dl j)+ D, j) x 0.95 (7.48)

where D, (i, j) is the cumulative distance between points i and j in frame »n, and
d (i, j) is their Euclidean distance.

This clustering method can successfully group points on the two cylinders in
the rotating-cylinder sequence mentioned above after seven frames. Figure 7.9
gives the results of clustering the data for the MLD of Fig. 7.8. Clustering is stable
after some 25 frames (about one-half of a step).

7.3.4 Human Motion Understanding— A Model-Directed Approach

Human motion understanding may be done with a much different approach than
the heuristic clustering applied to MLDs in Section 7.3.3. A very detailed model of
the domain can help restrict search, make inferences, disambiguate clues, and so
forth. A program for understanding images of human motion successfully uses
such an approach [O’Rourke 1980; O’Rourke and Badler 1980].

The body model accounts for such factors as relative location of body parts,
joint angle ranges, joint angle acceleration limits, collision checking, and gravity. A
motion simulation program drives a ‘‘bubble man™ representation of a person
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Fig. 7.9 The minimal spanning tree for the man and dog.




(Fig. 7.10a) [Badler and Smoliar 1979]. This representation is used to produce a
shaded graphic rendition which serves as input to the motion understanding pro-
gram (Fig. 7.10b). Knowledge of the imaging process also provides constraints on
the configuration of the figure represented. For instance, perspective, the
figure/ground distinction, the location of features, and occlusion all have implica-
tions for the interpretation of the scene as a configuration of the model.

The system is another example of a cooperative, constraint-satisfying system
(Chapter 12), this time one that involves a high-level domain-dependent model.

(a) (b)

(d)

Fig. 7.10  Understanding human motion through the incorporation of many
constraints. {a) Bubble Man from simulation program. (b} Input to motion under-
stander; a bowing man. (¢, d) Initial and final stages in understanding the motion
of the bowing man.
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The constraints imposed by the model restrict the application of low-level opera-
tors, and their results reduce uncertainty in parts of the model configuration.
Through the relations between model parts, improved estimates for part locations
are evolved and propagate throughout the model. Figure 7.10c and d show how the
image of the bowing man is understood more accurately as time passes and more
constraints are propagated through the model. It should be noted that only the
hand, foot, and head features are explicitly searched for in the image. The boxes
represent possible locations for the obvious body parts. Note how the occlusion has
been understood.

7.3.5 Segmented Images

Moving Polygons and Line Drawings

As one step along the way to motion understanding, the analysis of ideal po-
Iygonal images was popular for a time [Aggarwal and Duda 1975; Martin and Ag-
garwal 1978; Potter 1975]. The assumptions are usually that opaque polygons
move in parallel planes and may obscure one another (this is often called a 2.5-
dimensional situation). The viewpoint is somewhere ‘‘above’” the collection of
moving shapes. The viewer (program) is presented with a sequence of frames ei-
ther of line drawings or gray level images of the scene (Fig. 7.11). Polygon motion
is assumed small between frames. The goal is usually to segment the scenes into
polygons, and to extract such information as their direction and speed of motion.
The solutions to these problems usually reflect assumptions about the connectivity
of the polygons, or restrictions on their motion, and often revolve about the allow-
able topological and geometrical transformations that can take place in such
scenes.

For instance, in a frame with two polygons such as that shown in Fig. 7.12,
certain scene vertices belong to primitive polyhedra (they are “‘true’ vertices),
whereas others are ‘‘false’” artifacts of occlusion. The lines impinging at true ver-
tices will not change their angle of meeting through time, but false vertices may
change angles if the polygons rotate as they move. False vertices are usually ob-
tuse.

Complex connectivity changes can arise when nonconvex polygons slide past
one another. Sorting out a coherent interpretation of a sequence of frames, espe-
cially in the presence of noisy vertex positions, is a challenging exercise.

A system was designed in [Badler 1975] which used sequences of line draw-
ings produced by a spherical projection of a three-dimensional world to reconstruct

>

Fig. 7.11 Two frames from a motion image of three moving polygons.
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Fig. 7.12 True (T) and False (F) vertices in a scene of two overlapping pol-
yEONS.

some three-dimensional aspects of the input, and to transform the pictorial input
into natural language descriptions of motion.

Similarity Analysis, Then Difference Measurement

This approach is probably the most intuitive if motion perception is thought
to be built up from perception of successive frames. The idea is simply to extract an

object in one frame, and to search for it in the next frame. Obviously, the basic /

techniques here are the description-extraction process (i.e., static computer vision,
the topic of most of this book) and matching (Chapter 11).

The entire range of matching techniques, from image matching to descrip-
tion matching, has been applied to image sequences. One characteristic of this
approach in its pure form is that motion is merely a nuisance — segmentation is
performed without using motion information. Usually the approach is pursued in a
more pragmatic and domain-dependent fashion: for instance, the matching may be
guided by knowledge about the motions.

One advanced system that uses this basic paradigm is described in [Price
1976, Price 1978; Price and Reddy 1977]. It segments and describes both images
first. Using the symbolic descriptions, it matches complex scenes (such as houses
or aerial images) that have been relatively rotated by large amounts (45 to 180°)
and have size differences as well. It also derives the geometric transformation that
produced the second image from the first.

Clearly, the major problems in systems of this sort come from generating and
matching descriptions. The matching must be sophisticated, and to be successful in
general it must combine symbolic and geometric components. The constraint that
successive frames do not reflect violent motions eases the matching problem con-
siderably, and iconic correlation techniques may sometimes apply.

Difference Measurement, Then Similarity Analysis

The idea behind this approach is to guide the similarity analysis with informa-
tion about image differences. This seems a promising idea, because differences are
easy to compute, whereas the very definition of similarity is open to question, and
computing it may be arbitrarily complex.
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In particular, in locating moving objects in an image sequence, one is invited

to ignore the stationary background. The area of changing image can be tracked
easily from image to image, and subjected to further analysis. Rather than trying to
track an object from image to image, it is attractive to consider letting the object
move far enough that it does not overlap between two images. Then the difference
between the images will actually reflect the structure of the object.

One possible method [Nagel 1978a, 1978b; Jain and Nagel 1978] proceeds as

follows:

1.

7.1
7.2

7.3

7.4

7.5

7.6

Obtain two images from the motion sequence such that the object of interest
will have moved far enough not to overlap in position in the two images. (One
clearly needs information about the objects and the imaging parameters to as-
sure no overlap.)

Segment the two images into regions.

Compute a dissimilarity measure between the overlapping areas of regions in
the two images. One reasonable measure is the likelihood ratio for the two hy-
potheses that the intensities in the overlaps come from the same distribution
of intensities or from different distributions.

In one of the images, take all regions that are most consistent with the hy-
pothesis of different distributions and assume that they arise from the moving
object (or its old vacated position). Merge these regions by a reasonable tech-
nique into one which is taken to include the moving object.

Take the boundary of the candidate region and use it as a template for correla-
tion detection tracking between adjacent frames.

The offsets revealed by the correlation process give the velocity, and can be
used to ‘‘subtract out” the motion, register the views of the object in several
images, and thus obtain a more accurate characterization of the object.

This approach leads to results such as those shown in Fig. 7.13.

EXERCISES

Write a geometric explanation of the FOE phenomenon.

Devise a motion segmentation scheme for rigid bodies in translational three-
dimensional motion that uses the FOE calculation.

Prove that the parametric flow path equation (7.3) indeed does produce a straight
line in image coordinates.

Prove the time-to-adjacency relation (7.5). A geometrical demonstration may be
made with similar triangles; an algebraic one is not very hard.

Express Eq. (7.12) as much as possible in terms of observables in the optical flow
“image.”” What is left unspecified?

Perform Exercise 7.5 with equation (7.13).
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(d)

Fig. 7.13 Motion from segmented images. Initial (a) and final (b) frames from 16-frame
sequence. The object of interest is the car moving left to right in the intersection. (¢) Car seg-
mentation from an intermediate frame. (d) Car reconstructed from several frames; the gray
values result from aligning the values extracted from individual frames by segmentation.

7.7 Specialize the result of Exercise 7.6 to the case that the observer is moving in the

direction of his direction of view [the FOE is at (0, 0)].

7.8 Fill in the steps in the derivations of the general and special cases of 8 and € (Egs.

(7.18) and (7.21) through (7.23)).

7.9 Fillin the steps in the derivations of tan o and tan 7 (Egs. (7.28) and (7.29)).
7.10 Show how to compute absolute depth from flow (Section 7.2.2) if the observer speed

7.11

Exercises

is known.
The Laplacian of € in Section 7.2.3 is the sum of the second partial derivatives of €
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with respect to € and ¢. Write it out and show that it has singularities only when the
Laplacian of depth (r) does exceptate¢p = Qorm or r = 0.

7.12 In Section 7.2.2, the 0, ¢ system is divorced from the retinal position. How might
this coordinate system be deduced from optical flow, or how might this deduction be
unnecessary ?

7.13 Work out the details of the vector equation referred to in the last paragraph of Sec-
tion 7.3.2.

7.14 What do flow paths look like if the observer (or the environment) only executes ro-
tational motion? Pick a congenial coordinate system and prove your supposition.

7.15 Tighten up the ‘“‘common motion’’ heuristic in Section 7.1.2. What domains under
what sorts of world motion yield what sorts of ‘“‘common’ image motions for ob-
jects?
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Ultimately, one of the most important things to be determined from an image is
the shape of the objects in it. Shape is an intrinsic property of three-dimensional
objects; in a sense it is the primal intrinsic property for the vision system, from
which many others (surface normals, object boundaries) can be derived. It is pri-
mal in the sense that we associate the definitions of objects with shape, rather than
with color or reflectivity, for example.

Webster defines shape as ‘‘that quality of an [object] which depends on the
relative position of all points composing its outline or external surface.” This
definition emphasizes the fact that we are aware of shapes through outlines and
surfaces of objects, both of which may be visually perceived. It also makes the dis-
tinction between the two-dimensional outline and the three-dimensional surface.
We preserve this distinction: Chapter 8 deals with two dimensional shapes,
Chapter 9 with three dimensional shapes.

If our goal is to understand flat images, why bring solids into consideration?
Our simple answer is that we believe in many cases vision without a ‘‘solid basis”’
is a practical impossibility. Much of the recent history of computer vision demon-
strates the advantages that can be gained by acknowledging the three-dimensional
world of objects. The appearance of objects in images may be understood by under-
standing the physics of objects and the imaging process. The purest form of two-
dimensional recognition, template matching, clearly does not practically extend to
a world where objects appear in arbitrary positions, much less to a world of nonri-
gid objects. It is true that in some important image understanding tasks (interpreta-
tion of chest radiographs, ERTS images or some microscope slides), the third
dimension is irrelevant. But where the three-dimensionality of objects is impor-
tant, the considerable effort necessary to develop a usable three-dimensional
model will always be amply repaid.

Shape recognition is doubtless one of the most important facilities of the
mammalian visual system. We have seen how important shape information can be
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extracted from images in early processing and segmentation. One of the major
challenges to computer vision is to represent shapes, or the important aspects of
shapes, so that they may be learned, matched against, recollected, and used. This
effort is hampered by several factors.

1. Shapes are often complex. Whereas color, motion, and intensity are relatively
simply quantified by a few well-understood parameters, shape is much more
subtle. Common manufactured or natural shapes are incredibly complex; they
may be represented *““explicitly’” (say by representing their surface) only with
hundreds of parameters. Worse, it is not clear what aspects of shapes are
important for applications such as recognition. An explicit and complete
representation may be computationally intractable for such basic uses as
matching. What ‘‘shape features’’ can be used to ease the burden of computa-
tion with complex shapes?

2. Introspection is no help. Human beings seem to have a large fraction of their
brains devoted to the single task of shape recognition. This important activity
is largely “‘wired in”’ at a level below our conscious introspection. Why is
shape recognition so easy for human beings and shape description so hard?
The fact that we have no precise language for shape may argue for the inacces-
sibility of our shape-processing algorithms or data structures. This lack of cog-
nitive leverage is a trifle daunting, especially when taken with the complexity
of everyday shapes.

3. There is little classical guidance. Mathematics traditionally has not concerned
itself with shape. For instance, only recently has there been a mathematical
definition of “‘rigid solid’’ that accords with our intuition and of set operations
on solids that preserve their solidity. The fact that such basic questions are
only now being addressed indicates that computer science must do more than
encode some already existing proven ideas. Thus we have the next point.

4, The discipline is young. Until very recently, human beings communicated about
complex shapes mainly through words, gestures, and two-dimensional draw-
ings. It was not until the advent of the digital computer that it became of
interest to represent complex shapes so that they could be specified to the
machine, manipulated, computed with, and represented as output graphics.
No generally accepted single representation scheme is available for all shapes;
several exist, each with its advantages and disadvantages. Algorithms for
manipulating shapes (for example, for computing how to move a sofa up a
flight of stairs, or computing the volume of a specified shape) are surprisingly
complex, and are research topics. Often the representations good for one appli-
cation, such as recognition, are not good for other computations.

It is the intention of this part of the book to indicate some of what is known
about the representation of shape. Although the details of geometric representa-
tions may be still under development, they are an essential part of our layered
computer vision organization. They are more abstract than segmented structures
and are distinguished from relational structures by their preponderance of metric
information.
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Representation of
Two-Dimensional
Geometric Structures 8

8.1 TWO-DIMENSIONAL GEOMETRIC STRUCTURES

The structures of this chapter are the intuitive ones of well-behaved planar regions
and curves. A mathematical characterization of these structures that bars ‘‘patho-
logical’® cases (such as regions of a single point and space-filling curves) is possible
[Requicha 1977]. Basically the requirement is that regions be ‘“homogeneously
two-dimensional”’ (contain no hanging or isolated structures of different
dimension—solids, lines or points). Similarly, curves should be homogeneously
one-dimensional. The property of regularity is sometimes important; a regular set
is one that is the closure of its interior (in the relevant one- or two-dimensional to-
pology). Intuitively, regularizing a two-dimensional set (taking the closure of its
interior) first removes any hanging one- and zero-dimensional parts, then covers
the remainder with a tight skin (Fig. 8.1). In computer vision, often regions and
curves are discrete, being defined on a raster of pixels or on an orthogonal grid of
possible primitive edge segments. It is frequently convenient to associate a direc-
tion with a curve, hence ordering the points along it and defining portions of the
plane to its left and right.

The one-dimensional closed curve that bounds a well-behaved region is an
unambiguous representation of it; Section 8.2 deals with representations of curves
and hence indirectly of regions. Section 8.3 deals with other unambiguous
representations of regions that are not based on the boundary. Sometimes unambi-
guous representation is not the issue; it may be important to have qualitative
description of a region (its size or shape, say). Section 8.4 presents several terse
descriptive properties for regions.

231



(a) (b) (c) (d)

Expandedviewof N, | | aoam
neighborhood

Fig. 8.1 (a, b, c) are Regions; (d) (e) and (f) are not.

8.2 BOUNDARY REPRESENTATIONS

8.2.1 Polylines

The ‘‘two-point” form of a line segment (see Appendix 1) extends easily to the po-
Iyline, which represents a concatenation of line segments as a list of points. Thus
the point list x;, X,, X3 represents the concatenation of the line segments from x; to
x, and from x; to x;. If the first point is the same as the last, a closed boundary is
represented.

Polylines can approximate most useful curves to any desired degree of accu-
racy. One might think there is one obvious way to approximate a boundary curve
(or raw data) with a polygonal line. This is not so: many different approaches are
possible. Finding a satisfying polygonal approximation to a given curve basically
involves segmentation issues. The problem is to find corners or breakpoints that
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yield the ‘‘best’ polyline. As with region-based segmentation schemes, the ideas
here can be characterized by the concepts of merging and splitting. Splitting and
merging schemes may be combined, especially if the appropriate number of linear
segments is known beforehand. For details, see [Horowitz and Pavlidis 1976].

In a merging algorithm, points along a curve (possibly in image data) are con-
sidered in order and accepted into a linear segment as long as they fit sufficiently
well. When they do not, a new segment is begun. The efficiency and characteristics
of these schemes are quite variable, and endless variations on the general idea are
possible. A few examples of ‘“‘one pass’’ merging schemes are given here: explicit
algorithms are available in [Pavlidis 1977].

If the boundary (represented on a discrete grid) is known to be piecewise
linear, it is specified by its breakpoints. To find them, one can look along the boun-
dary, monitoring the angle between two line segments. One segment is between
the current point and a point several points back along the boundary; the other is
between the current point and one several points forward. When the angle between
these segments reaches a maximum over some threshold, a breakpoint is declared
at the current point. This scheme does not adjust breakpoint positions, and so is
fast [Shirai 1975] but works best for piecewise linear input curves.

Tolerance-band solutions place a point on either side of the curve at the max-
imum allowable error distance, and then find the longest piece of the curve that
lies entirely between parallel lines through the two points [Tomek 1974]. This
method proceeds without breakpoint adjustment, and may not find the most
economical set of segments (Fig. 8.2).

An approximation of a curve with a polyline of minimum length in error by at
most a pixel is given in [Sklansky and Kibler 1976]. Each curve pixel is considered
a square and the resulting pixel structure is four-connected. The approximation
describes the shape of an elastic thread placed in the pixel structure (Fig. 8.3). The

Fig. 8.2 Simple tolerance-band solution (dotted lines). Better
solution (solid lines).
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Fig. 8.3 Minimum length polyline.

method tends to have difficulties with curves that are sharp relative to the grid size.

Another scheme, [Roberts 1965] is to keep a running least-squared-error
best-fit line calculation for points as they are merged into segments [Appendix 1].
When the residual (error) of a point goes over some threshold or the accumulated
error for a segment exceeds a threshold, a new segment is started. Difficulties arise
here because the concept of a breakpoint is nonexistent; they just occur at the in-
tersections of the best-fit lines, and without a phase of adjusting the set of points to
be fit by each line (analogous to breakpoint adjustment), they may not be intui-
tively appealing.

Generally, one-pass merging schemes do not produce the most satisfying po-
lylines possible under all conditions. Part of the problem is that breakpoints are
only introduced after the fit has deteriorated, usually indicating that an earlier
breakpoint would have been desirable.

In a splitting scheme, segments are divided (usually into two parts) as long as
they fail some fitting condition [Duda and Hart 1973; Turner 1974]. Algorithm 8.1
provides an example.

Algorithm 8.1: Curve Approximation

1. Given a curve as in Fig. 8.4a, draw a straight line between its end points (Fig.
8.4b).

2. For every point on the curve, compute its perpendicular distance to the
approximating (poly)line. If it is everywhere within some tolerance, exit.

3. Otherwise, pick the curve point farthest from the approximating (poly)line,
make it a new breakpoint (Fig. 8.4c) and replace the relevant segment of poly-
line with two new line segments.

4. Recursively apply the algorithm to the two new segments (Fig. 8.4d).

A straightforward extension is needed to deal with the case of curve segments
parallel to the approximating one at maximum distance (Fig. 8.4¢).
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Fig. 8.4 Stagesin the recursive linear
(e} segmenter (see text).

The area of a polygon may easily be computed from its polyline representa-
tion [Roberts 1965]. For a closed polyline of n points (x (i), y (i), i=0, ..., n — 1,
labeled clockwise around a polygonal boundary, the area of the polygon is

1 n—1
) _}:0 (Xis i — Xiz1) (8.1)
=

where subscript calculations are modulo ». This formula can be proved by consid-
ering it as the sum of (signed) areas of triangles, each with a vertex at the origin, or
of parallelograms constructed by dropping perpendiculars from the polyline points
to an axis. This method specializes to chain codes, which are a limiting case of poly-
lines.

8.2.2 Chain Codes

Chain codes [Freeman 1974] consist of line segments that must lie on a fixed
grid with a fixed set of possible orientations. This structure may be efficiently
represented because of the constraints on its construction. Only a starting point is
represented by its location; the other points on a curve are represented by succes-
sive displacements from grid point to grid point along the curve. Since the grid is
uniform, direction is sufficient to characterize displacement. The grid is usually
considered to be four- or eight- connected; directions are assigned as in Fig. 8.5,
and each direction can be represented in 2 or 3 bits (it takes 18 bits to represent the
starting point ina 512 x 512 image).

Chain codes may be made position-independent by ignoring the “‘start
point.”” If they represent closed boundaries they may be ‘‘start point normalized”’
by choosing the start point so that the resulting sequence of direction codes forms

Sec. 8.2 Boundary Representations 235



236

an integer of minimum magnitude. These normalizations may help in matching.
Periodic correlation (Section 3.2.1) can provide a measure of chain code similarity.
The chain codes without their start point information are considered to be periodic
functions of ‘‘arc length.” (Here the arc length is just the number of steps in the
chain code.) The correlation operation finds the (arc length) -displacement of the
functions at which they match up best as well as quantifying the goodness of the
match. It can be sensitive to slight differences in the code.

The “‘derivative’ of the chain code is useful because it is invariant under
boundary rotation. The derivative (really a first difference mod 4 or 8) is simply
another sequence of numbers indicating the relative direction of chain code seg-
ments; the number of left hand turns of /2 or 7 /4 needed to achieve the direction
of the next chain segment.

Chain codes are also well-suited for merging of regions [Brice and Fennema
1970] using the data structure described in Section 5.4.1. However, the pleasant
properties for merging do not extend to union and intersection. Chain codes lend
themselves to efficient calculation of certain parameters of the curves, such as area.
Algorithm 8.2 computes the area enclosed by a four-neighbor chain code.

Algorithm 8.2: Chain Code Area

Comment: For a four-neighbor code (0: +x, 1: +y, 2: —x, 3: —y) surrounding a
region in a counterclockwise sense, with starting point (x, y):
begin Chain Area;
1. area:= 0,
2. yposition:= y;
3. Foreachelement of chain code
case element-direction of
begin case
[0] area : = area-yposition;
[1] yposition : = yposition + 1;
[2] area : = area + yposition;
[3] yposition : = yposition — 1;
end case;
endChain Area;

To merge two region boundaries is to remove any boundary they share, obtaining a
boundary for the region resulting from gluing the two abutting regions together.
As we saw in Chapter 5, the chain codes for neighboring regions are closely related
at their common boundary, being equal and opposite in a clearly defined sense (for
N-neighbor chain codes, one number is equal to the other plus N/2 modulo N (see
Chapter 5). This property allows such sections to be identified readily, and easily
scissored out to give a new merged boundary. As with polylines, it is not immedi-
ately obvious from a chain-coded boundary and a point whether the point is within
the boundary or outside. Many algorithms for use with chain code representations
may be found in [Freeman 1974; Gallus and Neurath 1970].
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Fig. 8.5 (a) Direction numbers for chain code elements. (b) Chain code for the
boundary shown. (c) Derivative of (b).

8.2.3 The s -sCurve

The ¢—s curve is like a continuous version of the chain code representation; it is
the basis for several measures of shape. i is the angle made between a fixed line
and a tangent to the boundary of a shape. It is plotted against s, the arc length of the
boundary traversed. For a closed boundary, the function is periodic, with a discon-
tinuous jump from 27 back to 0 as the tangent reattains the angle of the fixed line
after traversing the boundary.

Horizontal straight lines in the yy—s curve correspond to straight lines on the
boundary (¥ is not changing). Nonhorizontal straight lines correspond to seg-
ments of circles, since ¢ is changing at a constant rate. Thus the y—s curve itself
may be segmented into straight lines [Ambler et al. 1975], yielding a segmentation
of the boundary of the shape in terms of straight lines and circular arcs (Fig. 8.6).

S | /""
D (\\)

(a)
(c)

Fig. 8.6 -5 segmentation. (a) Triangular curve and a tangent. (b) y-s curve showing re-
gions of high curvature. (¢) Resultant segmentation.

Sec. 8.2 Boundary Representations 237



238

8.2.4 Fourier Descriptors

Fourier descriptors represent the boundary of a region as a periodic function which
can be expanded in a Fourier series. There are several possible parameterizations,
summarized in [Persoon and Fu 1974]. These frequency-domain descriptions pro-
vide an increasingly accurate characterization of shape as more coefficients are in-
cluded. In the infinite limit, they are unambiguous; individual coefficients are
descriptive representations indicating ‘‘lobedness’’ of various degrees.

The boundary itself may provide the parameters for the Fourier transform as
shown in Fig. 8.7. The parameterization of Fig. 8.7 gives the following series ex-
pansions:

S ;
x(p) = zxke”"”"i w, = 2m/P, P = perimeter (8.2)

where the discrete Fourier coefficients X, are given by

X, = f x(s)e """’ ds (8.3)

e P
P

A common feature for the Fourier descriptors is that typically the general
shape is given rather well by a few of the low-order terms in the expansion of the
boundary curve. Properly parameterized, the coefficients are independent of size,
translation, and rotation of the shape to be described. The descriptors do not lend
themselves well to reconstruction of the boundary; for one thing, the resulting
curve may not be closed if only a finite number of coefficients is used for the recon-
struction.

The yi—s curve may be used as the basis for a Fourier transform shape
description [Barrow and Popplestone 1971). (s) is converted to ¢ (s): ¢(s) =
¢ (s) — 2= s/P. This operation subtracts out the rising component. A number of
shape-indicating numbers arise from taking the root-mean-square amplitudes of
the Fourier components of ¢ (s), discarding phase information. The shape descrip-
tors are again indicative of the ‘‘lobedness’’ of the shape.

Xz‘
3

(x4 (s5), x5 {5))

Fig. 8.7 Parameterization for Fourier
—X;  Series Expansion.
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8.2.5 Conic Sections

Polynomials are a natural choice for curve representation, and certain polynomials
of degree 2 (namely, circles and ellipses) are closed curves and hence define re-
gions. Circles may be represented with three parameters, ellipses by five, and gen-
eral conics by six. Thus the coefficients or parameters of conic sections are terse
representations. Conics are often good models for physical curves such as the
edges of manufactured objects.

Conics are commonly used to represent general curves approximately [Paton
1970]. Conics have some annoying properties, however; an important one is the
difficulty of producing a well-behaved conic from noisy data to be fitted. Unless
one is careful in defining the error measure [Turner 1974], a “‘least-squared error’
fit of a conic to data points yields a conic which is a nonintuitive shape or even of a
surprising type (such as a hyperbola when an ellipse was expected). Conic
representations and algorithms are explored in Appendix 1.

8.2.6 B-Splines

Interpolative techniques may be used to yield approximate representations. B-
splines are a popular choice of piecewise polynomial interpolant. Introduced in
computer aided design and computer graphics, these classes of curves provide ade-
quate aesthetic content for much design and also have many useful analytic proper-
ties. Usually, the fact that the curves are ‘‘interpolating’” is not very relevant. What
is relevant is that they have predictable properties which make them easy to mani-
pulate in image processing, that they “‘look good’ to human beings, that they
closely approximate curves of interest in nature, and so forth. Several schemes ex-
ist for constructing complex curves that are useful in geometric modeling, and de-
tailed expositions are to be found in [deBoor 1978; Barnhill and Riesenfeld 1974].
The B-spline formulation is one of the simplest that still has properties useful for
interactive modeling and the extraction from raw data.

B-splines are piecewise polynomial curves which are related to a guiding po-
lygon. Cubic polynomials are the most frequently used for splines since they are the
lowest order in which the curvature can change sign. An example of the relation-
ship between the guiding polygon and its spline curve is shown in Fig. 8.8. Splines
are useful in computer vision because they allow accurate, manipulable internal
models of complex shapes. The models may be used to guide and monitor seg-
mentation and recognition tasks. Interactive generation of complex shape models
is possible with B-splines, and the fact that the complex spline curves have terse
representations (as their guiding polygons) allows programs to manipulate them
easily.

Spline approximations have good computational properties as well as good
representational ones. First, they are variation diminishing. This means that the
curve is guaranteed to ‘‘vary less” than its guiding polygon (many interpolation
schemes have a tendency to oscillate between sample points). In fact, the curve is
guaranteed to lie between the convex hull of groups of # + 1 consecutive points
where n is the dggree of the interpolating polynomial (Fig. 8.9.) The second advan-
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Fig. 8.8 A spline curve and its guiding
polygon.

tage is that the interpolation is local; if a point on the guiding polygon is moved,
the effects are intuitive and limited to nearby points on the spline. A third advan-
tage is directly related to its use in vision; a technique for matching a spline-
represented boundary curve against raw data is to search perpendicular to the
“spline for edges whose direction is parallel to the spline curve and location perpen-
dicular to the spline curve. Perpendicular and parallel directions are computable
directly from the parameters representing the spline.

B-Spline Mathematics

The interpolant through a given set of points x;, i = 1, ..., nis x(s), a vector
valued piecewise polynomial function of the parameter s; s changes uniformly
between data points. For convenience, assume that x(i) = x,, that is: s assumes
integer values at data points, and s = 1, ..., n. Each piece of x(s) is a cubic polyno-

(a)

(b} fe) ~

Fig. 8.9 The spline of degree » must lie in the convex hull formed by consecu-
tive groups of n + 1 points. (a) # = 1 (linear). (b) » = 2 (quadratic). (¢c) n = 3
(cubic).
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mial. Globally, x(s) has three orders of continuity across data points (i.e., up to
continuity of second derivative: curvature). Formally, x (s) is defined as

x(s) = rii v;B;(s) (8.4)
i=0

The v; are coefficients representing the curve x(s). They also turn out to be the
vertices of the guiding polygon. They are a dual to the set of points x;; each can be
derived from the other. The » data points x determine # v’s. There are actually
n +2 v’s; the additional two coefficients are determined from boundary conditions.
For example, if the curvature at the end points is to be 0,

vi= o+ v) (8.5)
2
_ ("'n—l 2 vn—i—i)
Wy e

Thus only nof the n + 2 coefficients are selectable. 7

The basis functions B;(s) are nonnegative and have a limited support, that is,
each B, is non-zero only for s between i — 2 and i + 2, as shown in Fig. 8.10. The
limited support means that on a given span (i, i + 1) there are only four basis func-
tions that are nonzero, namely: B;_;(s), B;(s), B;;,(s), and B;.,(s). Figure 8.11
shows this configuration. Thus, to calculate x(s,) for some sg, simply find in which
span it resides, and then use only four terms in the summation (8.4), since there
are only four basis functions which are non-zero there.

The basis functions B;(s) are, themselves, piecewise cubic polynomials and
their definition depends on the relative size (in parameter space) of the spans
under their support. If the spans are of uniform size (e.g., unity), then all the basis
functions have the same form and are merely translates of each other. Moreover,
each of the basis functions, on its nonzero support, is made of four pieces. So, in
Fig. 8.11 in the span (i, i + 1) appear: the fourth piece of B,_;(s), the third piece of
B,(s), the second piece of B;,;(s), and the first piece of B,,;(s). Call these pieces
C;o(s), ..., C;3(s) respectively; then x (s) on the interval (i, i +1) is given by:

X(S) = C,-u1,3(S)V,-71 - C,"z(s)vi
+ G101 + Crig0(s) vy

No matter what i is, C;; will have the same shape; this property allows a
simplification in calculations. Define four primitive basis functions, and interpolate

along the curve by parameter shifting:
C,;(s) = (i:,-(s—;) i=0,..,n+1; j=0,1,273 (8.6)

/\ Fig. 8.10 Uniform B-spline: B;(s). Its
4 4 Il . " .

support is non-zero only for s between

i—2 i—1 i i+1 i+2 s i—2andi+ 2.
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i+2

Bls)

i+1

¥ -

i i+1 s

Fig. 8.11 The only four basis functions that are non-zero over the span (i
i + 1). Only the overlapping parts on this span are shown.
To find x(s¢), if s¢ is in the span (i, i + 1), use the formula:
X(S) = V,‘-]C_}(S - [) +V,C2(S - I) + Vf+]C](S - l) + V.HQCO(S = [) (8.7)

where the C;(¢) are given by:
3

N
Co(r)— 3
343 2
Cile) = 3r+3t6+3z+1
-
Cg(t)=3t 6t +4
6
- 2
Ci(1) = t+3t6 3p+1

Formal derivations may be found in [Barnhill and Riesenfeld 1974; deBoor 1978].
Useful Formulae

The formulae may be simplified still further. x(s) is calculated in pieces (seg-.
ments); define the segments x,(¢) where ranges from 0 to 1. Then

x;(0) = x; fori=1, .., n—1

and
x,_1(1) = x, (8.8)
In matrix notation, and explicitly calculating the definition of the cubic polynomi-
als C:(¢),
% ()= [P, & e Oy, %6 Tt Viaal” (8.9)
where [C] is the matrix:
-1 3 -3 1
113 6 30
6€1-3 0 3 0
] 410
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The ith column in the matrix [C] in Eq. (8.9) above is the coefficients of the cubic
polynomial C;(¢) (i=0, 1, 2, 3).

There is a distinction between open and closed curves. For open curves the
boundary conditions must be used to solve for the two additional coefficients, as
above. For closed curves, simply

Vo=V, and VvV, =V (8.10)

The relation between the different v, and x; is summarized as follows. For open
curves with zero curvature at the endpoints:

6 0 1 Yo Xo
1 4 1 V) X,

1 47 V-1 X1
o6 |v,| |x

and for closed curves:
(4 1 1 ["0 Xp
1 4 1 vy X
=1 - (8.11)

1 4 1 Y1 Xﬂ—‘l

1 f’* ¥, X,

Equation (8.10) gives the relationship between the points on the guiding po-
lygon and the points on the spline. It may be derived from Eq. (8.9) with =0 (see
exercises). To interpolate between these points, use a value of f between the ex-
tremes of 0 and 1. Choosing ¢ = k dtfor k=0, ..., nwhere n dt = 1 and substituting
into Eq. (8.9) yields

x;(k dt) = [k dt) >k dt)?(k a1 [CT vy, ¥, Vieq, Vil (8.12)
This can be decomposed [Wu et al. 1977; Gordon 1969] into the following equa-

tion.
0 T 1 k 6 Vi—1
_10] 11 ar® ‘
1 1 111 1 -1 1 dt Vil (8.13)
1
0 0 0 1 -
The tangent at a curve is obtained by differentiation: Vi-1
¥i
0 0fzz2l-1 3 -3 1
x'; (kdt)- 1 0 2df 3 =6 3 0ff¥in (8.14)
0 01 =3 0 3 0]|vi+2
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8.2.7 Strip Trees

In many computational problems there are space-time trade-offs. A nonredundant
explicit representation for a general discrete curve, such as a chain code, is terse
but may be difficult to use for certain computations. On the other hand, a represen-
tation for curves may take up much space but allow operations on those curves be
very efficient. A representation with the latter property is strip trees [Ballard 1981].
Strip trees are closed under intersection and union operations, and these opera-
tions may be efficiently implemented.

A strip tree is a binary tree. The datum at each node is a eight-tuple, of which
six entries define a strip (rectangle) and two denote addresses of the sons (if any).
Thus each strip is defined by a six-tuple S (x,, X,, W) as shown in Fig. 8.12. (Only
five parameters are necessary to define an arbitrary rectangle, but the redundant
representation proves useful in union and intersection algorithms to follow.)

The tree can be created from any curve by the following recursive procedure,
which is very similar to Algorithm 8.1.

Algorithm 8.3: Making a Strip Tree

Find the smallest rectangle with a side parallel to the line segment [x, x,,) that just
covers all the points. This rectangle is the datum for the root node of a tree. Pick a
point x; that touches one of the sides of the rectangle. Repeat the above process
for the two sublists [xo, ..., x;) and [x, ..., x,). These become sons of the root
node. Repeat the process until the approximation is accurate enough.

The half-open interval facilitates the computations to follow. In the example
above the point x, explicitly appears in both subtrees but implementationally need
not be part of the left one. Figure 8.13 shows the strip tree construction process.

Intersecting Two Curves via Strip Trees

Consider what happens when a strip from one tree intersects a strip from
another, as shown in Fig. 8.14. If the strips do not intersect, the underlying curves

Fig. 8.12 Strip definition.
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Fig. 8.13 Strip tree construction process.

do not intersect. If the strips do intersect, the underlying curves may or may not.
To determine which, the computation may be applied recursively. At the leaf level
of the tree defined as the primitive level, the problem can always be resolved.

Algorithm 8.4: Intersecting Two Strip Trees Representing Curves

Boolean Procedure Treelnt (T1, T2, L)
Begin
case intersection type of two strips T'1 and T2 of
begin case
[primitive] return (true)
[nulll return (false)
[possible] If T2 is the “‘fatter’’ strip
return (Treelnt(T1,LSon(72) or Treelnt(71,RSon(7T2))
Elsereturn (Treelnt(LSon(T1),T2) or Treelnt(RSon(71),7T2));
end case;
end;

2]
oy

NULL POSSIBLE

Fig. 8.14 Types of strip intersections.
(a) Two kinds of intersections: NULL on
the left; various POSSIBLE intersections
on the right. (b) Under certain
conditions the underlying curves must
intersect.
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The “Union” of Two Strip Trees

The ““union”’ of two strip trees may be defined as a strip that covers both of
the two root strips. The two curves defined by [x'y, ..., X',), [x", ..., x",,) are
treated as two concatenated lists. That is, the resultant ordering is such that x; =
X'0, X;psnt1 = X" - This construction is shown in Fig. 8.15.

Closed Curves Represented by Strip Trees

A region may be represented by its (closed) boundary. The strip-tree con-
struction method described in Algorithm 8.3 works for closed curves and, inciden-
tally, also for self-intersecting curves. Furthermore, if a region is not simply con-
nected (has ““holes’’) it can still be represented as a strip tree which at some level
has connected primitives. |

Many useful operations on regions can be carried out with strip trees. Exam-
ples are intersection between a curve and a region and intersecting two regions.
Another example is the determination of whether a point is inside a region.
Roughly, if any semi-infinite line terminating at the point intersects the boundary
of the region an odd number of times, the point is inside. The implied algorithm is
computationally simplified for strip trees in the following manner:

Point Membership Property. To decide whether a point z is a member of a region
represented by a strip tree, compute the number of nondegenerate intersec-
tions of the strip tree with any semi-infinite strip L which has ||w||= 0 and
emanates from z. If this number is odd, the point is inside the region.

This is because for clear intersections the underlying curves may intersect more
than once but must intersect an odd number of times. A potential difficulty exists
when the strip L is tangent to the curve. To overcome this difficulty in practice, a
different L may be used.

Intersecting a Curve with a Region

The strategy behind intersecting a strip tree representing a curve with a strip
tree representing a region is to create a new tree for the portion of the curve that
overlaps the region. This can be done by trimming the original curve strip tree.
Trimming is done efficiently by taking advantage of an obvious property of the in-
tersection process:

Pruning Property: Consider two strips S¢ from T and §, from T,. If the inter-
section of S¢ with T, is null, then (a) if any point on S¢ is inside T,, the entire
tree whose root strip is S¢ is inside or on T, and (b) if any point on S¢ is out-
side of T, then the entire tree whose root strip is S is outside T,.

Fig. 8.15 Construction for “union™ of
strip trees representing two curves.

This leads to the Algorithm 8.5 for curve-region intersection using trees. If
the curve strip is ““fatter’’ (i.e., has more area), copy the node and resolve the in-
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tersection at lower levels. In the converse case prune the tree sequentially by first
intersecting the resultant pruned tree with the right region strip.

Algorithm 8.5: Curve-Region Intersection
comment A Reference Procedure returns a pointer;
reference procedure CurveRegionInt(71,72)

begin

A=T2,

comment R is a global used by CRInt;

return (CRInt(71,72));

end;

reference procedure CRInt(T1,T2)
begin
begin Case StripInt(T1,T2) of
[Null or Primitive]
ifintersection (T'1,R,TRUE) = null then
ifInside(T'1,R) then return (7'1)
else return (null);
else return (T1);
[Possible] jf T'1 is ““fatter” then
begin
NT := NewRecord,
x, (NT) := x, (T);
x,(NT) :=x, (T);
w; (NT) =w (T),
w,(NT) := w,(T);
LSon(NT) := CRInt (LSon(T1),T2);
RSon(NT) := CRInt (RSon(7T1),T2);
return(NT);,
end
elsecomment T2 is “‘fatter’
Return (CRInt(CRInt(7'1,LSon(7T2)),RSon(T2)));
end;
end Case;
end;

The problem of intersecting two regions can be decomposed into two curve-region
intersection problems (Fig. 8.16). Thus algorithm 8.5 can also be used to solve the
region-region intersection problem.

8.3 REGION REPRESENTATIONS
8.3.1 Spatial Occupancy Array
The most obvious and quite a useful representation for a region on a raster is a
membership predicate p (x, y) which takes the value 1 when point (x, y) is in the
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c d.

Fig. 8.16 Decomposition of Region-Region Intersection. (a) Desired result.
(b) Portion of boundary generated by treating three-lobed region as a curve. (c)
Portion of boundary generated by treating five-lobed region as a curve. (d) Result
of union operation.

region and the value 0 otherwise. One easy way to implement such a function is
with a membership array, an array of 1’s and 0’s with the obvious interpretation.
Such arrays are quicky interrogated and also quite easily unioned, merged and in-
tersected by AND and OR operations, applied elementwise on the operand arrays.
The disadvantages of this representation are that it requires much space and does
not represent the boundary in a useful way.

8.3.2 y-Axis

A representation that is more compact and which offers reasonable algorithms for
intersection, merging, and union is the y-axis representation [Merrill 1973]. This is
a run-length encoding of the membership array, and as such it provides no explicit
boundary information. It is a list of lists. Each element on the main list corresponds
to a row of constant y in the image raster. Each row of constant y is encoded as a list
of x-coordinate points; the first x point at which the region is entered while moving
along that y row, then the x point at which the region is exited, then the x point at
which it next is entered, and so forth. The y-rows with no region points are omitted
from the main list. Thus, in a notation where successive levels of sublist are sur-
rounded by successive levels of parentheses, the y-axis encoding of a region is
shown in Fig. 8.17; here the first element of each sublist is the y coordinate,
followed by a list of “‘into’’ and “‘out of”’ x coordinates. Where a y coordinate con-

Fig. 8.17 j-axisregion
((245) (435) (53355)) representation.
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tains an isolated point in the region, this point is repeated in the x-axis representa-
tion, as shown by the example in Fig. 8.17. Thus ““lines’’ (regions of unit width)
can be easily (although not efficiently) represented in this system.

Union and intersection are implemented on y-axis representations as merge-
like operations which take time linearly proportional to the number of y rows. Two
instances of y-axis representations and the representation of their union are shown
in Fig. 8.18. Note that the union amounts to a merge of x elements along rows or-
ganized within a merge of rows themselves.

The y-axis representation is wasteful of space if the region being represented
is long, thin, and parallel to the y axis. In this case one is invited to encode it in x-
axis format, in an obvious extension. Working with mixed x-axis and y-axis for-
mats presents no conceptual difficulties, but considerable loss of convenience.

8.3.3 Quad Trees

Quad trees [Samet 1980] are a useful encoding of the spatial occupancy array. The
easiest way to understand quad trees is to consider pyramids as an intermediate
representation of the binary array. Figure 8.19 shows a pyramid (Section 3.7) made
from the base image (on the left). Each pixel in images above the lowest level has
one of three values, BLACK, WHITE, or GRAY. A pixel in a level above the base
is BLACK or WHITE if all its corresponding pixels in the next lower level are
BLACK or WHITE respectively. If some of the lower level pixels are BLACK and
others are WHITE, the corresponding pixel in the higher level is GRAY.

Such a pyramid is easy to construct. To convert the pyramid to a quad tree,
simply search the pyramid recursively from the top to the base. If an array element
in the pyramid is either BLACK or WHITE, form a terminal node of the
corresponding type. Otherwise, form a GRAY node with pointers to the results of

A B

[

((12367)(227)(31133)(512)) ((134}(215)(32257)(422))

AUB

((12467)(217)(31357)(422)(512))

Fig. 8.18 Two pointsets 4, B, and 4 U B, with their y-axis representations.
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[]

Level Q

Level 3
Fig. 8.19 Pyramid used in quad tree construction. Letters correspond to pixels
in the pyramid that are either BLACK or WHITE.

the recursive examination of the four elements at the next level in the tree (Algo-
rithm 8.6).

Algorithm 8.6: Quad Tree Generation

Reference Procedure QuadTree (integer array pyramid; integer x, y, level);
Comment NW, NE, SW, SE are fields denoting the sons of a quadtree node;
Newnode(P);
TYPE(P) := Pyramid(IND (x,y,Level));
ifTYPE(P) = BLACK or WHITE then return (P)
else begin

SW(P):=QuadTree(Pyramid, 2#x, 2+y, Level + 1);

SE(P):=QuadTree(Pyramid, 2+x + 2+Level, 2+y, Level + 1);
NW (P):=QuadTree(Pyramid, 2=x, 2=y + 2+Level, Level + 1);

NE(P):=QuadTree(Pyramid, 2+(x + Level), 2+(y + Level), Level + 1);
return (P)
end;
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Here an implementational point is that the entire pyramid fits into a linear array of
size 2(2%%'evel) IND is an indexing function which extracts the appropriate value
given the x, y and level coordinates. The reader can apply this algorithm to the ex-
ample in Fig. 8.19 to verify that it creates the tree in Fig. 8.20.

The quad tree can be created directly from the base of the pyramid, but the al-
gorithm is more involved. This is because proceeding upward from the base, one
must sometimes defer the creation of black and white nodes. This algorithm is left
for the exercises [Samet 1980].

Many operationis on quad trees are simple and elegant. For example, consider
the calculation of area [Schneier 1979]:

Algorithm 8.7: Areaofa Quad Tree

Integer Procedure Area (reference QuadTree; integer height)
Begin
CommentNW, NE, SW, SE are fields denoting the sons of
a quadtree node;
BlackArea := 0,
#TYPE(QuadTree) = GRAY then
forlin the set (NW, NE, SW, SE} do
BlackArea = BlackArea + Area(I(QuadTree), height-1)
else if TYPE(QuadTree) = BLACK then
BlackArea = BlackArea + 2%*height.
return(Black Area)
end;

Other examples may be found in the References and are pursued in the Exercises.
The quad tree and the associated pyramid have two related disadvantages as a

representation. The first is that the resolution cannot be extended to finer resolu-

tion after a grid size has been chosen. The second is that operations between quad

12 3 4 5 6 7 8 9 10 11 12

B Black
O White
O Gray

Fig. 8.20 " Quad tree for the example in Fig. 8.19.
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trees tacitly assume that their pyramids are defined on the same grids. The grids
cannot be shifted or scaled without cumbersome conversion routines.

8.3.4 Medial Axis Transform

If the region is made of thin components, it can be well described for many pur-
poses by a “‘stick-figure’” skeleton. Skeletons may be derived by thinning algo-
rithms that preserve connectivity of regions; the medial axis transform (MAT), of
[Blum 1973; Marr 1977] is a well-known thinning algorithm.

The skeleton is defined in terms of the distance of a point x to a set 4:

dy(x, 4) = inf{d (x, z)|z in 4} (8.15)

Popular metrics are the Euclidean, city block, and chessboard metrics
described in Chapter 2,

Let B be the set of boundary points. For each point P in a region, find its
closest neighbors (by some metric) on the region boundary. If more than one boun-
dary point is the minimum distance from x, then x is on the skeleton of the region.
The skeleton is the set of pairs {x, d,(x, B)} where d(x, B) is the distance from x
to the boundary, as defined above (this is a definition, not an efficient algorithm.)
Since each x in the skeleton retains the information on the minimum distance to
the boundary, the original region may be recovered (conceptually) as the union of
“‘disks’’ (in the proper metric) centered on the skeleton points.

Some common shapes have simply structured medial axis transform skele-
tons. In the Euclidean metric, a circle has a skeleton consisting of its central point.
A convex polygon has a skeleton consisting of linear segments; if the polygon is
nonconvex, the segments may be parabolic or linear. A simply connected polygon
has a skeleton that is a tree (a graph with no cycles). Some examples of medial axis
transform skeletons appear in Fig. 8.21.

The figure shows that the skeleton is sensitive to noise in the boundary.
Reducing this sensitivity may be accomplished by smoothing the boundary, using
a polygonal boundary approximation, or including only those points in the skele-
ton that are greater than some distance from the boundary. The latter scheme can
lead to disconnected skeletons.

Algorithm 8.8: Medial Axis Transformation [Rosenfeld and Kak 1976]

Let region points have value 1 and exterior points value 0. These points define an
image f%(x). Let f*(x) be given by

) = %+ min @), k>0
d(xz)<1
The points f*(x) will converge when k is equal to the maximum thickness of the
region. Where f“(x) has converged, the skeleton is defined as all points x such that
fHx) = ), d(x,z) <1
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Fig. 8.21 Medial Axis Transform skeletons (a), and the technique applied to
human cell nuclei (b). Shown in (b) are both the ““normal’’ skeleton obtained by
measuring distances interior to the boundaries, and the exo-skeleton, obtained by
measuring distances exterior to the boundary.

This algorithm can produce disconnected skeletons for excursions or lobes off the
main body of the region. Elegant thinning algorithms to compute skeletons are
given in [Pavlidis 1977].

8.3.5 Decomposing Complex Regions
Much work has been done on the decomposition of point sets (usually polygons)
into a union of convex polygons. Such convex decompositions provide structural

analysis of a complex region that may be useful for matching different point sets.
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An example of the desired result in two dimensions is presented here, and the in-
terested reader may refer to [Pavlidis 1977] for the details. Such a decomposition is
not unique in general and in three dimensions, such difficulties arise that the prob-
lem is often called ill-formed or intractable [Voelcker and Requicha 1977].

The shapes of Fig. 8.22 have three “‘primary convex subsets’’ labeled X, Y,
and Z. They form different numbers of “‘nuclei’” (roughly, intersection sets). The
shape is described by a graph that has nodes for nuclei and primary convex subsets
and an arc between intersecting sets (Fig. 8.22¢). Without nodes for the nuclei
(i.e., if only primary convex subsets and their intersections are represented), re-
gions with different topological connectedness can produce identical graphs (Fig.
8.22b).

8.4 SIMPLE SHAPE PROPERTIES

8.4.1 Area

The area of a region is a basic descriptive property. It is easily computed from curve
boundary representations (8.3.1) and thus also for chain codes (8.3.2); their con-

(b)

X
g y
Z
X 4 ¥
X
| 3 YD
z ;. Fig. 8.22 Decomposition of polygon

into primary convex subsets and nuclei
(c) (see text).
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tinuous analog is also useful. Consider a curve parameterized on arc length s so
that points (x, y) are given by functions (x(s), y(s))
dx

P
- d _  dx
area _!; (x i ds) ds (8.16)

where Pis the perimeter.
8.4.2 Eccentricity

There are several measures of eccentricity, or ‘‘elongation”. One of them is the ra-
tio of the length of maximum chord 4 to maximum chord B perpendicular to A
(Fig. 8.23).

Another reasonable measure is the ratio of the principal axes of inertia; this
measure can be based on boundary points or the entire region [Brown 1979]. An
(approximate) formula due to Tenenbaum for an arbitrary set of points starts with

the mean vector
Xp = L Y x (8.17)
B xinR
To compute the remaining parameters, first compute the jjth moments M
defined by
Mj = 2 (xo - x)i(,l?o - y)f (8.13)
xin R
The orientation, 8, is given by
1 2My, 7r
6 = —tan " (————) + n(= 8.19
g ot ) (8.19)

and the approximate eccentricity eis

e (M20 - M02)2 + 4M1[
area

(8.20)

8.4.3 Euler Number

The Euler number is a topological property defining the set of objects that are
equivalent under ‘‘rubber-sheet’ deformations of the plane. It describes the con-
nectedness of a region, not its shape. A connected region is one in which all pairs of
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points may be connected by a curve lying entirely in the region. If a complex two-
dimensional object is considered to be a set of connected regions, where each one
can have holes, the Euler number for such an object is defined as

(number of connected regions) — (number of holes)

The number of holes is one less than the connected regions in the set complement
of the object.

8.4.4 Compactness

One measure of compactness (not compactness in the sense of point-set topology)
is the ratio (perimeter?)/area, which is dimensionless and minimized by a disk.
This measure is computed easily from the chain-code representation of the boun-
dary where the length of an individual segment of eight-neighbor chain code is
given by (/2) if the (eight-neighbor) direction is odd and by 1 if the direction is
even. The area is computed by a modification of Algorithm 8.2 and the perimeter
may be accumulated at the same time.

For small discrete objects, this measure may not be satisfactory; another
measure is based on a model of the boundary as a thin springy wire [Young et al.
1974]. The normalized *‘bending energy’’ of the wire is given by

E= | (s) *ds (8.21)

o% ~y

1
P

where « is curvature. This measure is minimized by a circle. £ can be computed
from the chain code representation by recognizing that k = d 8/dS, and also from
the Fourier coefficients mentioned below since

2 2

d’x d*
k()P = L2 + &L 8.22
Ik (s)| [dsz . (8.22)
so that £, using Parseval’s theorem, is
2 G (1% ]* + 11 (8.23)

k=—c0

where X, = (X, Y,) are the Fourier descriptor coefficients in (8.2).

8.4.5 Slope Density Function

The y—s curve can be the basis for the slope density function (SDF) [Nahin 1974].
The SDF is the histogram or frequency distribution of ¥ collected over the boun-
dary. An example is shown in Fig. 8.24. The SDF is flat for a circle (or in a continu-
ous universe, any shape with a monotonically varying ) ; straight sides stand out
sharply, as do sharp corners, which in a continuous universe leave gaps in the his-
togram. The SDF is the signature of the yy—scurve along the ¥ axis.
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Fig. 8.24 The Slope Density Function for three curves: a triangular blob, a cir-
cle, and a square.

8.4.6 Signatures

By definition, a projection is not an information-preserving transformation. But
Section 2.3.4 showed that (as with Fourier descriptors,) enough projections allow
reconstruction of the region to any desired degree of accuracy. (This observation
forms the basis for computer assisted tomography.)

Given a binary image f(x) = 0 or 1, define the horizontal signature p (x) as

px) = ff(x, ) (8.24)
y

p(x) is simply the projection of p onto the x axis. Similarly, define p (y), the verti-
cal signature, as

py) = ff(x, ») (8.25)

Maxima and minima of signatures are often useful for establishing preliminary
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landmarks in an image to reduce subsequent search effort [Kruger et al. 1972]
(Fig. 8.25). If the region is not binary, but consists of a density function, Eq. (8.24)
may still be used. Polar projections may be useful characterizations if the point of
projection is chosen carefully.

Another idea is to provide a number of projections, ¢, ..., g,, the ith one
based on the ith sublist in each row in a y-axis-like region representation. This
technique is more sensitive to non-convexities and holes than is a regular projec-
tion (Fig. 8.26).

8.4.7 Concavity Tree

Concavity trees [Sklansky 1972] represent information necessary to fill in local in-
dentations of the boundary as far as the convex hull and to study the shape of the
resultant concavities.

A region S is convex iff for any x; and x, in S, the straight line segment con-
necting x; and x, is also contained in S. The convex hull of an object S is the small-
est Hsuch that

SCH

and His convex.

Figure 8.27 shows a region, the steps in the derivation of the concavity tree,
and the concavity tree itself.
8.4.8 Shape Numbers

For closed curves and a 3-bit chain code (together with a controlled digitization
scheme), many chain-coded boundaries can be given a unique shape number [Bri-

H.earr Analysis: Papillary Muscles

Signature

Fig. 8.25 The use of signatures to
locate a left ventricle cross section in
ultrasound data. (Outer curves are
smoothed versions of inner signatures.)
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Fig. 8.26 A shape (a) and projections; from the first (b) and second (¢) sublists
of the y-axis representation.

biesca and Guzman 1979]. The shape number is related to the resolution of the
digitization scheme. In a multiple resolution pyramid of digitization grids, every
possible shape can be represented as a path through a tree. At each grid resolu-
tion corresponding to a level in the tree, there are a finite number of possible
shapes. Moving up the tree, the coarser grids tend to blur distinctions between
different shapes until at some resolution they are identical. This level can be used
as a similarity measure between shapes. The basic idea behind shape numbers is
the following. Consider all the possible closed boundaries with » chain segments.
These form the possible shapes of ‘“‘order n.”’ The chain encoding for a particular
boundary can be made unique by interpreting the chain-code direction sequence
as a number and picking the start point that minimizes this number. Notice that
the orders of shape numbers must be even on rectangular grids since a curve of
odd order cannot close.
Algorithm 8.9 generates a shape number of order x.

033
(0]
Object, O
0, 0, 04
7% -]
011 012 031

Fig, 8.27 Concavities of an object and
the concavity tree.
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Algorithm 8.9: Making a Shape Number of Order »

1. Choose the maximal diameter of the shape as one of the coordinate axes.

2. Find the smallest rectangle that has a side parallel to this axis and just covers
the shape.

3. From the possible rectangles of order n, find the one that best approximates
the rectangle in step 2. Scale this rectangle so that the length of the longest side
equals that of the major axis, and center it over the shape.

4, Set all the pixels falling more than 50% inside the region to 1, and the rest to 0.

5. Find the derivative of the chain encoded boundary of the region of 1’s from
step 4.

6. Normalize this number by rotating the digits until the number is minimum.
The normalized number is the shape number.

Figure 8.28 shows these steps.

Order = 26 23
/\/\ i

S e

(1) (2} and (3)

7
B
W -1
Th =0

2 =< >0

-

,—.____
w

(4)
Chaincode: 01030300100032323222221211
Derivative: 20020212011002020111102010

00202011110201020020212011
(6)

Fig. 8.28 Stepsin determining a shape number (see text).

Ch. 8 Representation of Two-Dimensional Geometric Structures



Generating a shape number of a specific order may be tricky, as there is a
chance that the resulting shape number may be greater than order » due to deep
concavities in the boundary. In this case, the generation procedure can be re-
peated for smaller values of » until a shape number of » digits is found. Even this
strategy may sometimes fail. The shape number may not exist in special cases
such as boundaries with narrow indentations. These features may cause step 4 in
Algorithm 8.11 to fail in the following way. Even though the rectangle of step 3
was of order n, the resultant boundary may have a different order. Nevertheless,
for the vast majority of cases, a shape number can be computed.

The degree of similarity for two shapes is the largest order for which their
shape numbers are the same. The ““distance’” between two shapes is the inverse
of their degree of similarity. This distance is an witradistance rather than a norm:

(s, s) =0
d(s§,,8,) 20 forS; #8; (8.26)
d(Sl, S3) < max(d(S!, Sz), d(Sz, 83))
Figure 8.29 shows the similarity tree for six shapes as computed from their shape
numbers. When the shape number is well defined, it is a useful measure since it is

unique (for each order), it is invariant under rotation and scale changes of an ob-
ject, and it provides a metric by which shapes can be compared.

= el — ABCDEF
@ ABCDEF

A B C D E F
A | 6 6
B = 8 8 10 8
c © 8 8 12
D o« 8
E < 8
F oo

Fig. 8.29 Six shapes, their similarity trees, and the ultradistances between the shapes.
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EXERCISES

8.1 Consider a region segmentation where regions are of two types: (1) filled in and (2)
with holes. Relate the number of junctions, boundaries, and filled-in regions to the
Euler number.

8.2 Write a procedure for finding where two chain codes intersect.

8.3 Devise algorithms to intersect and union two regions in the y-axis representation.

8.4 Show that the number of intersections of the curves under a clear strip intersection
is odd.

8.5 Modify Algorithm 8.4 to work with strip trees with varying numbers of sons.

8.6 Derive Eq. (8.9) from Eq. (8.7).

8.7 Show that Egs. (8.12) and (8.13) are equivalent.

8.8 Given two points X; and X, and slopes ¢ (x;) and ¢ (x,), find the ellipse with major
axis a that fits the points.

8.9 Write a procedure to intersect two regions represented by quad trees, producing the
quad tree of the intersection.

8.10 Determine the shape numbers for (a) a circle and (b) an octagon. What is the dis-
tance between them?
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Representations of
Three-Dimensional Structures 9

9.1 SOLIDS AND THEIR REPRESENTATION

264

We consider three general classes of representations for rigid solids

1. Surface or boundary
2. Sweep (in general, generalized cylinders)
3. Volumetric (in general, constructive solid geometry)

The semantics of solid representations is intuitively clear but sometimes
mathematically tricky. The representations have different computational proper-
ties, and readers should keep this in mind when assessing a representation for pos-
sible use. As a simple example, a surface representation can describe how an object
looks; a volumetric version, which expresses the solid as a combination of sub-
parts, may not explicitly contain information about the surface of the object. How-
ever, the solid representation may be better for matching, if it can be structured to
reflect functional subparts.

Certainly we believe, as do others, that model-based vision will ultimately
have to confront the issues of geometric modeling in three dimensions [Nishihara
1979]. Ultimately, nonrigid as well as rigid solids will have to be represented. The
characterization of nonrigid solids presents very challenging problems.

Nonrigid solids are often a useful way to model time-varying aspects of ob-
jects. Here, again, the kind of model that is best depends heavily on the domain.
For example, a useful mammal model may be one with a piecewise rigid linkage
(for the skeleton) and some elastic covering (for the flesh). Computer vision in the
domain of mammals, either static in various positions or actually moving, might be
based on generalized cylinders (Section 9.3). However, another nonrigid domain is
that of heart chambers, that change through time as the heart beats. Here the
skeleton is a much less intuitive notion, so a different model of nonrigidity may ap-
ply. In most cases, nonrigid objects are modeled as parameterized rigid objects. In



the example of the human figure, the parameters may be joint angles for linkages
representing the skeleton.

The last part of this chapter deals with understanding line drawings, an
influential and well-publicized subfield of computer vision. This seemingly simple
and accessible domain avoids many of the problems involving early processing and
segmentation, yet it is important because it has furnished several important algo-
rithmic and geometric insights. An important breakthrough in this domain was a
move from ‘‘image understanding’’ in two dimensions to to an approach based on
the three-dimensional world and laws governing three-dimensional solids.

9.2 SURFACE REPRESENTATIONS

The enclosing surface, or boundary, of a well-behaved three-dimensional object
should unambiguously specify the object [Requicha 1980]. Since surfaces are what
is seen, these representations are important for computer vision. Section 9.2.1
considers mainly planar polyhedral surface representations. More complex “‘sculp-
tured surfaces’ [Forrest 1972; Barnhill and Riesenfeld 1974; Barnhill 1977] are
treated in Section 9.2.2. Some useful surfaces are defined as functions of three-
dimensional directions from a central point of origin. Two of these are mentioned
in Section 9.2.3.

9.2.1 Surfaces with Faces

Figure 9.1 shows the solid representation scheme most familiar to computer scien-
tists. Solids are represented by their boundaries, or enclosing surfaces, which are
represented in terms of such primitive entities as unbounded mathematical sur-
faces, curves, and points which together may be used to define ‘‘faces.”

In general, a boundary is made up of a number of faces; faces are represented
by mathematical surfaces and by information about their own boundaries (consist-
ing of edges and possibly vertices). A closed surface such as the sphere or a spheri-
cal harmonic surface of Section 9.2.3 may be thought of as having only one face.

To specify a boundary representation, one must answer several important
questions of representation design. What is a face, and how are faces represented?
What is an edge, and how are edges represented? How much extra information
(i.e., useful but redundant relationships and geometric data} should be kept?

What is a face? ““Face” is an initially appealing but imprecise notion; it is at
its clearest in the context of planar polyhedra. A face should probably always be a
subset of the boundary of an object; presumably, it should have area but no dan-
gling edges or isolated points, and the union of all the faces should make up the
boundary or the object. Beyond this little can be said. For many purposes it makes
sense to have faces overlap; it may be elegant to consider the letter on an alphabet
block a special kind of face on the block that is a subset of the face making up the
side of the block. On the other hand, it is easy to imagine applications in which
faces should not overlap in area (then one easily can compute the surface area of a
solid from its faces). In some objects, just what the faces are is purely a matter of
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W Fig. 9.1 A volume and the faces of a
boundary representation.

opinion (Fig. 9.2). In short, any single definition of face is likely to be inadequate

for some important application.

The availability of explicit representations of edges, faces, and vertices makes
boundary representations quite useful in computer vision and graphics. The com-
putational advantages of polyhedral surfaces are so great that they are often pressed
into service as approximate representations of nonpolyhedra (Fig. 9.3).

An influential system for using face-based representations for planar po-
lyhedral objects is the ““winged edge’’ representation [Baumgart 1972]. Included in
the system is an editor for creating complex polyhedral objects (such as that of Fig.
9.3) interactively. The system uses rules for construction based on the theorem of
Euler that if ¥is the number of vertices in a polyhedron, E the number of edges,
and F the number of faces, then ¥ — E + F = 2. In fact, the formula can be ex-
tended to deal with non-simply connected bodies. The extended relation is
V — E+ F=2(B — H), with B being the number of bodies and H being the

Fig. 9.2 What are the faces?
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Fig. 9.3 A polyhedral approximation to a portion of a canine heart at systole and
diastole. Both exterior (coarse grid) and interior surfaces (fine grid) are shown,

number of holes, or ‘‘handles,’” each resulting from a hole through a body [Laka-
tos 1976]. Baumgart’s system uses these rules to oversee and check certain validity
conditions on the constructions made by the editor.

The “winged edge’’ polyhedron representation achieves many desiderata for
boundary representations in an elegant way. This representation is presented
below to give a flavor of the features that have been traditionally found useful.
Given as primitives the vertices, edges, faces, and polyhedra themselves, and
given various relations between these primitives, one is naturally thinks of a record
and pointer (relational) structure in which the pointers capture the binary relations
and the records represent primitives and contain data about their locations or
parameters.

In the winged edge representation, there are data structure records, or nodes,
which contain fields holding data or links (pointers) to other nodes. An example
using this structure to describe a tetrahedron is shown in Fig. 9.4. There are four
kinds of nodes: vertices, edges, faces, and bodies. To allow convenient access to
these nodes, they are arranged in a circular doubly linked list. The body nodes are
actually the heads of circular structures for the faces, edges, and vertices of the
body. Each face points to one of its perimeter edges, and each vertex points to one
of the edges impinging on it. Each edge node has links to the faces on each side of
it, and the vertices at either end.

Figure 9.4 shows only the last-mentioned links associated with each edge
node. The reader may notice the similarity of this data structure with the data
structure for region merging in Section 5.4. They are topologically equivalent.
Each edge also has associated four links which give the name “winged edge’” to the
representation. These links specify neighboring edges in order around the two
faces which are associated with the edge. The complete link set for an edge is
shown in Fig. 9.5, together with the link information for bodies, vertices, and
faces. To allow unambiguous traversal around faces, and to preserve the notion of
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Fig. 9.4 A subset of edge links for a
tetrahedron using the “‘winged edge”
representation.

interior and exterior of a polyhedron, a preferential ordering of vertices and lines is
picked (counterclockwise, say, as seen from outside the polyhedron).

Data fields in each vertex allow storage of three-dimensional world coordi-
nates, and also of three-dimensional perspective coordinates for display. Each
node has fields specifying its node type, hidden line elimination information, and
other general information. Faces have fields for surface normal vector informa-
tion, surface reflectance, and color characteristics. Body nodes carry links to relate
them to a tree structure of bodies in a scene, allowing for hierarchical arrangement
of subbodies into complex bodies. Thus body node data describe the scene struc-
ture; face node data describe surface characteristics; edge node data give the topo-
logical information needed to relate faces, edges, and vertices; and vertex node
data describe the three-dimensional vertex location.

This rich and redundant structure lends itself to efficient calculation of useful
functions involving these bodies. For instance, one can easily follow pointers to
extract the list of points around a face, faces around a point, or lines around a face.
Winged edges are not a universal boundary representation for polyhedra, but they
do give an idea of the components to a representation that are likely to be useful.
Such a representation can be made efficient for accessing all faces, edges, or ver-
tices; for accessing vertex or edge perimeters; for polyhedron building; and for
splitting edges and faces (useful in construction and hidden-line picture produc-
tion, for instance).

9.2.2 Surfaces Based on Splines

The natural extension of polyhedral surfaces is to allow the surfaces to be curved.
However, with an arbitrary number of edges for the surface, the interpolation of
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Boundary Representation Node Accessing Functions

1. To enter and traverse Face ring of a body:
NextFace, PreviousFace:  Body or Face - Face

2. Toenter and traverse Edge ring of a body:
NextEdge, PreviousEdge: Body or Edge - Edge
3. Toenter and traverse Vertex ring of a body:
NextVert, PreviousVert:  Body or Vertex - Vertex

e \ S~ 4. First Edge of a Face:
FirstEdge: Face — Edge

T PCW(E) 5. FirstEdge of a Vertex:
FirstEdge: Vertex = Edge

NCCW(E)}) 7/

¥ PVert(£)

6. Faces ofan Edge: [see diagram in (a)]
N({ext) Face, P(revious)Face: Edge — Face
{ f.dge PFace(£) ; =

Vertices of an Edge:  [see diagram in (a}]
N{extVert, P(revious)Vert: Edge — Vertex

NFace(E)

A\ NVert{E) / 8. Neighboring Wing Edges of an Edge: [see diagram in (a)]
AN # NCW, NCCW: Edge - Edge (NFace Edge Clockwise,
NFace Edge Counterclockwise)
PCW, PCCW: Edge -+ Edge (PFace Edge Clockwise,
NCW(E) PCCWI(E) PFace Edge Counterclockwise
(a) (b}

Fig. 9.5 (a) Node accessing functions. (b) Semantics of winged edge functions.

interior face points becomes impractically complex. For that reason, the number of
edges for a curved face is usually restricted to three or four.

A general technique for approximating surfaces with four-sided surface
patches is that of Coons [Coons 1974]. Coons specifies the four sides of the patch
with polynomials. These polynomials are used to interpolate interior points.
Although this is appropriate for synthesis, it is not so easy to use for analysis. This
is because of the difficulty of registering the patch edges with image data. A given
surface will admit to many patch decompositions.

An attractive representation for patches is splines (Fig. 9.6). In general,
two-dimensional spline interpolation is complex: For two parameters ¢ and v inter-
polate with

x(u, v) =3 ¥ V;B;u, v) 6.1
i

similar to Eq. (8.4). However, for certain applications a further simplification can
be made. In a manner analogous to (8.9) define a grid of knot points v
corresponding to x; and related by

X; = Mvr’j (9.2)

Now rather than interpolating in two dimensions simultaneously, interpolate in
one direction, say ¢, to obtain

XU(I) ok [I3 [2 t 1][C] [vf_l,fo’ v‘,"jo, VH.]”,-O, vl;+2‘j0]T (93)
for each value of j. Now compute v;;(r) by solving

XU(I) = Mv,j(t) (94)
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Fig. 9.6 Using spline curves to model
the surface of an object: a portion of a
human spinal column taken from CAT
data.

for each value of t. Finally, interpolate in the other direction and solve:
XU(S, f) = [33 52 5 1][C][V_,'71'J:(t), VJ;,J'(I), V,'+1‘J;(t), V5+2w,'(f)] (95)

This is the basis for the spline filtering algorithm discussed in Section 3.2.3.
Some advantages of spline surfaces for vision are the following,

1. The spline representation is economical: the space curves are represented as a
sparse set of knot points from which the underlying curves can be interpolated.

2. It is easy to define splines interactively by giving the knot points; reference
representations may be built up easily.

3. Itis often useful to search the image in a direction perpendicular to the model
reference surface. This direction is a simple function of the local knot points.

9.2.3 Surfaces That Are Functions on the Sphere

Some surfaces can be expressed as functions on the ‘‘Gaussian sphere.”” (the dis-
tance from the origin to a point on the surface is a function of the direction of the
point, or of its longitude and latitude if it were radially projected on a sphere with
the center at the origin.) This class of surfaces, although restricted, is useful in
some application areas [Schudy and Ballard 1978, 1979]. This section explores
briefly two schemes for representation of these surfaces. The first specifies expli-
citly the distance of the surface from the origin for a set of vector directions from
the origin. The second is akin to Fourier descriptors; an economically specified set
of coefficients characterizes the surface with greater accuracy as the number of
coefficients increases.

Direction—Magnitude Sets

One approximation to a spherical function is to specify a number of three-
dimensional direction vectors from the origin and for each a magnitude. This is
equivalent to specifying a set of (9, ¢, p) points in a spherical coordinate system
(Appendix 1). These points are on the surface to be represented; connecting them
yields an approximation.
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It is often convenient to represent directions as points on the unit (Gaussian)
sphere centered on the origin. The points may be connected by straight lines to
form a polyhedron with triangular, hexagonal or rhomboidal faces. Moving the
points on the sphere out (or in) by their associated magnitude distorts this po-
lyhedron, moving its vertices radically out or in.

The spherical function determines the distance of face vertices from the ori-
gin. Resolution at the surface increases with the number of faces. An approxi-
mately isotropic distribution of directions over the surface may be obtained by
placing the face vertices (directions) in accordance with ‘‘geodesic dome”’-like cal-
culations which make the faces approximately equilateral triangles [Clinton 1971].

Although the geodesic tesselation of the sphere’s surface is more complex
than a straightforward (latitude and longitude, say) division, its pleasant properties
of isotropy and display [Brown 1979a; 1979b; Schudy and Ballard 1978] sometimes
recommend it. Some example shapes indicating the range of representable sur-
faces are given in Fig. 9.7. Methods for tesselating the sphere are given in Appen-
dix 1.

Spherical Harmonic Surfaces

In two dimensions, Fourier coefficients can give approximations to certain
curved boundaries (Section 8.3.4). Analogously in three dimensions, a set of
orthogonal functions may be used to express a closed boundary as a set of
coefficients when the boundary is a function on the sphere. One such decomposi-
tion is spherical harmonics. Low order coefficients capture gross shape characteris-
tics; higher order coefficients represent surface shape variations of higher spatial
frequency. The function with m = 0 is a sphere, the three with m = 1 represent
translation about the origin, the five with m = 2 are similar to prolate and oblate
spheroids, and so forth, the lobedness of the surfaces increasing with m. A sample
three dimensional shape and its ‘‘description” is shown in Fig. 9.8.

Spherical harmonics are analogs on the sphere of Fourier functions on the
plane; like Fourier functions, they are smooth and continuous to every order. They
may be parameterized by two numbers, m and #; thus they are a doubly infinite set
of functions which are continuous, orthogonal, single-valued, and complete on the

Fig. 9.7 Sample surfaces described by
some 320 triangular facets in a geodesic
tesselation.
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sphere. In combination, the harmonics can thus produce all ‘‘well-behaved”’

spherical functions.
The spherical harmonic functions U,,, (8,¢) and V,,, (8, ) are defined in

polar coordinates by:
U,.(@,¢) = cos (n@)sin" (¢) P(m, n, cos(d)) (9.6)
Voun @, ¢) = sin (n8) sin” (¢) P (m, n, cos(d)) 9.7

withm=0,1,2, ., M: n= 0,1, ..., m. Here P(m, n, x) is the nth derivative of
the mth Legendre polynomial as a function of x. To represent an arbitrary shape,
let the radius R in polar coordinates be a linear sum of these spherical harmonics:

RO, &) =3 3 ApsUpy©, 6) + By V0, &) 9.8)

m=0 n=0
Any continuous surface on the sphere may be represented by a set of these real
constants; reasonable approximations to heart volumes are obtained with m < 5

[Schudy and Ballard 1979].
Figure 9.9 shows a few simple combinations of functions of low values of

(m, n). The sphere, or (0, 0) surface, is added to the more complex ones to ensure
positive volumes and drawable surfaces.
Spherical harmonics have the following attractive properties.

1. They are orthogonal on the sphere under the inner product;
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Fig. 9.9 Simple combinations of functions.

(u, v) = fuv sing d0 do¢

2. The functions are arranged in increasing order of spatial complexity.

3. The whole set is complete; any twice-differentiable function on the sphere can
be approximated arbitrarily closely.

Spherical harmonics can provide compact, nonredundant descriptions of sur-
faces that are useful for analysis of shape, but are less useful for synthesis. The
principal disadvantages are that the primitive functions are not necessarily related
to the desired final shape in an intuitive way, and changing a single coefficient
affects the entire resulting surface.

An example of the use of spherical harmonics as a volume representation is
the representation of heart volume [Schudy and Ballard 1978, 1979]. In extracting
a volume associated with the heart from ultrasound data, a large mass of data is in-
volved. The data is originally in the form of echo measurements taken in a set of
two-dimensional planes through the heart. The task is to choose a surface sur-
rounding the heart volume of interest by optimization techniques that will fit three
dimensional time-varying data. The optimization involved is to find the best
coefficients for the spherical harmonics that define the surface. The goodness of fit
of a surface is measured by how well it matches the edge of the volume as it appears
in the data slices. To extend spherical harmonics to time-varying periodic data, let
the radius R in polar coordinates be a linear sum of these spherical harmonics:

RO.6,0=3 3 40 () Up, @, &) + By Voy®, 8)  (9.9)

m=0 n=0
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The functions 4 () and B (¢) are given by Fourier time series:

!
Anm(t) = Gpype + 2 Qyypj COS Qmt/r) + i SIN Qme/7) (9.10)

i=1
!

Bun(t) = bppo + 2, Cuni €08 27 t/7) + d,ppy sin Qut/7) (9.11)
i=1

where ¢is time, the a,,,;, bynis Comi» @0d d,,,i are arbitrary real constants, and 7 the
period. Any continuous periodically moving surface on the sphere may be
represented by some selection of these real constants; in the cardiac application,
reasonable approximations to the temporal behavior are obtained with ¢+ < 3. Fig-
ure 9.10 shows three stages from a moving-harmonic-surface representation of the
heart in early systole. The atria, at the top, contract and pump blood into the ven-
tricles below, after which there is a ventricular contraction.

9.3 GENERALIZED CYLINDER REPRESENTATIONS
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The volume of many biological and manufactured objects is naturally described as
the ‘“‘swept volume’ of a two-dimensional set moved along some three-space
curve. Figure 9.11 shows a “‘translational sweep’” wherein a solid is represented as
the volume swept by a two-dimensional set when it is translated along a line. A
“rotational sweep’’ is similarly defined by rotating the two-dimensional set around
an axis. In “three-dimensional sweeps,”’ volumes are swept. In a “‘general’’ sweep
scheme, the two-dimensional set or volume is swept along an arbitrary space
curve, and the set may vary parametrically along the curve [Binford 1971; Soroka
and Bajcsy 1976; Soroka 1979a; 1979b; Shani 1980]. General sweeps are quite a po-
pular representation in computer vision, where they go by the name generalized
cylinders (sometimes ‘“‘generalized cones™).

Fig. 9.10 Three stages from a moving har-
monic surface (see text and color insert).
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Fig. 9.11 A translational sweep.

A generalized cylinder (GC) is a solid whose axis is a 3-D space curve (Fig.
9.12a). At any point on the axis a closed cross section is defined. A usual restriction
is that the axis be normal to the cross section. Usually it is easiest to think of an axis
space curve and a cross section point set function, both parameterized by arc
length along the axis curve. For any solid, there are infinitely many pairs of axis
and cross section functions that can define it.

Generalized cylinders present certain technical subtleties in their definition.
For instance, can it be determined whether any two cross sections intersect, as they
would if the axis of a circular cylinder were sharply bent (Fig. 9.12b)? If the solid is
defined as the volume swept by the cross section, there is no conceptual or compu-
tationai problem. A problem might occur when computing the surface of such an
object. If the surface is expressed in terms of the axis and cross-section functions
(as below), the domain of objects must be limited so that the boundary formula
indeed gives only points on the boundary.

Generalized cylinders are intuitive and appealing. Let us grant that ‘“patho-
logical’” cases are barred, so that relatively simple mathematics is adequate for
representing them. There are still technical decisions to make about the represen-
tation. The axis curve presents no difficulties, but a usable representation for the
cross-section set is often not so straightforward. The main problem is to choose a
usable coordinate system in which to express the cross section.

9.3.1 Generalized Cylinder Coordinate Systems and Properties

Two mathematical functions defining axis and cross section for each point define a
unique solid with the “sweeping’” semantics described above. In a fixed Cartesian
coordinate system x, y, z, the axis may be represented parametrically as a function
of arc length s:

a(s) = (x(s), y(s), z(s)) (9.12)

It is convenient to have a local coordinate system defined with origin at each
point of a (s). It is in this coordinate system that the cross section is defined. This
system may change in orientation as the axis winds through space, or it may be
most natural for it not to be tied to the local behavior of the axis. For instance, im-
agine tying a knot in a solid rubber bar of square cross section. The cross section
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(a) (b)

Fig. 9.12 (a) A generalized cylinder and some cross-sectional coordinate sys-
tems. (b) A possibly “‘pathological’’ situation. Cross sections may be simply
described as circles centered on the axis, but then their intersection makes volume
calculations (for instance) less straightforward.

will stay approximately a square, and (this is the point) will remain approximately
fixed in a coordinate system that twists and turns through space with the axis of the
bar. On the other hand, imagine bolt threads. They can be described by a single
cross section that stays fixed in a coordinate system that rotates as it moves along
the straight axis of the bolt. There is no a priori reason to suppose that such a useful
local coordinate system should twist along the GC axis.

A coordinate system that mirrors the local behavior of the GC axis space
curve is the ““Frenet frame,’’ defined at each point on the GC axis. This frame pro-
vides much information about the GC-axis behavior. The GC axis point forms the
origin, and the three orthogonal directions are given by the vectors (¢, », L),
where

&€ = unit vector tangent axis

unit vector direction of center of curvature of axis

w
I

normal curve

unit vector direction of center of torsion of axis

[

Consider the curve to be produced by a point moving at constant speed through
space; the distance the point travels is the parameter of the space curve [0’Neill
1966]. Since ¢ is of constant length, its derivative measures the way the GC axis
turns in space. Its derivative £ 'is orthogonal to £ and the length of £ ‘measures the
curvature k of the axis at that point. The unit vector in the direction of £is ».
Where the curvature is not zero, a binormal vector ¢ orthogonal to ¢ and v is
defined. This binormal { is used to define the torsion 7 of the curve. The vectors £,

v, { obey Frenet’s formulae:

& =«xv
v'=—«k&+ 1L (9.13)
{'=

—TV
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where

I

Kk = curvature = —p' + E=p + £’ (9.14)

r=torsion=»"L{=—-v- L (9.15)

The Frenet frame gives good information about the axis of the GC, but it has
certain problems. First, it is not well defined when the curvature of the GC axis is
zero. Second, it may not reflect known underlying physical principles that generate
the cross sections (as in the bolt thread example). A solution, adopted in [Agin
1972, Shani 1980], is to introduce an additional parameter that allows the cross
section to rotate about the local axis by an arbitrary amount. With this additional
degree of freedom comes an additional problem: How are successive cross sections
registered? Figure 9.13 shows two solutions in addition to the Frenet frame solu-
tion.

The cross sectional curve is usually defined to be in the »—{ plane, normal to
&, the local GC axis direction. The cross section may be described as a point set in
this plane, using inequalities expressed in the »—£ coordinate system. The cross
section boundary (outline curve) may be used instead, parameterized by another
parameter r. Let this curve be given by

cross section boundary = (x(r, 5), y(r, 5))

The dependence on s reflects the fact that the cross section shape may vary along
the GC axis. The expression above is in world coordinates, but should be moved to

= oL

(a) (b)

(c)

Fig. 9.13 (a) Local coordinates are the Frenet frame. Points A and B must correspond.
(b) Local coordinates are determined by the cross sectional shape. (c) Local coordinates are
determined by a heuristic transformation from world coordinates.
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the local coordinates on the GC axis. A transformation of coordinates allows the
GC boundary to be expressed (if the GC is well behaved) as

B(r,s)=a(s) +x(r, ) v (s) + y(r, s)L (s) (9.16)

One of the advantages of the generalized cylinder representation is that it al-
lows many parameters of the solid to be easily calculated.

« In matching the GC to image data it is often necessary to search perpendicular
to a cross section. This direction is given from x(r, 5), y(r, s) by ((dy/ds)v,
—(dx/ds)t).

» The area of a cross section may be calculated from Eq. (8.16).

« The volume of a GC is given by the integral of: the area as a function of the axis
parameter multipled by the incremental path length of the GC axis, i.e.,

13
volume = f area(s) ds
0

9.3.2 Extracting Generalized Cylinders

Early work in biological form analysis provides an example of the process of fitting
a GC to real data and producing a description [Agin 1972]. One of the goals of this
work was to infer the stick figure skeleton of biological forms for use in matching
models also represented as skeletons. In Fig. 9.14 the process of inferring the axis
from the original stripe three-dimensional data is shown; the process iterates to-
ward a satisfactory fit, using only circular cross sections (a common constraint with
“generalized’’ cylinders). Figure 9.15 shows the data and the analysis of a complex

Fig. 9.14 Stagesin extracting a
generalized cylinder description fora
circular cone. (a) Front view. (b) Initial
axis estimate. (¢) Preliminary center and
axis estimate. (d) Cone with smoothed
[} E radius function. (e) Completed analysis.
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(a)

Fig. 9.15 (a) TV image of a doll. (b) Completed analysis of doll.

biological form. In real data, complexly interrelated GCs are hard to decompose
into satisfactory subparts. Without that, the ability to form a satisfactory articulated
skeleton is severely restricted.

In later work, GCs with spline-based axes and cross sections were used to
model organs of the human abdomen [Shani 1980]. Figure 9.16 shows a rendition
of a GC fit to a human kidney.

9.3.3 A Discrete Volumetric Version of the Skeleton

An approximate volume representation that can be quite useful is based on an arti-
culated wire frame skeleton along which spheres (not cross sections) are placed.

Fig. 9.16 Generalized cylinder
representation of two kidneys and a
spinal column. This coarse, nominal
model is refined during examination of
CAT data (see Fig. 9.6).
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This representation has some of the flavor of an approximate sweep representa-
tion. An example of the use of such a representation and a figure are given in Sec-
tion 7.3.4. This representation was originally conceived for graphics applications
(the spheres look the same from any viewpoint) [Badler and Bajcsy 1978]. Colli-
sion detection is easy, and three-dimensional objects can be decomposed into
spheres automatically [O’Rourke and Badler 1979]. From the spheres, the skele-
ton may be derived, and so may the surface of the solid. This representation is
especially apt for many computer vision applications involving nonrigid bodies if
strict surface and volumetric accuracy is not necessary [Badler and O’Rourke
1979].

9.4 VOLUMETRIC REPRESENTATIONS

280

Most world objects are solids, although usually only their surfaces are visible. A
representation of the objects in terms of more primitive solids is often useful and
can have pleasant properties of terseness, validity, and sometimes ease of compu-
tation. The representations given here are presented in order of increasing general-
ity; constructive solid geometry includes cell decomposition, which in turn in-
cludes spatial occupancy arrays.

Algorithms for processing volume-based representations are often of a
different flavor than surface-based algorithms. We give some examples in Section
9.4.4. Objects represented volumetrically can be depicted on raster graphics de-
vices by a “‘ray-casting’’ approach in which a line of sight is constructed through
the viewing plane for a set of raster points. The surface of the solid at its intersec-
tion with the line of sight determines the value of the display at the raster point.
Ray casting can produce hidden-line and shaded displays; graphics is only one of its
applications (Section 9.4.4).

9.4.1 Spatial Occupancy

Figure 9.17 shows that three-dimensional spatial occupancy representations are
the three-dimensional equivalent of the two-dimensional spatial occupancy
representations of Chapter 8. Volumes are represented as a three-dimensional ar-
ray of cells which may be marked as filled with matter or not. Spatial occupancy ar-
rays can require much storage if resolution is high, since space requirements in-
crease as the cube of linear resolution. In low-resolution work with irregular ob-
jects, such as arise in computer-aided tomography, spatial occupancy arrays are
very common. It is sometimes useful to convert an exact representation into an ap-
proximate spatial occupancy representation. Slices or sections through objects may
be easily produced. The spatial occupancy array may be run-length encoded (in
one dimension), or coded as blocks of different sizes; such schemes are actually
cell-decomposition schemes (Section 9.4.2).

With the declining cost of computer memory, explicit spatial occupancy ar-
rays may become increasingly common. The improvement of hardware facilities
for parallel computation will encourage the development of parallel algorithms to
compute properties of solids from these representations.
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Fig. 9.17 A solid (the shape of a
human red blood cell) approximated by
a volume occupancy array.

9.4.2 Cell Decomposition

In cell decomposition, cells are more complex in shape but still ‘‘quasi-disjoint
(do not share volumes), so the only combining operation is “‘glue’” (Fig. 9.18).
Cells are usually restricted to have no holes (they are “‘simply connected’’). Cell
decompositions are not particularly concise; their construction (especially for
curved cells) is best left to programs. It seems difficult to convert other representa-
tions exactly into cell decompositions. Two useful cell decompositions are the
“‘oct-tree”” [Jackins and Tanimoto 1980] and the kd-tree [Bentley 1975]. They
both can be produced by recursive subdivision of volume; these schemes are the
three-dimensional analogs of pyramid data structures for two dimensional binary
images.

The quasi-disjointness of cell-decomposition and spatial-occupancy primi-
tives may be helpful in some algorithins. Mass properties (Section 9.4.4) may be
computed on the components and summed. It is possible to tell whether a solid is
connected and whether it has voids. Inhomogeneous objects (such as human ana-
tomy inside the thorax) can be represented easily with cell decomposition and spa-

= ’ e

Solid E@

Fig. 9.18 A volume and its cell decomposition.
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tial occupancy. The CT number (transparency to x-rays) or a material code can be
kept in a cell instead of a single bit indication of “‘solid or space.”

9.4.3 Constructive Solid Geometry

Figure 9.19 shows one constructive solid geometry (CSG) scheme [Voelcker and
Requicha 1977; Boyse 1979]. Solids are represented as compositions, via set opera-
tions, of other solids which may have undergone rigid motions. At the lowest level
are primitive solids, which are bounded intersections of closed half-spaces defined
by some F(x, y, z) > 0, where Fis well-behaved (e.g., analytic). Usually, primi-
tives are entities such as arbitrarily scaled rectangular blocks, arbitrarily scaled
cylinders and cones, and spheres of arbitrary radius. They may be positioned arbi-
trarily in space.

Figure 9.20 shows a parameterized representation [Marr and Nishihara 1978;
Nishihara 1979] based on shapes (here cylinders) that might be extracted from an
image.

A CSG representation is an expression involving primitive solid and set
operators for combination and motion.

<CSGRep> = <primitive solid> |
MOVE <CSG Rep> BY <Motion Params> |
< CSG Rep> <Combine Op> <CSG Rep>

The combining operators are best taken to be regularized versions of set un-
ion, intersection, and difference (the complement is a possible operator, but it al-
lows unbounded solids from bounded primitives).

Regularity is a fundamental property of any set of points that models a solid.
In a given space, a set X is regular if X = kiX, where k and / denote the closure and
interior operators. Intuitively, a regular set has no isolated or dangling boundary
points. The regularization r of a set X is defined by rX = kiX. Regularization infor-
mally amounts to taking what is inside a set and covering that with a tight skin.
Regular sets are not closed under conventional set operations, but regularized

Fig. 9.19 Constructive solid geometry
for the volume of Fig. 9.18.
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Fig. 9.20 A parameterized
constructive representation for animal
shapes.

operators do preserve regularity. Regularized operators are defined by
X <OP> » Y =r(X <OP> V)

Regularity and regularized set operators provide a natural formalization of the
dimension-preserving property exhibited by many geometric algorithms, thus ob-
viating the need to enumerate many annoying ‘‘special cases.’’ Figure 9.21 illus-
trates conventional versus regularized intersection of two sets that are regular in

the plane.

If the primitives are unbounded, checking for boundedness of an object can
be difficult. If they are bounded, any CSG representation is a valid volume
representation. CSG can be inefficient for some geometric applications, such as a
line drawing display. (Converting the CSG representation to a boundary represen-
tation is the one way to proceed; see Section 9.4.4.)

ANB AN*B

Fig. 9.21 Conventional ((7) ) and regularized ({7 *) polygon intersection.
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9.4.4 Algorithms for Solid Representations

Set Membership Classification

The set membership classification (SMC) function M takes a candidate point
set C and a reference set S, and returns the points of C that are in S, out of S, and
on the boundary of S.

(CinS, CoutS, ConS) == M(C, S)

Figure 9.22a shows line—polygon classification.

SMC is a generalization of set intersection [Tilove 1980]. It is a useful
geometric utility, polygon-polygon classification is generalized clipping, and
volume-volume classification detects solid interference. Line-solid classification

(b)

Fig. 9.22 (a) The set membership classification (SMC) function M(L, P) finds
the portions of the candidate set L (here a line) that are in, on, and out of a refer-

ence set (here a polygon) P. (b) Image produced by ray casting, a special case of
SMC.
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may be used for ray casting visualization techniques to generate images of a known
three-dimensional representation (Fig. 9.22b).

An algorithm for SMC illustrates a ‘‘divide and conquer’’ approach to com-
puting on CSG. Recall that CSG is like a tree of set operations, whose leaves are
primitive sets which usually are simple solids such as cylinders, spheres, and
blocks. Presumably classification can be more easily computed with these simple
sets as reference than with complex unions, intersections, and differences as refer-
ence.

The idea is that the classification of a set C with respect to a complex object S
defined in CSG may be determined recursively. Any internal node S in the CSG
tree is an operation node. It has left and right arguments and an operation OpofS.
Each subtree is itself a CSG subtree or a primitive.

M (X, S) = IF Sis a primitive THEN prim—M (X, S)
ELSE Combine (M (X, left—subtree(S),
M (X, right—subtree(S),
OPofS);

Prim-M is the easily computed classification with respect to a simple primi-
tive solid. The Combine operation is a nontrivial calculation that combines the
subresults to produce a more complex classification. It is illustrated in two dimen-
sions for line classification in Fig. 9.23. Having classified the line L against the po-
Iygon P1 and P2, the classifications can be combined to produce the classification
for P1 (M} P2. Precise rules for combine may be written for (regularized) union,
intersection, and set difference. An important point is that when a point is in the
““on”’ set of S and in the “‘on”’ set of S, the result of the combination depends on
extra information. In Fig. 9.23, segments X and Y both result from this ON-ON
case of combine, but segment X is OUT of the boundary of the intersection and Y
is IN the intersection. The ambiguity must be resolved by keeping “‘neighborhood
information’’ (local geometry) attached to point sets, and combining the neighbor-
hoods along with the classifications. The technical problems surrounding combine
can be solved, and SMC is basic in several solid geometric modeling systems
[Boyse 1979; Voelcker et al. 1978; Brown et al. 1978].

Mass Properties

The analog of many two-dimensional geometric properties is to be found in
““mass properties,”” which are defined by volume integrals over a solid. The four
types of mass properties commonly of interest are:

Volume: V=f du
§

fxdu

Centroid: e.g. GC, = S—V
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Fig. 9.23 Combining line-polygon classifications {a) and (b) must produce the
classification (c).
Moment of 9.17)

Product of
Inertia:e.g. P, = m f xy du
3

Inertia:e.g. I, = m f (? + 2% du
5
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where m is a density measure, du the volume differential, and integrals are taken
over the volume.

Measures such as these are not necessarily easy to compute from a given
representation. The calculation of mass properties of solids from various represen-
tations is discussed in [Lee and Requicha 1980]. The approaches suggested by the
representations are shown in Fig. 9.24.

One method is based on decomposing the solid into quasi-disjoint cells. An
integral property of the cell decomposition is just the sum of the property for each
of the cells. Hence if computing the property for the cells is easy, the calculation is
easy for the whole volume. One is invited to decompose the body into simple cells,
such as columns or cubes, as shown in Fig. 9.25. The resulting calculations, per-
formed to reasonable error bounds on fairly complex volumes, take unacceptably
long for the pure spatial occupancy enumeration, but are acceptable for the column
and block decompositions. (The column decomposition corresponds to a ray cast-
ing approach.) The block decomposition method can be programmed using oct-
trees or kd-trees in a manner reminiscent of the Warnock hidden-line algorithm
[Warnock 1969], in which the blocks are found automatically, and their size dimin-
ishes as increased resolution is needed in the solid. In calculating from a construc-
tive solid geometry representation, the same divide-and-conquer strategy that is
useful for SMC may be applied. Again, it recursively solves subproblems induced
by the set operators (Fig. 9.26). The strategy is less appealing here since the
number of subproblems can grow exponentially in the worst case.

In boundary representations, one can perhaps directly integrate over the
boundary in a three-dimensional version of the polygon area calculation given in
Chapter 8. This method is often impossible for curved surfaces, which, however,
may be approximated by planar faces. An alternative is to use the divergence

Pure Simple-

e ) Spatial Cell Boundary
primte enum’s decomp’s swen reps
instances reps
R . {1) Direct
Special / Exp19|t - i EXDI.O't integration Divide and
f 1 | quasi- ) dimensional 5
ormuias separability {2} Divergence conquer

\\disjointedness /
=

—

theorem

Property-
value
reps

Fig. 9.24 ‘“‘Natural’ approaches to computing mass properties from several
representations.
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(a)

(b}

CSG rep \

Fig. 9.25 Cell decompositions for
(c) mass properties.

theorem (Gauss’s theorem). The divergence is a scalar quantity defined at any point
in a vector field by writing the vector function as

G(x,y,z)=Plxgy 2)i+ Qx p 2)j+ R(x y 2)k. (9.18)

The divergence is
giveg=L4 84 B (9.19)
% z
There is always a function G such that div G = f(x, y, z) for any continuous func-
tion f (f computes the integral property of interest.) Thus

[ rav={ divGa (9.20)

But the divergence theorem states that

Jdveav== [ Gn, aF, (9.21)
b 5R

where F; is a face of the solid S, n; is the unit normal to F;, and dF; the surface
differential. Again this formula works well for planar faces, but may require ap-
proximation techniques for curved faces with complex boundaries.

Boundary Evaluation
The calculation of a face-based surface (boundary) representation from a
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CSG representation is called boundary evaluation. 1t is an example of representation
conversion. Both the CSG and boundary are usually unambiguous representations
of a volume; a CSG expression (a solid) has just one boundary, but a boundary
(representing a solid) usually has many CSG expressions. Since a solid may be put
together from primitives in many ways, the mapping back from boundary to CSG
is not usually attempted (but see [Markovsky and Wesley 1980, Wesley and Mar-
kovsky 19811]).

One style of boundary evaluation is based on the following observations
[Voelcker and Requicha 1980; Boyse 1979].

« Boundaries of composite objects may be computed from certain set-theoretic
formulae. For (regularized) intersection of two objects Sand 7, the formula is

SN D=GSN"ID YU G N s
U'Gs N TN kSN T
where (1) * and |J * are regularized intersection and union: b, i, and k are the

boundary, interior, and closure operators. (Recall that kiis r, the regularization
operator).

« Faces of composite objects can arise only from faces of primitives.
o Faces are either bounded by edges or are self-closing (as is the sphere).

These observations and the existence of the classification operation motivate
the grand strategy that follows (ignoring several important details and concentrat-
ing on the core of the algorithm.)

(9.22)
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1. Find all possible (‘‘tentative’’) edges for each face of each primitive in the
composite.

2. Classify each tentative edge with respect to the composite solid.
3. The ON portions of those edges must be enough to define the boundary.

Given the grand strategy, several algorithms of varying sophistication are
possible, depending on what edges should be classified (how to generate tentative
edges), in what order they should be classified, and how classification is done. The
following algorithm is very simple (but very inefficient); useful algorithms are
rather more complex.

Algorithm 9.1: CSG to Boundary Conversion (top-level control loop)

Input: Solid defined by CSG expression of regularized set operations applied to
primitive solids.

Output: ““Bfaces’’ in the object boundary. Bfaces are represented by their bounding
edges. They may have little relation to the “‘intuitive faces” of the boundary; they
may overlap each other, and a Bface may be disconnected (specify more than one
region). Edges may appear many times. The Bface-oriented boundary may be pro-
cessed to remove repetition and merge Bfaces into more intuitively appealing
boundary faces.

BEGIN

Form a list PFaces of all (“‘intuitive™) faces of primitive solids involved in the
CSG expression, and an initially empty list BFaces to hold the output faces.

For every PFace F1 in PFaces:
Create a B-Face called ThisBFace, initially with no edges in it.

For every PFace F2 after F1 in the PFaces list (this generates all distinct pairs of
PFaces just once):

Intersect F1 and F2 to get TEdges, a set of edges tentatively on the boundary
of the solid. If F1 and F2 do not intersect or intersect only in a point, TEdges
is empty. If they intersect in a line, TEdges is the single resulting edge. If they
intersect in a two-dimensional region, TEdges contains the bounding edges
of the intersection region.

Classify every TEdge in TEdges with respect to the whole solid (the CSG ex-
pression). Put TEdges that are ON the solid boundary into ThisBFace.

If ThisBFace is not empty, put it into BFaces.
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End Inner Loop
End Outer Loop

END

Algorithms such as this involve many technical issues, such as merging
coplanar faces, stitching edges together into faces, regularization of faces, remov-
ing multiple versions of edges. Boundary evaluation is inherently rather complex,
and depends on such things as the definition and representation of faces as well as
the geometric utilities taken as basic [Voelcker and Requicha 1981]. Boundary
evaluation is an example of exact conversion between significantly different
representations. Such conversions are useful, since no single representation seems
convenient for all geometric calculations.

9.5 UNDERSTANDING LINE DRAWINGS

“Engineering’’ line drawings have been (and to a great extent are still) the main
medium of communication between human beings about quantitative aspects of
three-dimensional objects. The line drawings of this section are only those which
are meant to represent a simple domain of polyhedral or simply curved objects. In-
terpretation of “‘naturalistic’” drawings (such as a sketchmap [Mackworth 1977]) is
another matter altogether.

Line drawings (even in a restricted domain) are often ambiguous; interpret-
ing them sometimes takes knowledge of everyday physics, and can require train-
ing. Such informed interpretation means that even drawings that are strictly non-
sense can be understood and interpreted as they were meant. Missing lines in
drawings of polyhedra are often so easy to supply as to pass unnoticed, or be “‘au-
tomatically supplied’” by our model-driven perception.

Generalizing the line drawing to three dimensions as a list of lines or points is
not enough to make an unambiguous representation, as is shown by Fig. 9.27,

Fig. 9.27 An ambiguous (wireframe) representations of a solid with two of
three possible interpretations.
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which illustrates that a set of vertices or edges can define many different solids. (It
is possible, however, to determine algorithmically all possible polyhedral boun-
daries described by a three-dimensional wireframe [Markowsky and Wesley
1980].). A line drawing nevertheless does convey three-dimensional information.
For any set of N projection specifications (e.g., viewpoint and camera transform), a
wire-frame object may be constructed that is ambiguous given the N projections.
However, for a given object, there is a maximum number of projections that can
determine the object unambiguously. The number depends on the number of
edges in the object [Shapira 1974]. Reconstruction of all solids represented by pro-
jections is possible [Wesley and Markowsky 1981].

Line drawings were a natural early target for computer vision for the follow-
ing reasons:

1. They are related closely to surface features of polyhedral scenes.

2. They may be represented exactly; the noise and incomplete visual processing
that may have affected the *‘line drawing extraction’’ can be modelled at will or
completely eliminated.

3. They present an interpretation problem that is significant but seems approach-
able.

The understanding of simple engineering (3-view) drawings was the first
stage in a versatile robot assembly system [Ejiri et al. 1971]. This application
underlined the fact that heuristics and conventions are indispensible in engineer-
ing drawing understanding. This section deals with the problem of ‘““understand-
ing’’ a single-view line drawing representation of scenes containing polyhedral and
simple curved objects like those in Fig. 9.28.

Our exposition follows a historical path, to show how early heuristic pro-
grams in the middle 1960s evolved into more theoretical insights in the early
1970s.

The first real computer vision program with representations of a three-
dimensional domain appeared around 1963 [Roberts 1965]. This system, ambi-
tious even by today’s standards, was to accept a digitized image of a polyhedral
scene and produce a line drawing of the scene as it would appear when viewed from
any requested viewpoint. This work addressed basic issues of imaging geometry,
feature finding, object representation, matching, and computer graphics.

Since then, several systems have appeared for accomplishing either the same
or similar results [Falk 1972; Shirai 1975; Turner 1974]. The line drawings of this
section can appear as intermediate representations in a working polyhedral vision
system, but they have also been studied in isolation. This topic took on a life of its
own and provides a very pretty example of the general idea of going to the three-
dimensional world of physics and geometry to understand the appearance of a
two-dimensional image. The later results can be used to understand more clearly
the successes and failures of early polyhedral vision systems. One form of under-
standing (line labelling) provided one of the first and most convincing demonstra-
tions of parallel constraint propagation as a control structure for a computer vision
process.

Ch. 9 Representations of Three-Dimensional Structures



S

\ie—==

(d)

Fig. 9.28 Several typical line drawing scenes for computer understanding.

9.5.1 Matching Line Drawings to Three-dimensional Primitives

Roberts desires to interpret a line drawing such as Fig. 9.28a in terms of a small set
of three polyhedral primitives, shown in Fig. 9.29. A simple polyhedron in a scene
is regarded as an instance of a transformed primitive, where a transform may in-
volve scaling along the three coordinate axes, translation, and rotation. Compound
polyhedra, such as Fig. 9.28a, are regarded as simple polyhedra ‘‘glued together.”
(A cell-decomposition representation is thus used for compound polyhedra.) The
program is first to derive from the scene the identity of the primitive objects used
to construct it (including details of the construction of compound polyhedra).
Next, it is to discover the transformations applied to the primitives to obtain the
particular incarnations making up the scene. Finally, to demonstrate its under-
standing, it should be able to construct a line drawing of the scene from any
viewpoint, using its derived description.

To understand a part of the scene, the program first decides which primitive it
comes from, and then derives the transformation the primitive underwent to ap-
pear as it does in the scene. Identifying primitives is done by matching “‘topologi-
cal” features of the line drawing (configurations of faces, lines, and vertices) with
those of the model primitives; matching features induce a match between scene
and model points. At least four noncoplanar matching points are needed to derive
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Fig. 9.31 Topological match structures of Roberts.

(

The idea once again is to accumulate local evidence from the scene, and then
to group polygons on the basis of this evidence. The evidence takes the form of
“links’” which link two regions if they may belong to the same body; links are
planted around vertices, which are classified into types, each type always planting
the same links (Fig. 9.32). No links are made with the background region.

Scenes are interpreted by grouping according to regions/links, using fairly
complex rules, including ‘‘inhibitory links’’ that preclude two neighboring regions
from being in the same body.

The final form of the program performs reasonably well on scenes without ac-
cidents of visual alignment, but it is a maze of special cases and exceptions, and
seems to shed little light on what is going on in known polyhedral line-drawing per-
ception. One might well ask where the links come from; no justification of why
they are correct is given. Further ([Mackworth 1973]), Guzman can accept as one
body the two regions in Fig. 9.33a. Finally, one feels a little dissatisfied with a
scheme that just answers ““one body”’ to a scene like Fig. 9.33b, instead of answer-
ing “‘pyramid on cube’” or “‘two wedges,’” for example.

Guzman’s method is correct for a world of convex isolated trihedral polyhe-
dra: it is extended by ad hoc adjustments based on various potentially conflicting
items of evidence from the line drawing. Ultimately it performs adequately with a

~ much increased range of scenes, albeit not very elegantly. Further progress in the
line drawing domain came about when attention was directed at the three-
dimensional causes of the different vertex types.

FORK ARROW ELL
PSI T PEAK Fig. 9.32 Links arcund vertices.

Sec. 9.5 Understanding Line Drawings 295



296

(a) (b)

Fig. 9.33 (a) Non-polyhedral scene. (b) Two wedges or a pyramid on cube.

9.5.3 Labeling Lines

Huffman and Clowes independently concerned themselves with scenes similar to
Guzman’s, not excluding non-simply connected polyhedra, but excluding ac-
cidents of alignment [Huffman 1971; Clowes 1971]. They desired to say more
about the scene than just which regions arose from single bodies; they wanted to
ascribe interpretations to the lines. Figure 9.34 shows a cube resting on the floor;
lines labeled with a + are caused by a convex edge, those labeled with a — are
caused by a concave edge, and those labeled with a > are caused by matter occlud-
ing a surface behind it. The occluding matter is to the right of the line looking in
the direction of the >, the occluded surface is to the left. If the cube were floating,
one would label the lowest lines with < instead of with —. The shadow line labels
(arrows) were not used by Huffman.

A systematic investigation can find the types of lines possibly seen around a
trihedral corner; such corners can be classified by how many octants of space are
filled by matter around them (one for the corner of a cube, seven for the inside
corner of a room, etc.). By considering all possible trihedral corners as seen from

Fig. 9.34 A block resting on its
bottom surface.
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all possible viewpoints, Huffman and Clowes found that without occlusion, just
four vertex types and only a few of the possible labelings of lines meeting at a ver-
tex can occur. Figure 9.35 shows views of one- and three-octant corners which give
rise to all possible vertices for these corner types. The vertices appear in the first
two rows of Table 9.1, which is a catalogue of all possible vertices, including those
arising from occlusion, in this restricted world of trihedral polyhedra. It is easy to
imagine extending the catalog to include vertices for other corner types.

It is important to note that there are four possible labels for each line (+ — >
<), and thus 4° = 64 possible labels for the fork, arrow, and T and 16 possible la-
bels for the ell. In the catalog, however, only 3/64, 3/64, 4/64, and 6/16, respec-
tively, of the possible labels actually occur. Thus only a small fraction of possible
labels can occur in a scene.

The main observation that lets line-labeling analysis work is the coherence
rule: In a real polyhedral scene, no line may change its interpretation (label) between
vertices. For example, what is wrong with scenes like Fig. 9.36 is that they cannot
be coherently labeled; lines change their interpretation within the impossible ob-
ject. Perhaps the lines in drawings of real scenes can be interpreted quickly because
the small percentage of meaningful labelings interacts with the coherence rule to
reduce drastically the number of explanations for the scene.

How does line labeling relate to Guzman? A labeled-line description clearly
indicates the grouping of regions into bodies, and also rejects scenes like Fig.
9.33a, which cannot be coherently labeled with labels from the catalog. The origin
of Guzman’s links can be explained this way: consider again the world of convex
polyhedra; the only labels from the catalog that are possible are shown in Fig.
9.37a. Further, it is clear that a convex edge has two faces of the same body on ei-
ther side of it, and an occluding edge has faces from two different bodies on either
side of it. A convex label means the regions on ecither side of it should be linked;
this is Guzman’s link-planting rule (Fig. 9.37b). The inhibition rules are a further
corollary of the labels; they are to suppress links across an edge if evidence that it

Fig. 9.35 Different views of various
corner types.
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must be occluding is supplied by the vertex at its other end (Fig. 9.37c). When ver-
tices at both ends of a line agree that the line is convex, Guzman would have
planted two links; this is in fact the strongest evidence that the regions are part of
the same body. If just one vertex gives evidence that the edge has a link, a decision
based on heuristics is made; the coherence rule is being used implicitly by Guz-
man. The same physical and geomietric reality is driving both his scheme and that
of Huffman.

The labeling scheme explained here still has problems: syntactically nonsen-
sical scenes are coherently labeled (Fig. 9.38a); scenes are given geometrically im-
possible labels (Fig. 9.38b); and scenes that cannot arise from polyhedra are easily
labelled (Fig. 9.38¢). It is very hard to see how a labeling scheme can detect the il-
legality of scenes like (Fig. 9.38¢); the problem is not that the edges are incorrectly
labeled, but that the faces cannot be planar.

Concern with this last-mentioned problem led to a program (see the next sec-
tion) that can obtain information about a polyhedral scene equivalent to labeling it,

Fig. 9.36 An impossible object.
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Fig. 9.37 The relation of links to labels. (a) Line labels. (b} Link planting ver-

tices. (c) Inhibitory links.
and also can reject non-polyhedra as impossible. There has also been an exciting
denoument to the line-labeling idea [Waltz 1975; Turner 1974].

Waltz extends the line labels to include shadows, three illumination codes for
each face on the side of an edge, and the separability of bodies in the scene at
cracks and concave edges; this brings the number of line labels possible up to just
below 100. He also extends the possible vertex types, so that many vertices of four
lines occur. He can deal with scenes such as the one shown in Fig. 9.28c.

The combinatorial consequence of these extensions is clear; the possible ver-
tex labelings multiply enormously. The first interesting thing Waltz discovered was
that despite the combinatorics, as more information is coded into the lines, the
smaller becomes the percentage of geometrically meaningful labels for a vertex. In
his final version, only approximately 0.03 percent of the possible arrow labels can
occur, and for some vertices the percentage is approximately 0.000001.

The second interesting thing Waltz did was to use a constraint-propagating la-
beling algorithm which very quickly eliminates labels for a vertex that is impossible
given the neighboring vertices and the coherence rule, which places constraints on
labelings. The small number of meaningful labels for a vertex imposes severe con-
straints on the labeling of neighboring vertices. By the coherence rule, the con-
straints may be passed around the scene from each vertex to its neighbors; elim-
inating a label for a vertex may render neighboring labels illegal as well, and so on
recursively.

T

.‘ Fig. 9.38 Nonsense labelings and

(a) 1)) «©) nonpolyhedra.
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Waltz found that for scenes of moderate complexity, eliminating all impossi-
ble labelings left only one, the correct one. The labeling process, which might have
been expected to involve much search, usually involved none. This constraint pro-
pagation is an example of parallel constraint satisfaction, and is discussed in
Chapter 12 in a broader context. In the event that a vertex is left with several labels
after all junction coherence constraints have been applied, they all participate in
some legal labeling. At this point one can resort to tree search to find the explicit la-
belings, or one can apply more constraints. Many such constraints, heuristic and
geometric, may be imagined. For instance, a constraint could involve color edge
profiles. If two aligned edges are separated by some (possibly occluding) structure,
but still divide faces of the same color, they should have the same label. Another
important constraint concerns how face planarity constrains line orientations.

Scenes with missing lines may be labeled; one merely adds to the legal vertex
catalog the vertices that result if lines are missing from legal vertices. This idea has
the drawbacks of increasing the vertex catalog and widening the notion of con-
sistency, but can be useful.

Another extension to line labeling is that of [Kanade 1978]. This extension
considers not only solid polyhedra but objects (including nonclosed ‘‘shells’)
made up of planar faces. This extension has been called origami world after the art
of making objects from folded (mostly planar) paper. An example from origami
world is the box in Fig. 9.39a. A quick check shows that this cannot be labeled with
the Huffman-Clowes label set. It can be labeled using the origami world label set
(Table 9.2) and its interpretation is shown in Fig. 9.39b.

Table 9.2
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Fig. 9.39 (a) Box. (b) Labeled edges according to origami world label set.

The vertex labels may be extended to include scenes with cylinders, cones,
spheres, tori, and other simple curves. In expanded domains the notion of “‘legal
line drawing’’ becomes very imprecise. In any event the number of vertex types
and labels grow explosively, and the coherence rule must be modified to cope with
the fact that lines can change their interpretation between vertices and can tail off
into nothing, and that one region can attain all three of Waltz’s illumination types
[Turner 1974, Chakravarty 1979]. The domain is of scenes such as appear in Fig.
9.28d.

9.5.4 Reasoning About Planes

The deficiencies in the scene line-labeling algorithms prompted a consideration of
the geometrical foundations of the junction labels [Mackworth 1973, Sugihara
1981]. This work seeks to answer the same sorts of questions as do labeling pro-
grams, but also to take account of objects that cannot possibly be planar polyhedra,
such as those of Fig. 9.40. Neither approach uses a catalog of junction labels, but
relies instead on ideas of geometric coherence. The basis is a plane-oriented for-
mulation rather than a line-oriented one.

Gradient Space

Mackworth’s program relies heavily on the relation of polyhedral surface gra-
dients to the lines in the image (recall section 3.5.2). Image information from
orthographic projections of planar polyhedral scenes may be related to gradient in-
formation in a useful way. An image line L is the projection of a three-space line M
arising from the intersection of two faces lying in distinct planes I1; and II, of gra-
dients (py, q;) and (p,, go). With the (p, ¢) coordinate system superimposed on
the image (x, y) coordinate system, there is the following constraint. The orienta-
tion of L constrains the gradients of I1; and I1,; specifically, the line L is perpendic-
ular to the line G between (py, ¢1) and (py, g2) (Fig. 9.41).

Fig. 9.40 Labelable but not planar polyhedra.
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/ P2, q3) Fig. 9.41 Gradient space constraint.

The result is easily shown. With orthographic projection, the origin may be
moved of the image plane to be in L without loss of generality. Then L is defined
by its direction vector (A, u) = (cosf, sin@#). The three-space point on II,
corresponding to (0,0) may be expressed as (0,0,k;), and at (A, n) the
corresponding pointis (A, u, Ap; + g, + k). Thus moving along M (which is in
I1,) from (x, y) = (0,0) to (x, y) — (\, u) moves along —zby Ap; + wq,. The
coordinates of a unit vector on L can then be expressed as (A, #, Ap; + ngqy). But
Lis alsoin I1,, and this argument may be repeated for I1,, using p, and g,. Thus

App+pg1=Ap) T g, (9.23)
or
W,u)(py—p1L, ga—q) =0 (9.24)

Equation (9.24) is a dot product set equal to zero, showing that its two vector
operands are orthogonal, which was to be shown.

Every picture line results from the intersection of two planes, and so it has a
line associated with it in gradient space which is perpendicular to it. Furthermore,
if the gradients of the surfaces are on the same side of the picture line as their sur-
faces, the edge was convex; if the gradients are on opposite sides of the line from
their causing surfaces, the edge was concave (Fig. 9.42). For every junction in the
image there are just two ways the gradients can be arranged to satisfy the perpendi-
cularity requirement (Fig. 9.43). In the first, all edges are convex, in the second,
concave. Switching interpretations from one to the other by negating gradients is
the psychological ““Necker reversal.”

Notice that if an image junction is a three-space polyhedral vertex, each edge
of the vertex is the intersection of two face planes. If the corresponding gradients
are connected, a “‘dual’ (p, g) space representation of the (x ,y) space junction is
formed. The connected (p, q) gradient points form a polygon whose edges are per-
pendicular to the junction lines in (x, y) space. The polygon is larger if the three-
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Fig. 9.42 Relation of gradients, image and world structures. (a) Image. (b)

World. (c) Gradients.
dimensional corner is sharper, and shrinks toward the junction point as the corner
gets blunter.

Interpreting Drawings

It is possible to use these geometric results to interpret the lines in orthogo-
nally projected polyhedral scenes as being “‘connect™ (i.e., as being between two
connected faces) or occluding. It can also be determined if connect edges are con-
vex or concave, and for occluding edges which surface is in front. Hidden parts of
the scene may sometimes be reconstructed. The orientation of each surface and
edge in the scene may be found. Thus a program can determine that input such as
Fig. 9.40 is not a planar-faced polyhedron [Mackworth 1973]. Sugihara’s work gen-
eralizes Mackworth’s; it does not use gradient space and does not rely on ortho-
graphic projection.
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Fig. 9.43 A scene junction and two resulting triangles in gradient space.

Mackworth’s procedure to establish connect edges produces the most con-
nected interpretation first (a nonconnected interpretation is just a collection of
floating faces which line up by accident to give the line drawing). The background
region is the first to be interpreted; that is, means to have its gradient fixed in gra-
dient space. After a region is interpreted, the region having the most lines in com-
mon with regions so far interpreted is interpreted next.

The image of a scene is given in Fig. 9.44a, it is interpreted as follows. No
coherent interpretation is possible with five or four connect edges. Trying for three
connect edges, the program interprets A4 by arbitrarily picking a gradient for the
surface A represents (the background). It picks the origin of gradient space. In
order to be able to reason about lines in the image, it needs to have an interpreted
region on either side of the line, so it must interpret another region. It picks B (C
would be as good).

The lines bounding B are examined to see if they are connect. Line 1 is con-
sidered. If it is connect, the gradient space dual of it will be perpendicular to it
through the gradient space point representing surface 4 (i.e., the origin). Now
another arbitrary choice: The gradient corresponding to surface B is placed at unit
distance from the origin, thus “‘imagining’’ the second gradient in a row. From
now on, the gradients are more strongly located. The arbitrary scaling and point of
origin imposed by these first two choices can be changed later if that is important.

In gradient space, the situation is now shown in Fig. 9.44b. Now consider
line 2; to establish it as a connect edge, Gz = (pg, 15) (the gradient space point
corresponding to the surface B) must lie on a line perpendicular to 2 through G 4
(Fig. 9.44c¢). This cannot happen; the situation with 1 and 2 both connect is in-
coherent. Thus, with a line 1 connect edge, 2 must be occluding. This sort of in-
coherency result was what kept the program from finding four or five edges con-
nect. Further interpretation involves assigning gradients and vertices into the
developing diagram in a noncontradictory, maximally connected manner (Fig.
9.444).

The next part of the program determines convexity or concavity of the lines.
The final part of the program looks at occlusion. It also suggests hidden surfaces
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Fig. 9.44 (a) Polyhedral scene considered by Mackworth. (b) Partial interpretation.
(c) Continued interpretation. (d) Occluding and connect interpretations. (e) Final interpre-
tation.

and thus hidden lines that are consistent with the interpretation (Fig. 9.44e). This
figure in gradient space resembles a tetrahedron, as well it might; it is formed in
the same way as the graph-theoretic dual (point per face, edge per edge, face per
point) which defines dual graphs and dual polyhedra; the tetrahedron is self-dual.
The arbitrary choices of gradient reflect degrees of freedom in the drawing that are
also identified by Sugihara.
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Skewed Symmetry

Many planar objects are symmetrical about an axis. This axis and another,
which is perpendicular to the first and in the plane of the object, form a natural
orthogonal coordinate system for the object. If the plane of the object is perpendic-
ular to the line of sight from the viewpoint, the coordinate axes appear to be at
right angles. If the object is tilted from this position, the axes appear skewed. Some
examples are shown in Fig. 9.45.

A skewed symmetry may or may not reflect a real symmetry; the object may
itself be skewed. However, if the skewed symmetry results from a tilted real sym-
metry, a constraint in gradient space may be developed for the object’s orientation
[Kanade 1979].

An imaged unit vector inclined at « inscribed on a plane at orientation (p, ¢)
must have three-dimensional coordinates given by

(cos @, sine, pcosa + g sina)

Thus if the two axes of skewed symmetry make angles of « and 8 with the image x
axis, the two vectors in three-space ¢ and b must have coordinates

a= (cose, sina, pcosa + gsina)
and
b= (cosB, sinB, pcosB + gsinB)

Since these vectors reflect a real symmetry, they must be perpendicular (i.e.,
a-b=0),or

cos (@ — B) + (pcosa + gsina) (pcosB + ¢gsinB) =0 (9.25)
By rotating the pand gaxes by A = (& + 8)/2, thatis
p'=pcosA + g sinA

qg'=—psink + g cos A

Fig. 9.45 Skewed symmetries. (a,b,c)
are examples. (d) Each skewed
(d) symmetry defines two axes.
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Equation (9.25) can be put into the form

Y

2 a2
== sin
2 q

p.'Z C052

%] = —cos (y)

where y = a—f3. Thus the gradient of the object must lie on a hyperbola with axis
tilted A from the x axis, and with asymptotes perpendicular to the directions of «
and 8. This constraint is shown in Fig. 9.46.

To show how skewed symmetry can be exploited to interpret objects with
planar faces, reconsider the example of Fig. 9.43. In that example the three con-
vex edges constrained the gradients of the corresponding faces to be at the vertices
of a triangle, but the size or position of the triangle in gradient space was unknown.
However, skewed symmetry applied to each face introduces three hyperbola upon
which the gradients must lie. The only way that both the skewed symmetry con-
straint and triangle constraint can be satisfied simultaneously is shown in Fig.
9.47 —the combined constraints have uniquely determined the face orientations.

EXERCISES

9.1 Derive an expression for the volume of an object represented by spherical harmonics
of order M = 1.

9.2 Derive an expression for the perpendicular to the surface of an object represented by
spherical harmonics in terms of the appropriate derivatives.

9.3 Derive an expression for the angle centroid of each of the spherical harmonic func-
tions for M < 2.

9.4 Label the lines in the objects of Fig. 9.48.

Exercises

Fig. 9.46 Skewed symmetry constraint
in gradient space.
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Fig. 9.47 Using skewed symmetry to orient the faces of a cube. (a) The cube.
(b) Skewed symmetries. (c) skewed symmetries and junction constraint plotted in
gradient space. {d) another possible object obeying the constraints.

Give two sets of CSG primitives with same domain.

Show that the dual of the plane of interpretation for a line and the duals of the two
planes that meet in the edge causing the line are all on the dual of the edge.

Prove (Section 9.3.1) that in the Frenet frame £ ’ is perpendicular to £.

Write the precise rules for combining classification results for |J*, M~ and —
operations.

Find two interpretations of the tetrahedron of Fig. 9.44a that differ in convexity or
concavity of lines. (Hint: The concave interpretation has an accident of alignment.)
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Fig. 9.48 Objects for labeling.
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Visual understanding relates input and its implicit structure to explicit structure that
already exists in our internal representations of the world. More specifically, vision
operations must maintain and update beliefs about the world, and achieve specific
goals.

To consider how higher processes can influence and use vision, one must
confront the nonvisual world and powers of reasoning that have more general
applicability. The world models that are capable of supporting advanced
application-dependent calculations about objects in the visual domain are quite
complex..General techniques of knowledge representation developed in other fields
of artificial intelligence can be brought to bear on them. Similarly, much research
has been invested in the basic processes of inference and planning. These tech-
niques may be used in the visual domain to manipulate beliefs and achieve goals,
as well as reasoning for other purposes.

The organization of a complex visual system (Fig. 1.5 or Fig. 10.1), is a loose
hierarchy of models of world phenomena. The relational models that concern us in
this chapter are removed from direct perceptual experience —they are used mainly
for the last, highest-level stages of perception. Also, they are used for knowledge
attained prior to the visual experience currently being processed. The representa-
tions involved may be arnalogical or propositional. Analogical representations allow
simulations of important physical and geometric properties of objects. Propositions
are assertions that are either true or false with respect to the world (or a world
model). Each form is useful for different purposes, and one is not necessarily
““higher”’ than the other. The techniques and representations of Part IV are mainly
propositional in flavor. Sometimes the reasoning they implement (say about
geometrical entities) would seem better suited to analogical calculations; however,
technical difficulties can render that impossible.

Part IV is concerned with techniques for making the ‘‘motivation™ and
“world view”” of a vision system explicit and available. Such explicit models would

Part IV Relational Structures



be interesting from a scientific standpoint even if they were not directly useful. But
explicitly available models are decidedly useful. They are useful to the system
designer who desires to reconfigure or extend a system. They are useful to the sys-
tem itself, which can use them to reason about its own actions, flexibly control its
own resources in accordance with higher goals, dynamically change its goals,
recover from mistakes, and so forth.

We organize the major topics of Part IV as follows.

1. Knowledge representation (Chapter 10). Semantic nets are an important tech-
nique for structuring complex knowledge, and can be used as a knowledge
representation formalism in their own right.

2. Matching (Chapter 11). Marching puts a derived representation of an image
into correspondence with an existing representation. This style of processing
representations is more pronounced as domain-dependent knowledge,
idiosyncratic goals, and experience begin to dominate the ultimate use (or
understanding) of the visual input.

3. Inference (Chapter 12). Classical logical inference (a technique for manipulat-
ing purely propositional knowledge representations) is a well-understood and
elegant reasoning technique. It has good formal properties, but occasionally
seems restricted in its power to duplicate the range of human processing.
Extended inference techniques such as production systems are those in which the
inference process as well as the propositions may contribute materially to the
derived knowledge. Labeling techniques can “‘infer’” consistent or likely
interpretations for an input from given rules about the domain. Inference can
be used for both problem solving and belief-maintenance activity.

4. Planning (Chapter 13). Planning techniques are useful for problem solving,
and are especially tailored to integrating vision with real-world action. Planning
can be used for resource allocation and attentional mechanisms.

5. Control (Chapter 10; Appendix 2). Control strategies and mechanisms are of
vital concern in any complex artificial intelligence system, and are particularly
important when the computation is as expensive as that of vision processing.

Learning is missing from the list above. Disappointing as it is, at this writing
the problem of learning is so difficult that we can say very little about it in the
domain of vision.

Part IV Relational Structures 315
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10.1 REPRESENTATIONS

An internal representation of the world can help an intelligent system plan its
actions and foresee their consequences, anticipate dangers, and use knowledge ac-
quired in the past. In Part IV we investigate the creation, maintenance, and use of a
knowledge base, an abstract representation of the world useful for computer vision.
Chapter 1 introduced a layered organization for the knowledge base and divided its
contents into ‘“‘analogical’’ and ‘‘propositional”’ models. In this section we con-
sider this high-level division more deeply.

The outside world is accessible to a computer vision program through the im-
aging process. Otherwise, the program is manipulating its internal representations,
which should correspond to the world in understood ways. In this sense, the
knowledge base of generalized images, segmented images, and geometric entities
contains ‘“models’’ of the phenomena in the world. Another more abstract sense
of “model’’ is high-level, prior expectations about how the world fits together.
Such a high-level model is often much more complex than the lower-level
representations, often has a large ‘‘propositional”” component, and is often mani-
pulated by “‘inference-like”” procedures. Explicit knowledge and belief structures
are a relatively new phenomenon in computer vision, but are playing an increas-
ingly important role.

The goals of this chapter are three.

1. Todevelop in more depth some issues of high-level models (Section 10.1).

2. To describe semantic nets—an important and general tool for both organizing
and representing models (Sections 10.2 and 10.3).

3. To address issues of control, at both abstract and implementational levels (Sec-
tion 10.4 augmented by Appendix 2).
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10.1.1 The Knowledge Base —Models and Processes

Figure 10.1 shows the representational layers in the knowledge base as we have
developed it through the book, and shows the place of important processes. This
organization might be compared with that in [Barrow and Tenenbaum 1981].

The knowledge base organization is mirrored in the organization of the book.
Parts I to III dealt with analogical models and their construction; Part IV is con-
cerned with propositional and complex analogical models. In Chapters 11 to 13,
the emphasis moves from the structure of models to the processes (matching,
inference, and planning) needed to manipulate and use them.

The knowledge base should have the following properties.

Represent analogical, propositional, and procedural structures
Allow quick access to information

Be easily and gracefully extensible

Support inquiries to the analogical structures

Associate and convert between structures

Support belief maintenance, inference, and planning
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Fig. 10.1 The knowledge base and associated processes in a computer vision
system.
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Sec. 10.1

The highest levels of the knowledge base contain both analogical and prop-
ositional models. Analogical tools do not exist for many important activities, and
when they do exist they are often computationally intensive. A three-dimensional
geometric modeling system for automatic manufacturing has very complex data
structures and algorithms compared to their elegant and terse counterparts in a
propositional model that may be used to plan the highest-level actions. In general it
makes sense to do some computation at the analogical level and some at the propo-
sitional. This multiple-representation strategy seems more efficient than translat-
ing all problems into one representation or the other.

The computations in a vision system should be organized so that information
can flow efficiently and unnecessary computation is kept to a minimum. This is the
function of the control disciplines that allocate effort to different processes. Even
the simplest biological vision systems exhibit sophisticated control of processing.

Constructive processes dominate the activity in building lower-level models,
and matching processes become more important as prior expectations and models
are brought into play. Chapter 11 is devoted to the process of matching.

We postulate that an advanced vision system is engaged in two sorts of high-
level activity: belief maintenance and goal achievement. The former is a more or less
passive, data-driven, background activity that keeps beliefs consistent and up-
dated. The latter is an active, knowledge-driven, foreground activity that consists
of planning future activities. Planning is a problem-solving and simulation activity
that anticipates future world states; in computer vision it can determine how the
visual environment is expected to change if certain actions are performed. Plan-
ning can occur with symbolic, propositional representations (Chapter 13) or in a
more analogical vein with such simulations as trajectory planning [Lozano-Perez
and Wesley 1979]. Planning is useful as an implementational mechanism even in
contexts that are not analogous to human ‘‘conscious” problem solving [Garvey
1976]). Helmholtz likened the results of perception to ‘‘unconscicus conclusions”
[Helmholtz 1925]. Similarly even ““primitive’ vision processes (computer or bio-
logical) may use planning techniques to accomplish their ends.

Inference and planning are both classical subfields of artificial intelligence.
Neither has seen much application in computer vision. Inference seems useful for
belief maintenance. Extended inference can deal with inconsistent beliefs and
with beliefs that are maintained with various strengths. We treat inference in
Chapter 12. Applications of planning to vision [Garvey 1976; Bolles 1977] show
good promise. Planning is treated in Chapter 13.

10.1.2 Analogical and Propositional Representations

Our division of the internal knowledge base into ‘‘analogical’ and ‘‘propositional’
reflects a similar division in theories of how human beings represent the world
[Tohnson-Laird 1980]. Psychological data are not compelling toward either pure
theory; there are indications that human beings use both forms of representation.
We introduce the division in this book because we find it conceptually useful in the
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following way. Low-level representations and processes tend to be purely analogi-
cal; high-level representations and processes tend to be both analogical and propo-
sitional.

Analogical representations have the following characteristics [Kosslyn and
Pomerantz 1977; Shepard 1978; Sloman 1971; Kosslyn and Schwartz 1977, 1978;
Waltz and Boggess 1979].

1. Coherence. Each element of a represented situation appears once, with all its
relations to other elements accessible.

2. Continuity. Analogous with continuity of motion and time in the physical
world; these representations permit continuous change.

3. Analogy. The structure of the representation mirrors (and may be isomorphic
to) the relational structure of the represented situation. The representation is a
description of the situation.

4. Simulation. Analogical models are interrogated and manipulated by arbitrarily
complex computational procedures that often have the flavor of (physical or
geometric) simulation.

Propositional representations have the following characteristics [Anderson
and Bower 1973; Palmer 1975; Pylyshyn 1973].

1. Dispersion. An element of a represented situation can appear in several prop-
ositions. However, the propositions can be represented in a coherent manner
by using semantic nets.

2. Discreteness. Propositions are not usually used to represent continuous change.
However, they may be made to approximate continuous values arbitrarily
closely. Small changes in the representation can thus be made to correspond
to small changes in the represented situation.

3. Abstraction. Propositions are true or false. They do not have a geometric
resemblance to the situation; their structure is not analogous to that of the si-
tuation.

4, Inference. Propositional models are manipulated by more or less uniform com-
putations that implement “‘rules of inference’’ allowing new propositions to be
developed from old ones.

Each sort of model derives its ““meaning’’ differently; the distinctions are in-
teresting, because they can point out weaknesses in each theory [Johnson-Laird
1980; Schank 1975; Fodor, et al. 1975]. Especially in computer implementations,
the two representations only differ essentially in the last two points. It is often pos-
sible to transform one representation to another without loss of information.

Some examples are in order. A generalized image (Part I) is an analogical
model: to find an object above a given object, a procedure can ‘‘search upward’’ in
the image. An unambiguous three-dimensional model of a solid (Chapter 9) is
analogical. It may be used to calculate many geometric properties of the solid,
even those unimagined by the designer of the representation. A set of predicate
calculus clauses (Chapter 12) is a propositional model. Closely related models can
be used to solve problems and make plans [Nilsson 1971, 1980; Chapter 13].

Ch. 10 Knowledge Representation and Use



A short digression: It is interesting that people do not seem to perform syl-
logistic inference (formal propositional deduction) in a “‘mechanical’” way. Given
two clauses such as ‘‘Some appliances are telephones’ and ‘“All telephones are
black,”” we are much more likely to conclude ‘‘Some appliances are black’ than
the equally valid ‘““Some black things are appliances.”” There is not a satisfying
theory of the mental processes underlying syllogistic inference. An interesting
speculation [Johnson-Laird 1980] is that inference is primarily done through ana-
logical mental models (in which, for example, a population of individuals is con-
jured up and manipulated). Then syllogistic inference techniques may have arisen
as a bookkeeping mechanism to assure that analogical reasoning does not ‘“miss
any cases.”’

10.1.3 Procedural Knowledge

Procedures as explicit elements in a model pose problems because they are not
readily ‘‘understood’ by other knowledge base components. It is very hard to tell
what a procedure does by looking at its code.

In our taxonomy we think of “‘procedural” knowledge as being analogical.
The sequential nature of a program’s steps is analogous to an ordering of actions in
time that can only be clumsily expressed in current propositional representations.
Knowledge about ‘‘how-to” perform a complex activity is most propitiously
represented in the form of explicit process descriptions. Descriptions not involving
the element of time may be naturally represented as passive (analogical or proposi-
tional) structures.

There have been several attempts to organize chunks of procedural
knowledge by associating with the procedure a description of what it is to accom-
plish. For example, procedural knowledge can be stored in the internal model
structure (knowledge base) indexed under patferns that correspond to the argu-
ments of the procedure. Pattern-directed invocationinvolves going to the knowledge
base for a procedure that matches the given pattern, matching pattern elements to
bind arguments, and invoking the procedure. Several advantages accrue in
pattern-directed invocation, such as not having to know the ‘“‘proper names’’ of
procedures, only their descriptions (what they claim to do). Also, when several
procedures match a pattern, one either gets nondeterminism or a chance to choose
the best. Often system facilities include a procedure to run to choose the best pro-
cedure dynamically. Similar pattern matching is involved in resolution theorem
provers and production systems (Chapter 12).

As an example, in a program to locate ribs in a chest radiograph [Ballard
1978], procedures to find ribs under different circumstances are attached to nodes
in a mixed analogic and propositional model of the ribcage as shown in Fig. 10.2.
Each procedure has an associated description which determines whether it can be
run. For example, some programs require instances of neighboring ribs to be lo-
cated before they can run, whereas others can run given only rudimentary scaling
information. When invoked, each procedure tries to find a geometric structure
corresponding to the associated rib in a radiograph. Instead of searching for ribs in
a mechanical order, descriptors allow a choice of order and procedures and hence a
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Z\v;::\*‘o-“ Fig. 10.2 A portion of a ribcage model
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model is denoted by jagged lines.

more flexible, efficient and robust program (Appendix 2).

The representation and use of procedural knowledge is an important topic
[Schank and Abelson 1977; Winograd 1975; Freuder 1975]. We expect it to be in-
creasingly important for computer vision.

10.1.4 Computer Implementations

A computer implementation can (and often does) obscure the sharp divisions im-
posed by pure philosophical differences between analogical and propositional
models. A propositional representation need not be an unordered set of clauses,
but may have a coherent structure; the coherent versus dispersed distinction is
thus blurred. A geometry theorem prover or a block-stacking program may mani-
pulate diagrams or simulate physical phenomena such as gravitational stability and
wobble in the manipulator [Gelernter 1963; Fahlman 1974; Funt 1977]. “Non-
standard inference” is an important tool that extends classical inference tech-
niques. Although techniques such as production systems and relaxation labeling
algorithms (Chapter 11) bear little superficial resemblance to predicate logic, both
may be naturally used to manipulate propositional models.

Propositions may be implemented as procedures. If a proposition “‘evalu-
ates’’ to true or false, it is perhaps most naturally considered a function from a
world (or world model) to a truth value. This is not to say that all such functions
exist or are evaluated when the proposition is ‘“‘brought to mind’’; perhaps
““understanding a proposition’’ is like compiling a function and ‘verifying a propo-
sition’” is like evaluating it. The function may be implicit in an evaluation (infer-
ence) mechanism or more explicit, as in a ‘“‘procedural’’ semantics such as that of
the programming languages PLANNER and CONNIVER [Hewitt 1972; Sussman
and McDermott 1972; Winograd 1978]. A proposition may thus be encoded as an
(analogical!) procedural recipe for establishing the proposition. An example might

Ch. 70 Knowledge Representation and Use



be this representation of the fact “In California, Grass and Trees produce green re-
gions.”

(To-Establish (GreenRegion x)
Establish (AND (InCalifornia())
(OR (Establish (Grass x))
(Establish (Trees x)))))

This might mean: To infer that x is a green region, establish that you are in
California and then try to establish that x arose from grass. Should the grass infer-
ence fail, try to establish that x arose from trees. Since the full power of the pro-
gramming language is available to an Establish statement, it can perform general
computations to establish the inference.

The important point here: Rather than a set of clauses whose application
must be organized by an interpreter, propositions may be represented by an expli-
cit control sequence, including procedure calls to other programs. In the example,
(Grass x) and (Trees x) may be procedures which have their own complicated con-
trol structures.

To say that in a computer ‘‘everything is propositions’’ is a truism; any pro-
gram can be reduced to a Turing machine described by a finite set of “‘prop-
ositions’’ with a very simple rule of “‘inference.’” The issue is at what level the pro-
gram should be described. A program may be doing propositional resolution
theorem proving or analogical trajectory planning with three-dimensional models;
it is not helpful to blur this basic functional distinction by appealing to the lowest
implementational level.

10.2 SEMANTIC NETS

10.2.1 Semantic Net Basics

Semantic nets were first introduced under that name as a means of modeling hu-
man associative memory [Quillian 1968]. Since then they have received much at-
tention [Nilsson 1980; Woods 1975; Brachman 1976; Findler 1979]. We are con-
cerned with three aspects of semantic nets.

1. Semantic nets can be used as a data structure for conveniently accessing both
analogical and propositional representations. For the latter their construction
is straightforward and based solely on propositional syntax (Chapter 12).

2. Semantic nets can be used as an analogical structure that mirrors the relevant
relations between world entities.

3. Semantic nets can be used as a propositional representation with special rules
of inference. Both classical and extended inference can be supported, butitisa
challenging enterprise to design net structure that provides the properties of
formal logic [Schubert 1976; Hendrix 1979].
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A semantic network represents objects and relationships between objects as a
graph structure of nodes and (labeled) arcs. The arcs usually represent relations
between nodes and may be ‘‘followed’ to proceed from node to node. A directed
arc with label L between nodes X and Y can signify that the predicate L (X, Y) is
true. If, in addition, it has a value V, the arc can signify that some function or rela-
tion holds: L (X, Y) = V.

The indexing property of a network is one of its useful aspects. The network
can be constructed so that objects that are often associated in computations, or are
especially relevant or conceptually close to each other, may be represented by
nodes in the network that are near each other in the network (as measured by
number of arcs separating them). Figure 10.3 shows these ideas: (a) nodes can be
associated by searching outward along arcs and (b) nodes near a specified node are
readily available by following arcs. Semantic networks are especially attractive as
analogical representations of spatial states of affairs. If we restrict ourselves to
binary spatial relations (‘“‘above,’” and ‘‘west of,”’ for example), physical objects or
parts of objects may be represented by nodes, and their positions with respect to
each other by arcs.

Let us look at a semantic net and make some basic observations. Figure 10.4
is meant to be an analogical representation of an arrangement of chairs around a
table. The LEFT-OF and RIGHT-OF relations are directed arcs, the ADJACENT
relation is undirected; there can be several such undirected arcs between nodes.
Note here that the LEFT-OF and RIGHT-OF relations do not behave in their nor-
mal way. If they are transitive, as is normal, then every chair is both LEFT-OF and

(a)

Fig. 10.3 Semantic networks as

structures for associative search. (a)

Associating two nodes. (b) Retrieving
(b) nearby nodes.
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Left of a table.

RIGHT-OF every other chair. Flexible treatment of this sort of phenomenon is
sometimes difficult in propositional representations.

A simple but basic point: The net of Fig. 10.4 seems to say interesting things
about furniture in a scene. But notice that merely by rewriting labels the same net
could be “‘about’® modular arithmetic, a string of pearls, or any number of things.
There are two morals here. First, a sparsely connected representation (analogical
or propositional) may have several equally good interpretations. Second, a net
without any interpretation procedures essentially represents nothing [McDermott
1976].

Now consider three neighboring chairs described by the following relations.

LEFT-OF(Armchair, Highchair)
LEFT-OF (Highchair, Stool)
7. BETWEEN (Highchair, Armchair, Stool)

1. CHAIR (Armchair), CHAIR (Highchair), CHAIR (Stool)
2. WIDE(Armchair)

3. HIGH (Highchair)

4. LOW(Stool)

5.

6.

The relations include four properties (relations with “‘one argument”), a
two-argument and a three-argument relation. One way to encode this information
in a net is shown in Fig. 10.5a. Nodes represent individuals, and properties are
kept as node contents. The directed arcs represent only binary relations, and
““betweenness’’ is left implicit. Properties can equally well be represented as la-
beled arcs (Fig. 10.5b).

Relations are encoded as nodes in Fig. 10.6. Here the BETWEEN relation is
encoded asymmetrically: it is not possible to tell by arcs emanating from the stool
that it is in a “‘between’’ relationship.
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* chair * chair
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Wide High Low

Chair Chair Chair ~ ) ;
Fig. 10.5 (a) A simple semantic net.

{b) (b) An equivalent net,

The three-place relation is treated more symmetrically in Fig. 10.7. In gen-
eral, n-place relations may be ‘‘binarized”’ this way; create a node for the ““relation
instance” and new (relation) nodes for each distinct argument role in the n-ary re-
lation.

An important point: Arcs and nodes had a uniform semantics in Fig. 10.4.
This property was lost in the succeeding nets; nodes are either ‘“‘things’’ or rela-
tions, and arcs leading into relations are not the same as those leading out. For
such nets to be useful, the net interpreter (a program that manipulates the net)
must keep these things straight. It is possible but not easy to devise a rich and uni-
form network semantics [Brachman 1979].

Fig. 10.6 A net with more explicit information.

326 Ch. 10 Knowledge Representation and Use



Between
situation

Fig. 10.7 A net with yet more explicit information.

10.2.2 Semantic Nets for Inference

This section explores some further important issues in the semantics of semantic
nets. In Chapter 12 semantic nets are used as an indexing mechanism in predicate
calculus theorem proving. In some applications an inference system with provably
good formal properties may be too restrictive. Some formal properties (such as
maintaining consistency by not deducing contradictions) may be considered vital,
however. How can ‘‘good behavior’ be obtained from a representation that may
contain ‘““inconsistent’” information?

One example of an “‘inconsistent’’ representation is the net of Fig. 10.3, with
its LEFT-OF and RIGHT-OF problem. Another example is a net version of the
propositions ““All birds fly,”” ““Penguins are birds,”” ‘‘Penguins do not fly.”” The
generalization is useful ‘‘commonsense’” knowledge, but the rare exceptions may
be important, too. Network interpreters can cope with these sorts of problems by a
number of methods, such as only accessing a consistent subnetwork, making
deductions from the particular toward the general (this takes care of penguins),
and so forth. All these techniques depend on the structure imposed by the net.

Some more subtle aspects of net representations appear below.
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Nodes

The basic notation of Fig. 10.4 may tempt us to produce a net such as that
shown in Fig. 10.8. Consider the object node sky in Fig. 10.8. Does it stand for the
generic sky concept or for a particular sky at a particular time and location? Clearly
both meanings cannot be embodied in the same node because they are used in
such different ways in reasoning. The standard solution is to use nodes to
differentiate between a fype, or generic concept, and a token, or instance of it. Fig-
ure 10.9 shows this modification using the e (element of) relation to relate the in-
dividual to the generic concept. In this simple case, the node sky stands for the
type, and the empty node stands for a foker, or instance of the sky concept.

The distinction between type and token is related to the distinction between
intensional and extensional concepts. In analyzing an aerial image there is a
difference between

“All bridges span roads or rivers.” (10.1)
and
“All bridges (found so far) span roads or rivers.” (10.2)

If “bridges” in (10.1) means any bridge that might be found, ‘‘bridges’” is used in
an intensional sense. If “‘bridges’” means a particular set, it is used it in an exten-
sional sense. Normally relations between fype nodes are used in an intensional
sense and relationships between foken nodes have the extensional sense.

Virtual nodes are objects that are not explicitly represented as object nodes.
The need for them arises in expressing complex relations. For example, consider

““The bridge that is at the intersection of road 57
and river 3 is near building 30.” (10.3)

which may be represented as shown in Fig. 10.10. The node labeled x is the result
of intersecting a particular road with a particular river. It is not represented expli-
citly as an instance of any generic concept; it is a virtual node. Virtual nodes can be
eliminated by introducing very complex relations, but this would sacrifice an im-
portant property of networks, the ability to build up a very large number of com-

o (Dec ] (i)

Fig. 10.8 Type or token nodes?
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Above -

<>
» Fig. 10.9 Distinguishing between
types and tokens: (a) Tokenizing an
(b) instance. (b) Tokenizing an assertion.
plex relations from a small set of primitives. Virtual nodes enhance this ability by
referring to portions of complicated relations.

Nodes in the network can also be used as variables. These variables can match
other nodes which represent constants. In Fig. 10.11, x and y are variables and the
rest of the nodes are constants. If node xis matched to the *‘telephone’ node, then
xcan be regarded as a “‘telephone’” node.

e
Road Road 57

e
Bldg Bidg 30

Result

Near

Result

e @ e = element of

Fig. 10.10 Virtual nodes.

00000
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Fig. 10.11 Nodes as variables. (a)
Black telephone and pen on desk. (b)
Object denoted by variable x with

(b) variable calor .

Often, it is useful to have numerical values as node properties. This can ex-
tend the discrete representation of nodes and arcs to a continuous one. For exam-
ple, in addition to “‘color of x is red37”’ we may also associate the particular value
of red that we mean with node red37. A special kind of value is a default value. If a
value can be found for the node in the course of matching other nodes with values
or by examining image data, then that value is used for the node value. Otherwise,
the default is used.

Relations

Complex relations of many arguments are not uncommon in the world, but
for the bulk of practical work, relations of only a few arguments seem to suffice. Se-
mantic nets can clearly represent two-argument relations through their nodes and
arcs. More complex relations may be dealt with by various devices. The links to
multiple arguments may be ordered within a relation node, or new nodes may be
introduced to label the roles of multiple arguments (Fig. 10.7).

If inference mechanisms are to manipulate semantic nets, certain important
relations deserve special treatment. One such relation is the “°IS-A”’ relation. The
basic issue addressed by this relation is property inheritance [Moore 1979]. That is,
if Fred IS-A Camel and a Camel IS-A Mammal, then presumably Fred has the pro-
perties associated with mammals. It often seems necessary to differentiate between
various senses of ““IS-A.”” One basic sense of “X IS-A Y’ is ‘X is an element of
the set ¥ ’’; others are ‘X denotes Y,”” ““Xis a subset of ¥, and ““ Yis an abstrac-
tion of X.”’ Notice that each sense depends on differently ‘“‘typed’” arguments; in
the first three cases X is, respectively, an individual, a name, and a set. Deeper
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treatments of these issues are readily available [Brachman 1979; Hayes* 1977,
Nilsson 1980].

It is particularly helpful to have a denotion link to keep perceptual structures
separate from model structures. Then if mistakes are made by the vision automa-
ton, a correction mechanism can either sever the denotation link completely or
create a new denotation link between the correct model and image structures.

When dealing with many spatial relations, it is economical to recognize that
many relations are “‘inverses’ of each other. That is, LEFT-OF(x,y) is the “‘in-
verse”” of RIGHT-OF (x,);

LEFT—-O0OF(xy) <=> RIGHT—OF(y,x)
and also
ADJACENT (x,y) <=> ADJACENT(y,x)

Rather than double the number of these kinds of links, one can normalize
them. That is, only one half of the inverse pair is used, and the interpreter infers
the inverse relation when necessary.

Properties have a different semantics depending on the type of object that has
the property. An “‘abstract’” node can have a property that gives one aspect or
refinement of the represented concept. A property of a “‘concrete’’ node presum-
ably means an established and quantified property of the individual.

Partitions

Partitions are a powerful notion in networks. ‘“‘Partition’’ is not used in the
sense of a mathematical partition, but in the sense of a barrier. Since the network is
a graph, it contains no intrinsic method of delimiting subgraphs of nodes and arcs.
Such subgraphs are useful for two reasons:

1. Syntactic. It is useful to delimit that part of the network which represents the
results of specific inferences.

2. Semantic. 1t is useful to delimit that part of the network which represents
knowledge about specific objects. Partitions may then be used to impose a
hierarchy upon an otherwise ““flat’” structure of nodes.

The simple way of representing partitions in a net is to create an additional node to
represent the partition and introduce additional arcs from that node to every node
or arc in the partition. Partitions allow the nodes and relations in them to be mani-
pulated as a unit.

Notationally, it is cleaner to draw a labeled boundary enclosing the relevant
nodes (or arcs). An example is shown by Fig. 10.12 where we consider two objects
each made up of several parts with one object entirely left of the other. Rather than
use a separate LEFT-OF relation for each of the parts, a single relation can be used
between the two partitions. Any pair of parts (one from each object) should inherit
the LEFT-OF relation. Partitions may be used to implement quantification in se-
mantic net representations of predicate caleulus [Hendrix 1975, 1979]. They may
be used to implement frames (Section 10.3.1).
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Fig. 10.12 The use of partitions. (a) Construction of a partition. (b) Two objects described
by partitions.

Conversions

It is important to be able to transform from geometric (and logical) represen-
tations to propositional abstract representations and vice versa. For example, in
Fig. 10.13 the problem is to find the exact location of a telephone on a previously
located desk. In this case, propositional knowledge that telephones are usually on
desktops, together with the desk top location and knowledge about the size of tele-
phones, define a search area in the image.

Converting image data about a particular group of objects into relational form
involves the inverse problem. The problem is to perform a level of abstraction to
remove the specificity of the geometric knowledge and derive a relation that is ap-
propriate in a larger context. For example, the following program fragment creates
the relations ABOVE (A4, B), where 4 and Bare world objects.

Comment: assume a world coordinate system where Z is the positive vertical.

Find ZA ,;, for Zin 4 and ZB,, for Zin B.
If ZA in > ZBmax, then make ABOVE (4,B) true.

Many other definitions of ABOVE, one of which compares centers of gravity, are
possible. In most cases, the conversion from continuous geometric relations to
discrete propositional relations involves more or less arbitrary conventions. To ap-
preciate this further, consult Fig. 10.14 and try to determine in which of the cases
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Fig. 10.13 Search area defined by relational bindings.

block A is LEFT-OF block B. Figure 10.14d shows a case where different answers
are obtained depending on whether a two-dimensional or three-dimensional in-
terpretation is used. Also, when relations are used to encode what is usually true of
the world, it is often easy to construct a counterexample. Winston [Winston 1975]

used
SUPPORTS (B,A) ABOVE (A,B)

—
I

s W=

{a) (d)

- 1
— —

(b) (c)

Fig. 10.14 Examples to demaonstrate difficulties in encoding spatial relation
LEFT-OF (see text).
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which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, ‘‘con-
tinuous’’ information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES

334

Examples of semantic nets abound throughout Part IV. Two more examples illus-
trate the power of the notions. The first example is described very generally, the
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and con-
troversial idea, and the reader should consult the References for a full treatment.
Implementationally, a frame may be realized by a partition; a frame is a “‘chunk”
of related structure.

Associating related “‘chunks” of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, parti-
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977,
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow and
Winograd 1977, 1979; Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972].

Frames systems incorporate a theory of associative recall in which one selects
frames from memory that are relevant to the situation in which one finds oneself.
These frames include several kinds of information. Most important, frames have
slots which contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slots
for a particular type of frame are immutable and specified in advance. Further,
frames represent specific prototype situations; many slots have default values; this
is where expectations and prior knowledge come from. These default values may
be disconfirmed by perceptual evidence; if they are, the frame can contain infor-
mation about what actions to take to fill the slot. Some slots are to be filled in by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirmed

Fig. 10.15 A counterexample to

0007 SUPPORTS (B, A) => ABOVE(4, B).
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and actions to pursue in various contingencies. One common action is to ‘“‘bring in
another frame.”’

The theory is that based on a partial match of a frame’s defining slots, a frame
can be ‘‘brought to mind.”” The retrieval is much like jumping to a conclusion
based on partial evidence. Once the frame is proposed, its slots must be matched
up with reality; thus we have the initial major hypothesis that the frame represents,
which itself consists of a number of minor subhypotheses to be verified. A frame
may have other frames in its slots, and so frames may be linked into ‘‘frame sys-
tems’’ that are themselves associatively related. (Consider, for example, the
linked perceptual frames for being just outside a theater and for being just inside.)
Transformations between frames correspond to the effects of relevant actions.
Thus the hypotheses can suggest one another. ““Thinking always begins with sug-
gestive but imperfect plans and images; these are progressively replaced by
better—but usually still imperfect—ideas’” [Minsky 1975].

Frame theory is controversial and has its share of technical problems [Hinton
1977]. The most important of these are the following.

1. Multiple instances of concepts seem to call for copying frames (since the in-
stances may have different slotfillers). Hence, one loses the economy of a
preexisting structure.

2. Often, objects have variable numbers of components (wheels on a truck, run-
ways in an airport). The natural representation seems to be a rule for con-
structing examples, not some specific example.

3. Default values seem inadequate to express legal ranges of slot-filling values or
dependencies between their properties.

4. Property inheritance is an important capability that semantic nets can imple-
ment with “‘is a”” or “‘element-of*’ hierarchies. However, such hierarchies
raise the question of which frame to copy when a particular individual is being
perceived. Should one copy the generic Mammal frame or the more specific
Camel frame, for instance. Surely, it is redundant for the Camel frame to du-
plicate all the slots in the Mammal frame. Yet our perceptual task may call for
a particular slot to be filled, and it is painful not to be able to tell where any par-
ticular slot resides.

Nevertheless, where these disadvantages can be circumvented or are ir-
relevant, frames are seeing increasing use. They are a natural organizing tool for
complex data.

10.3.2 Location Networks

This section describes a system for associating geometric analogical data with a se-
mantic net structure which is sometimes like a frame with special “‘evaluation”
rules. The system is a geometrical inference mechanism that computes (or infers)
two-dimensional search areas in an image [Russell 1979]. Such networks have
found use in both aerial image applications [Brooks and Binford 1980; Nevatia and
Price 1978] and medical image applications [Ballard et al. 1979].
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The Network

A location network is a network representation of geometric point sets related
by set-theoretic and geometric operations such as set intersection and union, dis-
tance calculation, and so forth. The operations correspond to restrictions on the lo-
cation of objects in the world. These restrictions, or rules, are dictated by cultural
or physical facts.

Each internal node of the location network contains a geometric operation, a
list of arguments for the operation, and a result of the operation. For instance, a
node might represent the set-theoretic union of two argument point sets, and the
result would be a point set. Inference is performed by evaluating the net; evaluating
all its operations to derive a point set for the top (root) operation.

The network thus has a hierarchy of ancestors and descendents imposed on it
through the argument links. At the bottom of this hierarchy are data nodes which
contain no operation or arguments, only geometric data. Each node is in one of
three states: A node is up-to-date if the data attached to it are currently considered
to be accurate. It is out-of-date if the data in it are known to be incomplete, inaccu-
rate, or missing. It is hypothesized if its contents have been created by net evalua-
tion but not verified in the image.

In a common application, the expected relative locations of features in a
scene are encoded in a network, which thus models the expected structure of the
image. The primitive set of geometric relations between objects is made up of four
different types of operations.

1. Directional operations (left, reflect, north, up, down, and so on) specify a point
set with the obvious locations and orientations to another.

2. Area operations (close-to, in-quadrilateral, in-circle and so on) create a point
set with a non-directional relation to another.

3. Set operations (union, difference and intersection) perform the obvious set
operations.

4. Predicates on areas allow point sets to be filtered out of consideration by
measuring some characteristic of the data. For example, a predicate testing
width, length, or area against some value restricts the size of sets to be those
within a permissible range.

The location of the aeration tank in a sewage treatment plant provides a
specific example. The aeration tank is often a rectangular tank surrounded on ei-
ther end by circular sludge and sedimentation tanks (Fig. 10.16). As a general rule,
sewage flows from the sedimentation tanks to aeration tanks and finally through to
the sludge tanks. This design permits the use of the following types of restrictions
on the location of the aeration tanks.

Rule I: ““Aeration tanks are located somewhere close to both the sludge tanks
and the sedimentation tanks.”
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Fig. 10.16 Aerial image of a sewage plant.
The various tanks cannot occupy the same space, so:

Rule 2: **Aeration tanks must not be too close to either the sludge or sedimen-
tation tanks.”

Rule 1 is translated to the following network relations.
CLOSE-TO(Union (LocSludgeTanks, LocSedTanks), Distance X)

Rule 2 is translated to
NOT-IN(Union (LocSludgeTanks,LocSedTanks), Distance Y)

The network describing the probable location of the aeration tanks embodies
both of these rules. Rule 1 determines an area that is close to both groupings of
tanks and Rule 2 eliminates a portion of that area. Thinking of the image as a point
set, a set difference operation can remove the area given by Rule 2 from that
specified by Rule 1. Figure 10.17 shows the final network that incorporates both
rules.

Of course, there could be places where the aeration tanks might be located
very far away or perhaps violate some other rule. It is important to note that, like
the frames of Section 10.3.1, location networks give prototypical, likely locations
for an object. They can work very well for stereotyped scenes, and might fail to per-
form in novel situations.

" The Evaluation Mechanism

The network is interpreted {evaluated) by a program that works top-down in
a recursive fashion, storing the partial results of each rule at the topmost node as-
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Fig. 10.17 Constraint network for aeration tank.

sociated with that rule (with a few exceptions). Evaluation starts with the root
node. In most networks, this node is an operation node. An operation node is
evaluated by first evaluating all its arguments, and then applying its operation to
those results. Its own result is then available to the node of the network that called
for its evaluation.

Data nodes may already contain results which might come from a map or
from the previous application of vision operators. At some point in the course of
the evaluation, the evaluator may reach a node that has already been evaluated and
is marked up-to-date or hypothesized (such a node contains the results of evalua-
tion below that point). The results of this node are returned and used exactly as if it
were a data node. Qut-of-date nodes cause the evaluation mechanism to execute a
low-level procedure to establish the location of the feature. If the procedure is un-
able to establish the status of the object firmly within its resource limits, the status
will remain out-of-date. At any time, out-of-date nodes may be processed without
having to recompute any up-to-date nodes. A node marked hypothesized has a
value, usually supplied by an inference process, and not verified by low-level im-
age analysis. Hypothesized data may be used in inferences: the results of all infer-
ences based on hypothesized data are marked hypothesized as well.
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If a data node ever has its value changed (say, by an independent process that
adds new information), all its ancestors are marked out-of-date. Thus the root
node will indicate an out-of-date status, but only those nodes on the out-of-date
path must be reevaluated to bring the network up to date. Figure 10.18 shows the
operation of the aeration tank network of Fig. 10.17 on the input of Fig. 10.16. In
this case the initial feature data were a single sludge tank and a single sedimenta-
tion tank. Suppose additional work is done to find the location of the remaining
sludge and sediment tanks in the image. This causes a reevaluation of the network,
and the new result more accurately reflects the actual location of the aeration
tanks.

Properties of Location Networks

The location network provides a very general example of use of semantic nets
in computer vision.

1. It serves as a data base of point sets and geometric information. The truth
status of items in the network is explicitly maintained and depends on incom-
ing information and operations performed on the net.

2. Itis an expansion of a geometric expression into a tree, which makes the order
of evaluation explicit and in which the partial results are kept for each
geometric calculation. Thus it provides efficient updating when some but not
all the partial results change in a reevaluation.

3. It provides a way to make geometrical inferences without losing track of the
hypothetical nature of assumptions. The tree structure records dependencies
among hypotheses and geometrical results, and so upon invalidation of a
geometric hypothesis the consequences (here, what other nodes have their
values affected) are explicit. The record of dependencies solves a major prob-
lem in automated inference systems.

4. It reflects implicit universal quantification. The network claims to represent
true relations whose explicit arguments must be filled in as the network is ““in-
stantiated’” with real data.

5. Ithasa ““flat’” semantics. There are no element-of hierarchies or partitions.

The concept of “‘individual™ is flexible. A point set can contain multiple
disconnected components corresponding to different world objects. In set
operations, such an assemblage acts like an explicit set union of the com-
ponents. An “‘individual’ in the network may thus correspond to multiple in-
dividual point (sub)sets in the world.

7. The network allows use of partial knowledge. A set-theoretic semantics of ex-
istence and location allows modeling of an unknown location by the set-
theoretic universe (the possible location is totally unconstrained). If some-
thing is known not to exist in a particular image, its “‘location’” is the null set.
Generally, a location is a point set.

8. The set-theoretic semantics allows useful punning on set union and the OR
operation, and set intersection and the AND operation. If a dock is on the
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shoreline AND near a town, the search for docks need only be carried out in
the intersection of the locations.

10.4 CONTROL ISSUES IN COMPLEX VISION SYSTEMS

340

Computer vision involves the control of large, complex information-processing
tasks. Intelligent biological systems solve this control problem. They seem to have
complicated control strategies, allowing dynamic allocation of computational
resources, parallelism, interrupt-driven shifts of attention, and incremental
behavior modification. This section explores different strategies for controlling the
complex information processing involved in vision. Appendix 2 contains specific

() (b)

Fig. 10.18 (a) Initial data to be refined
by location network inference. (b)
Results of evaluating network of (a). (¢)
Results of evaluating network after
additional information is added,
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techniques and programming language constructs that have proven to be useful
tools in implementing control strategies for artificial intelligence and computer vi-
sion.

10.4.1 Parallel and Serial Computation

In parallel computation, several computations are done at the same time. For exam-
ple, different parts of an image may be processed simultaneously. One issue in
parallel processing is synchronization: Is the computation such that the different
parts can be done at different rates, or must they be kept in step with each other?
Usually, the answer is that synchronization is important. Another issue in parallel
processing is its implementation. Animal vision systems have the architecture to
do parallel processing, whereas most computer systems are serial (although
developing computer technologies may allow the practical realization of some
parallel processing). On a serial computer parallelism must be simulated —this is
not always straightforward.

In serial computation, operations are performed sequentially in time whether
or not they depend on one another. The implied sequential control mechanism is
more closely matched to a (traditional) serial computer than is a parallel mechan-
ism. Sequential algorithms must be stingy with their resources. This fact has had
many effects in computer vision. It has led to mechanisms for efficient data access,
such as multiple-resolution representations. It has also led some to emphasize cog-
nitive alternatives for low-level visual processing, in the hope that the massive
parallel computations performed in biological vision systems could be circum-
vented. However, this trend is reversing; cheaper computation and more pervasive
parallel hardware should increase the commitment of resources to low-level com-
putations. Parallel and serial control mechanisms have both appeared in algo-
rithms in earlier chapters. It seems clear that many low-level operations (correla-
tion, intrinsic image computations) can be implemented with parallel algorithms.
High-level operations, such as “‘planning” (Chapter 13) have inherently serial
components. In general, in the low levels of visual processing control is predom-
inately parallel, whereas at the more abstract levels some useful computations are
necessarily serial in nature.

10.4.2 Hierarchical and Heterarchical Control

Visual control strategies dictate the flow of information and activity through the
representational layers. What triggers processing: a low level input like a color
patch on the retina, or a high level expectation (say, expecting to see a red car) ?
Different emphasis on these extremes is a basic control issue. The two extremes
may be characterized as follows.

1. Image data driven. Here the control proceeds from the construction of the

generalized image to segmented structures and finally to descriptions. This is
also called bottom-up control.
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2. Internal model driven. Here high-level models in the knowledge base generate
expectations or predictions of geometric, segment, or generalized image struc-
ture in the input. Image understanding is the verification of these predictions.
This is also called top-down control.

Top-down and bottom-up control are distinguished not by what they do but
rather by the order in which they do it and how much of it they do. Both ap-
proaches can utilize all the basic representations—intrinsic images, features,
geometric structures, and propositional representations—but the processing
within these representations is done in different orders.

The division of control strategies into top-down and bottom-up is a rather
simplistic one. There is evidence that attentional mechanisms may be some of the
most complicated brain functions that human beings have [Geschwind 1980]. The
different representational subsystems in a complex vision system influence each
other in sophisticated and intricate ways; whether control flows “‘up’ or “down”’ is
only a broad characterization of local influence in the (loosely ordered) layers of
the system.

The term ‘‘bottom-up’’ was originally applied to parsing algorithms for for-
mal languages that worked their way up the parse tree, assembling the input into
structures as they did so. “Top-down’’ parsers, on the other hand, notionally
started at the top of the parse tree and worked downward, effectively generating
expectations or predictions about the input based on the possibilities allowed by
the grammar; the verification of these predictions confirmed a particular parsing.

These two paradigms are still basic in artificial intelligence, and provide
powerful analogies and methods for reasoning about and performing many
information-processing tasks. The bottom-up paradigm is comparable in spirit
with ““forward chaining,”” which derives further consequences from established
results. The top-down paradigm is reflected in ““backward chaining,”’ which breaks
problems up into subproblems to be solved.

These control organizations can be used not only ‘‘tactically’’ to accomplish
specific tasks, but they can dictate the whole ““strategy’” of the vision campaign.
We shall discover that in their pure forms the extreme strategies (top-down and
bottom-up) appear inadequate to explain or implement vision. More flexible or-
ganizations which incorporate both top-down and bottom-up components seem
more suited to a broad spectrum of ambitious vision tasks.

Bottom-Up Control
The general outline for bottom-up vision processing is:
1. PREPROCESS. Convert raw data into more usable intrinsic forms, to be inter-
preted by next level. This processing is automatic and domain-independent.

2. SEGMENT. Find visually meaningful image objects perhaps corresponding to
world objects or their parts. This process is often but not always broken up into
(a) the extraction of meaningful visual primitives, such as lines or regions of
homogeneous composition (based on their local characteristics); and (b) the
agglomeration of local image features into larger segments.
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3. UNDERSTAND. Relate the image objects to the domain from which the image
arose. For instance, identify or classify the objects. As a step in this process, or
indeed as the final step in the computer vision program, the image objects and
the relations between them may be described.

In pure bottom-up organization each stage yields data for the next. The pro-
gression from raw data to interpreted scene may actually proceed in many steps;
the different representations at each step allow us to separate the process into the
main steps mentioned above.

Bottom-up control is practical if potentially useful ‘‘domain-independent’’
processing is cheap. It is also practical if the input data are accurate and yield reli-
able and unambiguous information for the higher-level visual processes. For ex-
ample, the binary images that result from careful illumination engineering and in-
put thresholding can often be processed quite reliably and quickly in a bottom-up
mode. If the data are less reliable, bottom-up styles may still work if they make
only tolerably few errors on each pass.

Top-Down Control

A bottom-up, hierarchical model of perception is at first glance appealing on
neurological and computational grounds, and has influenced much classical philo-
sophical thought and psychological theory. The ‘‘classical’’ explanation of percep-
tion has relatively recently been augmented by a more cognition-based one involv-
ing (for instance) interaction of knowledge and expectations with the perceptual
process in a more top-down manner [Neisser 1967; Bartlett 1932]. A similar evolu-
tion of the control of computer vision processing has accounted for the augmenta-
tion of the pure ‘‘pattern recognition’ paradigm with more ‘‘cognitive’ para-
digms. The evidence seems overwhelming that there are vision processes which do
not ‘‘run bottom-up,”’ and it is one of the major themes of this book that internal
models, goals, and cognitive processes must play major roles in computer vision
[Gregory 1970; Buckhout 1974; Gombrich 1972]. Of course, there must be a sub-
stantial component of biological vision systems which can perform in a noncogni-
tive mode.

There are probably no versions of top-down organization for computer vision
that are as pure as the bottom-up ones. The model to keep in mind in top-down
perception is that of goal-directed processing. A high-level goal spawns subgoals
which are attacked, again perhaps yielding sub-subgoals, and so on, until the goals
are simple enough to solve directly. A common top-down technique is
“hypothesize-and-verify’’; here an internal modeling process makes predictions
about the way objects will act and appear. Perception becomes the verifying of
predictions or hypotheses that flow from the model, and the updating of the model
based on such probes into the perceptual environment [Bolles 1977]. Of course,
our goal-driven processes may be interrupted and resources diverted to respond to
the interrupt (as when movement in the visual periphery causes us to look toward
the moving object). Normally, however, the hypothesis verification paradigm re-
quires relatively little information from the lower levels and in principle it can con-
trol the low-level computations.
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The desire to circumvent unnecessary low-level processing in computer vi-
sion is understandable. Our low-level vision system performs prodigious amounts
of information processing in several cascaded parallel layers. With serial computa-
tion technology, it is very expensive to duplicate the power of our low-level visual
system. Current technological developments are pointing toward making parallel,
low-level processing feasible and thus lowering this price. In the past, however, the
price has been so heavy that much research has been devoted to avoiding it, often
by using domain knowledge to drive a more or less top-down perception paradigm.
Thus there are two reasons to use a top-down control mechanism. First, it seems to
be something that human beings do and to be of interest in its own right. Second, it
seems to offer a chance to accomplish visual tasks without impractical expenditure
of resources.

Mixed Top-Down and Bottom-Up Control

In actual computer vision practice, a judicious mixture of data-driven analysis
and model-driven prediction often seems to perform better than either style in iso-
lation. This meld of control styles can sometimes be implemented in a complex
hierarchy with a simple pass-oriented control structure. An example of mixed or-
ganization is provided by a tumor-detection program which locates small nodular
tumors in chest radiographs [Ballard 1976]. The data-driven component is needed
because it is not known precisely where nodular tumors may be expected in the in-
put radiograph; there is no effective model-driven location-hypothesizing scheme.
On the other hand, a distinctly top-down flavor arises from the exploitation of what
little is known about lung tumor location (they are found in lungs) and tumor size.
The variable-resolution method using pyramids, in which data are examined in in-
creasingly fine detail, also seems top-down. In the example, work done at 1/16
resolution in a consolidated array guides further processing at 1/4 resolution. Only
when small windows of the input array are isolated for attention are they con-
sidered at full resolution.

The process proceeds in three passes which move from less to greater detail
(Fig. 10.19), zooming in on interesting areas of image, and ultimately finding ob-
jects of interest (nodules). Two later passes (not shown) ‘‘understand’’ the no-
dules by classifying them as “‘ghosts,”’ tumors or nontumors. Within pass II, there
is a distinct data-driven (bottom-up) organization, but passes I and IIl have a
model-directed (top-down) philosophy.

This example shows that a relatively simple, pass-oriented control structure
may implement a mixture of top-down and bottom-up components which focus at-
tention efficiently and make the computation practical. It also shows a few places
where the ordering of steps is not inherently sequential, but could logically proceed
in parallel. Two examples are the overlapping of high-pass filtering of pass II with
pass I, and parallel exploration of candidate nodule sites in pass IIL

Heterarchical Control

The word ‘‘heterarchy’” seems to be due to McCulloch, who used it to
describe the nonhierarchical (i.e., not partially ordered in rank) nature of neural
responses implied by their connectivity in the brain. It was used in the early 1970s
to characterize a particular style of nonhierarchical, non-pass-structured control
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Fig. 10.19 A hierarchical tumor-detection algorithm. Technical details of the
methods are found elsewhere in this volume. The processing proceeds in passes
from top to bottom, and within each pass from left to right. The processing exhi-
bits both top-down and bottom-up characteristics.

organization. Rather than a hierarchical structure (such as the military), one
should imagine a community of cooperating and competing experts. They may be
organized in their effort by a single executive, by a universal set of rules governing
their behavior, or by an a priori system of ranking. If one can think of a task as con-
sisting of many smaller subtasks, each requiring some expertise, and not neces-
sarily performed globally in a fixed order, then the task could be suitable for
heterarchical-like control structure.

The idea is to use, at any given time, the expert who can help most toward
final task solution. The expert may be the most efficient, or reliable, or may give
the most information; it is selected because according to some criterion its subtask
is the best thing to do at that time. The criteria for selection are wide and varied,
and several ideas have been tried. the experts may compute their own relevance,
and the decision made on the basis of those individual local evaluations (as in
PANDEMONIUM [Selfridge 1959]). They may be assigned a priori immutable
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rank, so that the highest-ranking expert that is applicable is always run (as in
[Shirai 1975; Ambler et al. 1975]). A combination of empirically predetermined
and dynamically situation-driven information can be combined to decide which ex-
pert applies.

The actual control structure of heterarchical programming can be quite sim-
ple; it can be a single iterative loop in which the best action to take is chosen, ap-
plied, and interpreted (Fig. 10.20).

10.4.3 Belief Maintenance and Goal Achievement

Belief maintenance and goal achievement are high-level processes that imply
differing control styles. The former is concerned with maintaining a current state,
the latter with a set of future states. Belief maintenance is an ongoing activity
which can ensure that perceptions fit together in a coherent way. Goal achieve-
ment is the integration of vision into goal-directed activities such as searching for
objects and navigation. There may be ‘“‘unconscious’” use of goal-seeking tech-
niques (e.g., eye-movement control).

Belief Maintenance

An organism is presented with a rich visual input to interpret. Typically, it all
makes sense: chairs and tables are supported by floors, objects have expected
shapes and colors, objects appear to flow past as the organism moves, nearer ob-
jects obscure farther ones, and so on. However, every now and then something

Choose the best action

( based on what is known

so far

Perform it

Inperpret its results
to increase knowledge

T Bons >TD
GrorD

Fig. 10.20 A main executive control
loop for heterarchical vision.
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enters the visual field that does not meet expectations. An unfamiliar object in a
familiar environment or a sudden movement in the visual periphery can be
““surprises’’ that do not fit in with our existing beliefs and thus have to be reckoned
with.

It is sometimes impossible to ignore movements in our visual periphery, but
if we are preoccupied it is easily possible to stay unconscious of small changes in
our environment. How is it possible to notice some things and not others? The be-
lief maintenance mechanism seems to be resource-limited. A certain amount of
“‘computing resource’’ is allocated for the job. With this resource, only a limited
amount of checking can be done. Checks to be made are ranked (somehow—
responses to events in the periphery are like reflexes, or high-priority hard-wired
interrupts) and those that cannot be done within the resource limit are omitted.
Changes in our beliefs are often initiated in a bottom-up way, through unexpected
inputs.

A second characteristic of belief maintenance is the almost total absence of
sequential, simulation-based or ‘‘symbolic’’ planning or problem-solving activity.
Our beliefs are *“in the present’’; manipulation of hypothetical worlds is not belief
maintenance. ‘““Truth maintenance’’ schemes have been discussed in various con-
texts [Doyle 1979; Stallman and Sussman 19771,

We conjecture that constraint-satisfaction (relaxation) mechanisms
(Chapters 3, 7, and 12) are computationally suited to maintaining belief structures.
They can operate in parallel, they seek to minimize inconsistency, they can tolerate
“noise’’ in either input or axioms. Relaxation techniques are usually applied to
low-level visual input where locally noisy parameters are combined into globally
consistent intrinsic images. Chapter 12 is concerned with inference, in which con-
straint relaxation is applied to higher-level entities.

Characteristics of Goal Achievement

Goal achievement involves two related activities: planning and acting. Plan-
ning is a simulation of the world designed to generate a plan. A plan is a sequence
of actions that, if carried out, should achieve a goal. Actions are the primitives that
can modify the world. The motivation for planning is survival. By being able to
simulate the effects of various actions, a human being is able to avoid dangerous si-
tuations. In an analogous fashion, planning can help machines with vision. For ex-
ample, a Mars rover can plan its route so as to avoid steep inclines where it might
topple over. The incline measurement is made by processing visual input. Since
planning involves a sequence of actions, each of which if carried out could poten-
tially change the world, and since planning does not involve actually making those
changes, the difficult task of the planner is to keep track of all the different world
states that could result from different action sequences.

Vision can clearly serve as an important information-gathering step in plan-
ning actions. Can planning techniques be of use directly to the vision process?
Clearly so in “‘skilled vision,’” such as photointerpretation. Also, planning is a use-
ful computational mechanism that need not be accompanied by conscious, cogni-
tive behavior.
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These inductive conclusions leading to the formation of our sense perceptions
certainly do lack the purifying and scrutinizing work of conscious thinking.
Nevertheless, in my opinion, by their particular nature they may be classed as
conclusions, inductive conclusions unconsciously formed. [Helmholtz 1925]

The character of computations in goal achievement is related to the inference
mechanisms studied in Chapter 11, only planning is distinguished by being
dynamic through time. Inference (Chapter 12} is concerned with the knowledge
base and deducing relations that logically follow from it. The primitives are prop-
ositions. In planning (Chapter 13) the primitives are actions, which are inherently
more complex than propositions. Also, planning need not be a purely deductive
mechanism; instead it can be integrated with visual ‘‘acting’”’, or the interpretation
of visual input. Often, a long deductive sequence may be obviated by using direct
visual inspection. This raises a crucial point: Given the existence of plans, how
does one choose between them? The solution is to have a method of scoring plans
based on some measure of their effectiveness.

EXERCISES

10.1 (a) Diagram some networks for a simple dial telephone, at various levels of detail
and with various complexities of relations.
(b) Now include in your network dial and pushbutton types.
(¢c) Embed the telephone frame into an office frame, describing where the tele-
phone should be found.
10.2 Is a LISP vision program an analogical or propositional representation of
knowledge?
10.3 Write a semantic net for the concept ““leg,”” and use it to model human beings,
tables, and spiders. Represent the fact ““all tables have four legs.”” Can your “‘leg’”
model be shared between tables and spiders? Shared within spiders?

El
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11.1 ASPECTS OF MATCHING
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11.1.1 Interpretation: Construction, Matching, and Labeling

Figure 10.1 shows a vision system organization in which there are several
representations for visual entities. A complex vision system will at any time have
several coexisting representations for visual inputs and other knowledge. Percep-
tion is the process of integrating the visual input with the preexisting representa-
tions, for whatever purpose. Recognition, belief maintenance, goalseeking, or
building complex descriptions—all involve forming or finding relations between
internal representations. These correspondences match (“‘model,” “‘re-
represent,’” “‘abstract,” ‘“label’’) entities at one level with those at another level.

Ultimately, matching ‘‘establishes an interpretation’ of input data, where an
interpretation is the correspondence between models represented in a computer
and the external world of phenomena and objects. To do this, matching associates
different representations, hence establishing a connection between their interpre-
tations in the world. Figure 11.1 illustrates this point. Matching associates TOK-
NODE, a token for a linear geometric structure derived from image segmentation
efforts with a model token NODEI101 for a particular road. The token TOKNODE
has the interpretation of an image entity; NODE101 has the interpretation of a par-
ticular road.

One way to relate representations is to construct one from the other. An ex-
ample is the construction of an intrinsic image from raw visual input. Bottom-up
construction in a complex visual system is for reliably useful, domain-
independent, goal-independent processing steps. Such steps rely only on
““compiled-in’’ (‘*‘hard-wired,” ‘““‘innate’’) knowledge supplied by the designer of
the system. Matching becomes more important as the needed processing becomes
more diverse and idiosyncratic to an individual’s experience, goals, and
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knowledge. Thus as processing moves from ‘‘early” to “‘late,”” control shifts from
bottom-up toward top-down, and existing knowledge begins to dominate percep-
tion.

This chapter deals with some aspects of matching, in which two already exist-
ing representations are put into correspondence. When the two representations are
similar (both are images or relational structures, say), ‘‘matching’’ can be used in
its familiar sense. When the representations are different (one image and one
geometric structure, say), we use ‘‘matching’ in an extended sense; perhaps
““fitting”’ would be better. This second sort of matching usually has a top-down or
expectation-driven flavor; a representation is being related to a preexisting one.

As a final extension to the meaning of matching, matching might include the
process of checking a structure with a set of rules describing structural legality,
consistency, or likelihood. In this sense a scene can be matched against rules to see
if it is nonsense or to assign an interpretation. One such interpretation process
(called labeling) assigns consistent or optimally likely interpretations (labels) at
one level to entities of another level. Labeling is like matching a given structure
with a possibly infinite set of acceptable structures to find the best fit. However, we
(fairly arbitrarily) treat labeling in Chapter 12 as extended inference rather than
here as extended maiching.

11.1.2 Matching Iconic, Geometric, and Relational Structures

Chapter 3 presented various correlation techniques for matching iconic (image-
like) structures with each other. The bulk of this chapter, starting in Section 11.2,
deals with matching relational (semantic net) structures. Another important sort of
matching between two dissimilar representations fits data to parameterized models
(usually geometric). This kind of matching is an important part of computer vi-
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sion. A typical example is shown in Fig. 11.2. A preexisting representation (here a
straight line) is to be used to interpret a set of input data. The line that best “‘ex
plains’’ the data is (by definition) the line of “‘best fit.”” Notice that the decision to
use a line (rather than a cubic, or a piecewise linear template) is made at a higher
level. Given the model, the fitting or matching means determining the parameters
of the model that tailor it into a useful abstraction of the data.

Sometimes there is no parameterized mathematical model to fit, but rather a
given geometric structure, such as a piecewise linear curve representing a shore-
line in a map which is to be matched to a piece of shoreline in an image, or to
another piecewise linear structure derived from such a shoreline. These geometric
matching problems are not traditional mathematical applications, but they are
similar in that the best match is defined as the one minimizing a measure of
disagreement.

Often, the computational solutions to such geometric matching problems ex-
hibit considerable ingenuity. For example, the shore-matching example above
may proceed by finding that position for the segment of shore to be matched that
minimizes some function (perhaps the square) of a distance metric (perhaps Eu-
clidean) between input points on the iconic image shoreline and the nearest point
on the reference geometric map shoreline. To compute the smallest distance
between an arbitrary point and a piecewise linear point set is not a trivial task, and
this calculation may have to be performed often to find the best match. The com-
putation may be reduced to a simple table lookup by precomputing the metric in a
“‘chamfer array,” that contains the metric of disagreement for any point around
the geometric reference shoreline [Barrow et al. 1978]. The array may be com-
puted efficiently by symmetric axis transform techniques (Chapter 8) that “‘grow”’
the linear structure outward in contours of equal disagreement (dlstance) until a
value has been computed for each point of the chamfer array.

Parameter optimization techniques can relate geometrical structures to lower-
level representations and to each other through the use of a merit function measur-
ing how well the relations match. The models are described by a vector of parame-
ters a = (ay,...,a,). The merit function M must rate each set of those parameters
in terms of a real number. For example, M could be a function of both q, the
parameters, and f (x), the image. The problem is to find a such that

M (a, f(x))

Reference [nput

Fig. 11.2 Matching or fitting a straight
line model to data.
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is maximized. Note that if a were some form of template function rather than a
vector of parameters, the problem statement would encompass the iconic correla-
tion techniques just covered. There is a vast literature on optimization techniques
and we cannot do more than provide a cursory discussion of a few cases with exam-
ples. :
Formally, the different techniques have to do with the form of the merit
function M. A fundamental result from calculus is that if M is sufficiently well
behaved (i.e., has continuous derivatives), then a condition for a local maximum
(or minimum) is that

..
Maf " da

J

0 iz g8 e (11.1)

This condition can be exploited in many different ways.

« Sometimes Eqs. (11.1) are sufficiently simple so that the a can be determined
analytically, as in the least squares fitting, described in Appendix 1.

« An approximate solution a° can be iteratively adjusted by moving in the gra-
dient direction or direction of maximum improvement:

af =af "'+ M, (11.2)

where c is a constant. This is the most elementary of several kinds of gradient
(hill-climbing) technigues. Here the gradient is defined with respect to M and
does not mean edge strength.

« If the partial derivatives are expensive to calculate, the coefficients can be per-
turbed (either randomly or in a structured way) and the perturbations kept if
they improve M:

(1)a":=a+ Aa
(2)a=a if M) > M(a)

A program to fit three-dimensional image data with shapes described by
spherical harmonics used these techniques [Schudy and Ballard 1978]. The details
of the spherical harmonics shape representation appear in Chapter 9. The fitting
proceeded by the third method above. A nominal expected shape was matched to
boundaries in image data. If a subsequent perturbation in one of its parameters
results in an improvement in fit it was kept; otherwise, a different perturbation was
made. Figure 11.3 shows this fitting process for a cross section of the shape.

Though parameter optimization is an important aspect of matching, we shall
not pursue it further here in view of the extensive literature on the subject.

11.2 GRAPH-THEORETIC ALGORITHMS
The remainder of this chapter deals with methods of matching relational struc-

tures. Chapter 10 showed how to represent a relational structure containing »-ary
relations as a graph with labeled arcs. Recall that the labels can have values from a
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(b)

Fig. 11.3 An example of matching as
parameter optimization, (a) Initial
parameter set (displayed at left as three-
dimensional surface (see Fig. 9.8) (b)
Fitting process: iteratively adjust @ based
onM (see text). (c) Final parameter set
yields this three-dimensional surface.
(See color inserts.)
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continuum, and that labeled arcs could be replaced by nodes to yvield a directed
graph with labeled nodes.

Depending on the attributes of the relational structure and of the correspon-
dence desired, the definition of a match may be more or less elegant. It is always
possible to translate powerful representations such as labeled graphs or n-ary rela-
tions into computational representations which are amenable to formal treatment
(such as undirected graphs). However, when graph algorithms are to be imple-
mented with computer data structures, the freedom and power of programming
languages often tempts the implementer away from pure graph theory. He can re-
place elegant (but occasionally restrictive and impractical) graph-theoretic con-
cepts and operations with arbitrarily complex data structures and algorithms.

One example is the “‘graph isomorphism® problem, a very pure version of
relational structure matching. In it, all graph nodes and arcs are unlabeled, and
graphs match if there is a 1:1 and onto correspondence between the arcs and nodes
of the two graphs. The lack of expressive power in these graphs and the require-
ment that a match be “‘perfect’ limits the usefulness of this pure model of match-
ing in the context of noisy input and imprecise reference structures. In practice,
graph nodes may have properties with continuous ranges of values, and an arbi-
trarily complex algorithm determines whether nodes or arcs match. The algorithm
may even access information outside the graphs themselves, as long as it returns
the answer “‘match” or “‘no match.”” Generalizing the graph-theoretic notions in
this way can obscure issues of their efficiency, power, and properties; one must
steer a course between the “‘elegant and unusable’” and the ‘‘general and uncon-
trollable.”” This section introduces some ‘‘pure’ graph-theoretic algorithms that
form the basis for techniques in Sections 11.3 and 11.4.

11.2.1 The Algorithms

The following are several definitions of matching between graphs [Harary 1969;
Berge 1976].

o Graph isomorphism. Given two graphs (V;, E|) and (V,, E,), find a 1:1 and
onto mapping (an isomorphism) f between V, and ¥V, such that for
vy, v € Vi, Vi, f(v;) = v, and for each edge of E; connecting any pair of
nodes v;and v'; € V4, there is an edge of E; connecting f(v;) and f (v;").

o Subgraph isomorphism. Find isomorphisms between a graph (Vl‘ E1) and sub-
graphs of another graph (¥, Ej). This is computationally harder than isomor-
phism because one does not know in advance which subsets of ¥, are involved
in isomorphisms.

o “Double” subgraph isomorphisms. Find all isomorphisms between subgraphs of
a graph (V| E)) and subgraphs of another graph (¥, £,). This sounds harder
than the subgraph isomorphism problem, but is equivalent.

¢ A match may not conform to strict rules of correspondence between arcs and
nodes (some nodes and arcs may be ‘‘unimportant’’). Such a matching cri-
terion may well be implemented as a “‘computational’” (impure) version of one
of the pure graph isomorphisms.
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Figure 11.4 shows examples of these kinds of matches.

One algorithm for finding graph isomorphism [Corneil and Gotlieb 1970] is
based on the idea of separately putting each graph into a canonical form, from
which isomorphism may easily be determined. For directed graphs (i.e., nonsym-
metric relations) a backtrack search algorithm [Berztiss 1973] works on both
graphs at once.

Two solutions to the subgraph isomorphism problem appear in [Ullman
1976]: The first is a simple enumerative search of the tree of possible matches
between nodes. The second is more interesting; in it a process of ‘‘parallel-
iterative’” refinement is applied at each stage of the search. This process is a way of
rejecting node pairs from the isomorphism and of propagating the effects of such
rejections; one rejected match can lead to more matches being rejected. When the
iteration converges (i.e., when no more matches can be rejected at the current
stage), another step in the tree search is performed (one more matching pair is hy-
pothesized). This mixing of parallel-iterative processes with tree search is useful in
a variety of applications (Section 11.4.4, Chapter 12).

“Double’’ subgraph isomorphism is easily reduced to subgraph isomorphism
via another well-known graph problem, the ““clique problem.”’ A cligue of size N is
a totally connected subgraph of size N (each node is connected to every other node
in the clique by an arc). Finding isomorphisms between subgraphs of a graph A
and subgraphs of a graph B is accomplished by forming an association graph G from
the graphs A and B and finding cliques in G (for details, see Section 11.3.3). Clique

(a) (b} (c)
(d) (&)

Fig. 11.4 Isomorphisms and matches. The graph (a) has an isomorphism with
(b), various subgraph isomorphisms with {(c), and several “‘double” subgraph iso-
morphisms with (d}. Several partial matches with (e) (and also (b), (c), and (d)),
depending on which missing or extra nodes are ignored.
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finding may be done with a subgraph isomorphism algorithm; hence the reduction.
Several other clique-finding algorithms exist [Ambler et al. 1975; Knodel 1968,
Bron and Kerbosch 1973; Osteen and Tou 1973].

11.2.2 Complexity

It is of some practical importance to be aware of the computational complexity of
the matching algorithms proposed here; they may take surprising amounts of com-
puter time. There are many accessible treatments of computational complexity of
graph-theoretic algorithms [Reingold et al. 1977; Aho, Hopcroft and Ullman
1974]. Theoretical results usually describe worst-case or average time complexity.
The state of knowledge in graph algorithms is still improving; some interesting
worst-case bounds have not been established.

A “‘hard” combinatorial problem is one that takes time (in a usual model of
computation based on a serial computer) proportional to an exponential function
of the length of the input. “‘Polynomial-time”” solutions are desirable because they
do not grow as fast with the size of the problem. The time to find all the cliques of a
graph is in the worst case inherently exponential in the size of the input graphs, be-
cause the output is an exponential number of graphs. Both the single subgraph iso-
morphism problem and the *‘clique problem’” (does there exist a clique of size k?)
are NP-complete; all known deterministic algorithms run (in the worst case) in time
exponential in the length of the description of the graphs involved (which must
specify the nodes and arcs). Not only this, but if either of these problems (or a host
of other NP complete problems) could be solved deterministically in time polyno-
mially related to the length of the input, it could be used to solve all the other NP
problems in polynomial time.

Graph isomorphism, both directed and undirected, is at this writing in a
netherworld (along with many other combinatorial problems). No polynomial-
time deterministic algorithms are known to exist, but the relation of these prob-
lems to each other is not as clear-cut as it is between the NP-complete problem. In
particular, finding a polynomial-time deterministic solution to one of them would
not necessarily indicate anything about how to solve the other problems determin-
istically in polynomial time. These problems are not mutually reducible. Certain
restrictions on the graphs, for instance that they are planar (can be arranged with
their nodes in a plane and with no arcs crossing), can make graph isomorphism an
“gasy”’ (polynomial-time) problem.

The average-case complexity is often of more practical interest than the worst
case. Typically, such a measure is impossible to determine analytically and must be
approximated through simulation. For instance, one algorithm to find isomor-
phisms of randomly generated graphs yields an average time that seems not ex-
ponential, but proportional to N° , with N the number of nodes in the graph [Ull-
man 1976]. Another algorithm seems to run in average time proportional to N?
[Corneil and Gotlieb 1970].

All the graph problems of this section are in NP. That is, a nordeterministic
algorithm can solve them in polynomial time. There are various ways of visualizing

L
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nondeterministic algorithms; one is that the algorithm makes certain significant
““good guesses’’ from a range of possibilities (such as correctly guessing which sub-
set of nodes from graph B are isomorphic with graph 4 and then only having to
worry about the arcs). Another way is to imagine parallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, each
with a different subset of nodes from the input graph. If any machine discovers a
totally connected subset, it has, of course, discovered a clique. Checking whether
N nodes are all pairwise connected is at most a polynomial-time problem, so all the
machines will terminate in polynomial time, either with success or not. Several in-
teresting processes can be implemented with parallel computations. Ullman’s algo-
rithm uses a refinement procedure which may run in parallel between stages of his
tree search, and which he explains how to implement in parallel hardware [Uliman
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involves quantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its “‘goodness.”
This measure of goodness is the matching metric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching they
must take into account a relational, structured form of data [Shapiro and Haralick
1979].

Most of the structural matching metrics may be explained with the physical
analogy of ““templates and springs’’ [Fischler and Elschlager 1973]. Imagine that
the reference data comprise a structure on a transparent rubber sheet. The match-
ing process moves this sheet over the input data structure, distorting the sheet so
as to get the best match. The final goodness of fit depends on the individual
matches between elements of the input and reference data, and on the amount of
work it takes to distort the sheet. The continuous deformation process is a pretty
abstraction which most matching algorithms do not implement. A computationally
more tractable form of the idea is to consider the model as a set of rigid ‘‘tem-
plates” connected by ‘‘springs’” (see Fig. 11.5). The templates are connected by
““springs’’ whose ‘‘tension’’ is also a function of the relations between elements. A
spring function can be arbitrarily complex and nonlinear; for example the ‘‘ten-
sion” in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in a
picture of a face the two eyes must be essentially in a horizontal line and must be
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of “energy’’ needed to stretch
the springs to force the input onto the reference data. Costs may be imposed for
missing or extra elements.

The template match functions and spring functions are general procedures,
thus the templates may be more general than pure iconic templates. Further,
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Fig. 11.5 A templates and springs model of a face.

matches may be defined not only between nodes and other nodes, but between
nodes and image data directly. Thus the template and springs formalism is work-
able for “‘cross-representational’” matching. The mechanism of minimizing the to-
tal cost of the match can take several forms; more detailed examples follow in Sec-
tion 11.4.

Equation 11.3 a general form of the template-and-springs metric. Tem-
plateCost measures dissimilarity between the input and the templates, and
SpringCost measures the dissimilarity between the matched input elements’ rela-
tions and the reference relations between the templates. MissingCost measures the
penalties for missing elements. F(-) is the mapping from templates of the reference
to elements of the input data. F partitions the reference templates into two classes,
those found {FoundinRefer} and those not found {MissinginRefer} in the input
data. If the input data are symbolic they may be similarly partitioned. The general
metricis

Cost = z TemplateCost(d, F(d))
d € {FoundinRefer}

SpringCost(F(d), F(e)) (11.3)

(d, e) € {FoundinRefer x Foundinlnput]

+ z MissingCost (c)
¢ € [MissinginRefer] | {MissinginInput}

Equation 11.3 may be written as one sum of generalized SpringCosts in which
the template properties are included (as 1-ary relations), as are ‘‘springs’’ involv-

ing missing elements.
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As with correlation metrics, there are normalization issues involved with
structural matching metrics. The number of elements matched may affect the ulti-
mate magnitude of the metric. For instance, if springs always have a finite cost,
then the more elements that are matched, the higher the total spring energy must
be; this should probably not be taken to imply that a match of many elements is
worse than a match of a few. Conversely, suppose that relations which agree are
given positive ‘“‘goodness’’ measures, and a match is chosen on the basis of the to-
tal “goodness.”” Then unless one is careful, the sheer number of possibly mediocre
relational matches induced by matching many elements may outweigh the ‘‘good-
ness’’ of an elegant match involving only a few elements. On the other hand, a
small, elegant match of a part of the input structure with one particular reference
object may leave much of the search structure unexplained. This good ‘‘sub-
match’” may be less helpful than a match that explains more of the input. To some
extent the general metric (Eq.11.3) copes with this by acknowledging the ‘‘miss-
ing”’ category of elements.

If the reference templates actually contain iconic representations of what the
input elements should look like in the image, a TemplateCost can be associated
with a template and a location in the image by

TemplateCost(Template, Location)

= (1 — normalized correlation metric between
template shape and input image at the location).

If the match is, for instance, to match reference descriptions of a chair with
an input data structure, a typical “*spring’” might be that the chair seat must be sup-
ported by its legs. Thus if Fis the association function mapping reference elements
such as LEG or TABLETOP to input elements,

SpringCost, (F(LEG),F (TABLETOP)

0  if F(LEG) appears to support F(TABLETOP),
1 if F(LEG) does not appear to support #(TABLETOP).

For quantified relations, one might have

SpringCost, = number of standard deviations from the
canonical mean value for this relation.

Another version of SpringCost, is the following [Barrow and Popplestone
1971].
T —_— SpringCosts of properties (unary) :.md binar.y relations (11.4)

total number of unary and binary springs
n Empirical Constant
Total number of reference elements matched

The first term measures the average badness of matches between properties
(unary relations) and relations between regions. The second term is inversely pro-
portional to the number of regions that are matched, effectively increasing the cost
of matches that explain less of the input.
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11.3.2 Backtrack Search

Backtrack search is a generic name for a type of potentially exhaustive search or-
ganized in stages; each processing stage attempts to extend a partial solution
derived in the previous stage. Should the attempt fail, the search ‘“backtracks” to
the most recent partial solution, from which a new extension is attempted. The
technique is basic, amounting to a depth-first search through a tree of partial solu-
tions (Fig. 11.6). Backtracking is a pervasive control structure in artificial intelli-

(a)

(b)

Choices for A

Choices for B
given A

Choices for €
given A and B

Fig. 11.6 The graph of (a) is to be matched in (b) with arcs all being unlabeled
but nodes having properties indicated by their shapes, (c) is the tree of solutions
built by a backtrack algorithm.
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gence, and through the years several general classes of techniques have evolved to
make the basic, brute-force backtrack search more efficient.

Example: Graph Isomorphisms
Given two graphs,

X = (Vx, E){)
Y = (Vy, Ey),

without loss of generality, let ¥y = ¥V, = {1, 2, ..., n}, and let X be the reference
graph, Y the input graph. The isomorphism is given by: If i € Vy, the correspond-
ing node under the isomorphism is F (i) € Vy.

In the algorithm, .S is the set of nodes accounted for in ¥ by a partial solution.
k gives the current level of the search in the tree of partial solutions, the number of
nodes in the current partial solution, and the node of X whose match in Y is
currently being sought. vis a node of Y currently being considered to extend the
current partial solution. As written, the algorithm finds all isomorphisms. It is
easily modified to quit after finding the first.

Algorithm 11.1 Backtrack Search for Directed Graph Isomorphism

Recursive Procedure DirectedGraphlsomorphisms(S,k);

begin
if S=Vy then ReportAslsomorphism(F)
else
Sorallv € (Vy—S)
do
if Match(k,v)
then
begin
Flk):=v,
DirectedGraphlsomorphisms (S € {}, k+1);
end,
end,

ReportAsIsomorphism could print or save the current value of F, the global
structure recording the current solution. Match(k,v) is a procedure that tests
whether v € ¥y can correspond to k € Vy under the isomorphism so far defined by
F. Let X, be the subgraph of X with vertices {1, 2,. . .,k}. The procedure ‘‘Match’’
must check for i < k, whether (i, k) is an edge of X, iff (F(i), v) is an edge of ¥
and whether (k, i) is an edge of X, iff (v, F(i)) isan edge of Y.

Improving Backtrack Search

Several techniques are useful in improving the efficiency of backtrack search
[Bittner and Reingold 1975]:
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1. Branch pruning. All techniques of this variety examine the current partial solu-
tion and prune away descendents that are not viable continuations of the solu-
tion. Should none exist, backtracking can take place immediately.

2. Branch merging. Do not search branches of the solution tree isomorphic with
those already searched.

3. Tree rearrangement and reordering. Given pruning capabilities, more nodes are
likely to be eliminated by pruning if there are fewer choices to make early in
the search (partial solution nodes of low degree should be high in the search
tree). Similarly, search first those extensions to the current solution that have
the fewest alternatives.

4. Branch and bound. If a cost may be assigned to solutions, standard techniques
such as heuristic search and the A* search algorithm [Nilsson 1980] (Section
4.4) may be employed to allow the search to proceed on a ‘‘best-first’ rather
than a ““depth-first’’ basis.

For extensions of these techniques, see [Haralick and Elliott 1979].

11.3.3 Association Graph Techniques

Generalized Structure Matching

A general relational structure ‘‘best match’’ is less restricted than graph iso-
morphism, because nodes or arcs may be missing from one or the other graph.
Also, it is more general than subgraph isomorphism because one structure may not
be exactly isomorphic to a substructure of the other. A more general match con-
sists of a set of nodes from one structure and a set of nodes from the other anda 1:1
mapping between them which preserves the compatibilities of properties and rela-
tions. In other words, corresponding nodes (under the node mapping) have
sufficiently similar properties, and corresponding sets under the mapping have
compatible relations.

The two relational structures may have a complex makeup that falls outside
the normal purview of graph theory. For instance, they may have parameterized
properties attached to their nodes and edges. The definition of whether a node
matches another node and whether two such node matches are mutually compati-
ble can be determined by arbitrary procedures, unlike the much simpler criteria
used in pure graph isomorphism or subgraph isomorphism, for example. Recall
that the various graph and subgraph isomorphisms rely heavily on a 1:1 match, at
least locally, between arcs and nodes of the structures to be matched. However, the
idea of a ““best match’ may make sense even in the absence of such perfect
correspondences.

The association graph defined in this section is an auxiliary data structure pro-
duced from two relational structures to be matched. The beauty of the association
graph is that it js a simple, pure graph-theoretic structure which is amenable to
pure graph-theoretic algorithms such as clique finding. This is useful for several
reasons.
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« It takes relational structure matching from the ad hoc to the classical domain.

« It broadens the base of people who are producing useful algorithms for struc-
ture matching. If the rather specialized relational structure matching enterprise
is reducible to a classical graph-theoretical problem, then everyone working on
the classical problem is also working indirectly on structure matching.

« Knowledge about the computational complexity of classical graph algorithms il-
luminates the difficulty of structure matching.

Clique Finding for Generalized Matching

Let a relational structure be a set of elements V, a set of properties (or more
simply unary predicates) P defined over the elements, and a set of binary relations
(or binary predicates) R defined over pairs of the elements. An example of a graph
representation of such a structure is given in Fig. 11.7.

Given two structures defined by (¥, P, R) and (V,, P, R), say that ‘‘simi-
lar’” and ““‘compatible’” actually mean “‘the same.”” Then we construct an associa-
tion graph G as follows [Ambler et al. 1975]. For each v; in ¥, and v, in V3, con-
struct a node of G labeled (v, v,) if v and v, have the same properties [p (v;) iff
p(v,) for each pin Pl. Thus the nodes of G denote assignments, or pairs of nodes,
one each from ¥V, and V,, which have similar properties. Now connect two nodes
(vy, v2) and (v}, v4) of Gif they represent compatible assignments according to R,
that is, if the pairs satisfy the same binary predicates [r (v, v/}) iff 7(vy, v%) for
each rin R].

A match between (¥, P, R) and (V,, P, R), the two relational structures, is
just a set of assignments that are all mutually compatible. The ‘‘best match’’ could
well be taken to be the largest set of assignments (node correspondences) that
were all mutually compatible under the relations. But this in the association graph
G is just the largest totally connected (completely mutually compatible) —set of
nodes. It is a clique. A clique to which no new nodes may be added without destroy-
ing the clique properties is a maximal clique. In this formulation of matching, larger
cliques are taken to indicate better matches, since they account for more nodes.

p1 p2

Fig. 11.7 A graph representation of a
relational structure. Elements (nodes) v,
and v3 have property pl, vy and v4 have
property p2, and the arcs between nodes
indicate that the relation rl holds
between v and v; and between v, and
v3, and r2 holds between vz and v4 and
between vgand v;.
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Thus the best matches are determined by the largest maximal cliques in the associ-
ation graph. Figure 11.8 shows an example: Certain subfeatures of the objects have
been selected as “‘primitive elements’ of the objects, and appear as nodes (ele-
ments) in the relational structures. To these nodes are attached properties, and
between them can exist relations. The choice of primitives, properties, and rela-
tions is up to the designer of the representation. Here the primitives of the
representation correspond to edges and corners of the shape.

The association graph is shown in 11.8e. Its nodes correspond to pairs of
nodes, one each from A and B, whose properties are similar. [Notice that there is
no node in the association graph for (6,6")]. The arcs of the association graph indi-
cate that the endpoints of the arc represent compatible associations. Maximal
cliques in the association graph (shown as sets of nodes with the same shape) indi-
cate sets of consistent associations. The largest maximal clique provides the node
pairings of the “‘best match.”’

In the example construction, the association graph is formed by associating
nodes with exactly the same properties (actually unary predicates), and by allowing
as compatible associations only those with exactly the same relations (actually
binary predicates). These conditions are easy to state, but they may not be exactly
what is needed. In particular, if the properties and relations may take on ranges of
values greater than the binary “exists” and ‘‘does not exist,”” then a measure of
similarity must be introduced to define when node properties are similar enough
for association, and when relations are similar enough for compatibility. Arbitrarily
complex functions can decide whether properties and relations are similar. As long
as the function answers “‘yes’’ or “‘no,’” the complexity of its computations is ir-
relevant to the matching algorithm.

The following recursive clique-finding algorithm builds up cliques a node at a
time [Ambler et al. 1975]. The search tree it generates has states that are ordered
pairs (set of nodes chosen for a clique, set of nodes available for inclusion in the
clique). The root of the tree is the state (@, all graph nodes), and at each branch a
choice is made whether to include or not to include an eligible node in the clique.
(If a node is eligible for inclusion in clique X, then each clique including X must ei-
ther include the node or exclude it).

Algorithm 11.2: Clique-Finding Algorithm
Comment Nodes is the set of nodes in the input graph.

Comment
Cligues (X,Y) takes as arguments a clique X, and Y, a set of nodes that includes
X. It returns all cliques that include X and are included in Y.
Cligues (@,Nodes) finds all cliques in the graph.
Cligues(X,Y) :=
if nonode in Y—Xis connected to all elements of X
then { X}
else
Cliques(X |J {y}, 1) U Cliques (X, Y—{y})
where y is connected to all elements of X.
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Fig. 11.8 Clique-finding example. Entities to be matched are given in (a) (refer-
ence) and (b) (input). The relational structures corresponding to them are shown
in (¢) and (d). The resulting association graph is shown in (e) with its largest
cliques indicated by node shapes.
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Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additional
test to stop the recursion in Cligues if the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size of
the largest possible clique. If no cliques of size k are found, decrement % and run
Cligues with the new k.

To find maximal cliques, at each stage of Cligues, compute the set

Y’ = |z € Nodes: z is connected to each node of Y}.

Since any maximal clique must include Y, searching a branch may be terminated
should Y’'not be contained in Y, since Ycan then contain no maximal cliques.

The association graph may be searched not for cliques, but for r-connected
components. An r-connected component is a set of nodes such that each node is
connected to at least r other nodes of the set. A clique of size n is an n —1-
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of clique. An r-connected
component of ¥ nodes in the association graph indicates a match of N pairs of
nodes from the input and reference structures, as does an N-clique. Each matching
pair has similar properties, and each pair is compatible with at least r other matches
in the component.

Whether or not the r-connected component definition of a match between
two structures is useful depends on the semantics of ‘‘compatibility.”” For in-
stance, if all relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an r-
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com-
puter vision literature.

(a) (b) (c)

Fig. 11.9 -connected components. (a) A 5-clique (which is 4-connected). (b) A
3-connected set of 5 nodes. (¢) A l1-connected set of 5 nodes.
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11.4.1 Decision Trees

Hierarchical decision-tree matching with ad hoc metrics is a popular way to identify
input data structures as instances of reference models and thus classify the input
instances [Nevatia 1974; Ambler et al. 1975; Winston 1975]. Decision trees are in-
dicated when it is predictable that certain features are more reliably extracted than
others and that certain relations are either easier to sense or more necessary to the
success of a match.

Winston and Nevatia both compare matches with a “‘weighted sums of
difference’’ metric that reflects cumulative differences between the parameters of
corresponding elements and relations in the reference and input data. In addition,
Nevatia does parameter fitting; his reference information includes geometrical in-
formation.

Matching Structural Descriptions

Winston is interested in matching such structures as appear in Fig. 11.10B.
The idea is to recognize instances of structural concepts such as ‘“‘arch™ or
“house,”” which are relational structures of primitive blocks (Fig.11.10A) [Wins-
ton 1975]. An important part of the program learns the concept in the first place—
only the matching aspect of the program is discussed here. His system has the
pleasant property of representational uniqueness: reference and input data struc-
tures that are identical up to the resolution of the descriptors used by the program
have identical representations. Matching is easy in this case. Reflections of block
structures can be recognized because the information available about relations
(such as LEFT-OF and IN-FRONT-OF) includes their OPPOSITE (i.e., RIGHT-
OF and BEHIND). The program thus can recognize various sorts of symmetry by
replacing all input data structure relations by their relevant opposite, then compar-
ing with the reference.

The next most complicated matching task after exact or symmetric matches
is to match structures in isolation. Here the method is sequentially to match the in-
put data against the whole reference data catalog of structures and determine which
match is best (which difference description is most inconsequential). Easily com-
puted scene characteristics can rule out some candidate models immediately.

The models contain arcs such as MUST-BE and MUST-NOT, expressing re-
lations mandatory or forbidden relations. A match is not allowed between a
description and a model if one of the strictures is violated. For instance, the pro-
gram may reject a “‘house’”’ immediately as not being a ‘‘pedestal,”” ““tent,”” or
““arch,” since the pedestal top must be a parallelepiped, both tent components
must be wedges, and the house is missing a component to support the top piece
that is needed in the arch. These outright rejections are in a sense easy cases; it can
also happen that more than one model matches some scene description. To deter-
mine the best match in this case, a weighted sum of differences is made to express
the amount of difference.

The next harder case is to match structures in a complex scene. The issue
here is what to do about evidence that is missing through obscuration. Two heuris-
tics help:
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(b)
Fig. 11.10 (a) Several arches and non-arches. (b) The computer-generated arch
description to be used for matching.

1. Objects that seem to have been stacked and could be the same type are of the
same type.

2. Essential model properties may be hidden in the scene, so the match should
not be aborted because of missing essential properties (though the presence of
forbidden properties is enough to abort a match).

This latter rule is equivalent to Nevatia’s rules about connectivity difference and
missing input instance parts (see below). In terms of the general structure metric
introduced earlier, neither Winston or Nevatia penalize the match for missing ele-
ments or relations in the reference data. One result of this is that the best match is
sometimes missed in favor of the first possible match. Winston suggests that com-
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plex scenes be analyzed by identifying subscenes and subtracting out the identified
parts, as was done by Roberts.

Winston’s program can learn shortcuts in matching strategy by itself;, it builds
for itself a similarity network relating models whose differences are slight. If a
reference model does not quite fit an input structure, the program can make an in-
telligent choice of the next model to try. A good choice is a model that has only
minor differences with the first. This self-organization and cataloging of the models
according to their mutual differences is a powerful way to use matching work that is
already performed to guide further search for a good match.

Backtrack Search

Nevatia addresses a domain of complex articulated biological-like forms
(hands, horses, dolls, snakes) [Nevatia 1974]. His strategy is to segment the ob-
jects into parts with central axes and ‘“‘cross section” (not unlike generalized
cylinders, except that they are largely treated in two dimensions). The derived
descriptions of objects contain the connectivity of subparts, and descriptions of the
shape and joint types of the parts. Matching is needed to compare descriptions and
find differences, which can then be explained or used to abort the match. Partial
matches are important (as in most real-world domains) because of occlusions,
noise, and so on. .

A priori ideas as to the relative importance of different aspects of structures
are used to impose a hierarchical order on the matching decision tree. Nevatia finds
this heuristic approach more appealing than a uniform, domain-independent one
such as clique finding. His system knows that certain parts of a structure are more
important than others, and uses them to index into the reference data catalog con-
taining known structures. Thus relevant models for matching may be retrieved
efficiently on the basis of easily-computed functions of the input data. The models
are generated by the machine by the same process that later extracts descriptions of
the image for recognition. Several different models are stored for the same view of
the same object, because his program has no idea of model equivalence, and can-
not always extract the same description.

The matching process is basically a depth-first tree search, with initial choices
being constrained by ‘‘distinguished pieces.’” These are important pieces of image
which first dictate the models to be tried in the match, and then constrain the pos-
sible other matches of other parts.

There is a topological and a geometrical component to the match. The topo-
logical part is based on the connectivity of the ‘‘stick figure’® that underlies the
representation. The geometrical part matches the more local characteristics of indi-
vidual pieces. Consider Nevatia’s example of matching a doll with stored reference
descriptions, including those of a doll and a horse.

By a process not concerning us here, the doll image is segmented into pieces
as shown in Fig. 11.11. From this, before any matching is done, a connection graph
of pieces is formed, as shown in Fig. 11.12.

This connection graph is topologically the same as the reference connection
graph for the doll, which looks as one would expect. In both reference and input,
“‘distinguished pieces’’ are identified by their large size. During reference forma-
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Fig. 11.11 A view of a doll, with derived structure.

tion time, the two largest pieces were the head and the trunk, and these are the
distinguished pieces in the reference. There are the same pieces picked
as distinguished in the instance to be matched consistent with the hierarchical
decision-tree style, distinguished pieces are matched first.

Because of noise, connections at joints may be missed; because of the nature
of the objects, extra joints are hardly ever produced. Thus there is 2 domain-
dependent rule that an input piece with two other pieces connected at a single joint
(a “two-ended piece’’) cannot match a one-ended reference piece, although the
reverse is possible.

On the basis of the distinguished pieces in the input instance, the program
decides that the instance could be a doll or a horse. Both these possibilities are
evaluated carefully; Fig. 11.13 shows a schematic view of the process. Piece-match
evaluation must be performed at the nodes of the tree to determine which pieces at
a joint should be made to correspond.

The final best match between the doll input and the horse reference model is
diagrammed in Fig. 11.14. This match is not as good as the match between the doll
input and the doll reference.

A

Fig. 11.12 Connection graph of the
A L doll.
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The final choice of matches is made with a version of the general relational
structure matching metric (Eq. 11.3). It takes into account the connectivity rela-
tions, which are the same in this case, and the quality of the individual piece
matches. In the doll-horse match, more reference parts are missing, but this can
happen if parts are hidden in a view, and do not count against the match. The
doll-doll match is preferred on the basis of piece matching, but both matches are
considered possible.

In summary, the selection of best match proceeds roughly as follows: unac-
ceptable differences are first sought (not unlike the Winston system). The number
of input pieces not matched by the reference is an important number (not vice
versa, because of the possibility of hidden input parts). Only elongated, large parts

TA Q @0:0 @O:A

|
. . (same as \
A' A ’ A' ;; leftmost \
path) \
| \
\ \
I 1 \\ \
l I ~—-——_ :
L]
| : \\ o 4 %
f%t 3’ o \ &;
L] L] L]
L [
A . 3 A ¢ {no matches
(extra input 243 2 1 now for
piece matches ¥ h 1 instance leg)
unmatched (leg matched (head (4): leg (4"}
reference arm) despite match very poor)
shadows)

(both branches lead
to correct match)

Fig. 11.13 A pictorial guide to the combinations tried by the matcher establishing the best
correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical: the program deals with symbolic connectivity information and geomelric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with structure B, with the numbered sub-
structures of A matching their primed counterparts in B.
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Fig. 11.14 The best match of the doll input with the horse reference model. One
doll arm is unmatched, as is the horse head and two legs.

are considered for this determination, to eliminate small “‘noise’ patches. The
match with fewest unmatched input pieces is chosen.

If no deciding structural differences exist, the quality of piece matches deter-
mines the quality of the match. These correspond to the template cost term in Eq.
(11.3). If a ““significant” difference in match error exists, the better match is ex-
clusively selected; if the difference is not so great as that, the better match is
merely preferred.

Piece matching is a subprocess of joint matching. The difference in the
number of pieces attached at the ends of the piece to be matched is the connectivity
difference. If the object piece has more pieces connected to it than the model piece,
the match is a poor one; since pieces may not be visible in a view, the converse is
not true. If one match gives fewer excess input pieces, it is accepted at this point. If
not, the goodness of the match is computed as a weighted sum of width difference,
length-to-width ratio difference, and difference in acuteness of the generalized
cylinders (Chapter 9) forming the pieces. The weighted sum is thresholded to yield
a final *“‘yes or no”” match result. Shadowing phenomena are accommodated by al-
lowing the input piece to be narrower than the reference model piece with no
penalty. The error function weights are derived empirically; one would not expect
the viewing angle to affect seriously the width of a piece, for example, but it could
affect its length. Piece axis shapes (what sort of space curve they are) are not used
for domain-dependent reasons, nor are cross section functions (aside from a meas-
ure of “‘acuteness’’ for cone-like generalized cylinders).

11.4.2 Decision Tree and Subgraph Isomorphism

A robotics program for versatile assembly [Ambler et al. 1975] uses matching to
identify individual objects on the basis of their boundaries, and to match several
individual blobs on a screen with a reference model containing the known location
of multiple objects in the field of view. In both cases the best subgraph isomor-
phism between input and reference data structures is found when necessary by the
clique-finding technique (Algorithm 11.2).
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The input data to the part recognizer consist of silhouettes of parts with out-
lines of piecewise linear and circular segments. A typical set of shapes to be recog-
nized might be stored in terms of boundary primitives as shown in Fig. 11.15a,
with matchable and unmatchable scenes shown in Fig. 11.15b.

Generally, the matching process works on hierarchical structures which cap-
ture increasing levels of detail about the objects of interest. The matching works its
way down the hierarchy, from high-level, easily computable properties such as size
down to difficult properties such as the arrangements of linear segments in a part
outline. After this decision tree pre-processing, all possible matches are computed
by the clique-finding approach to subgraph isomorphism. A scene can be assigned
a number of interpretations, including those of different views of the same part.
The hierarchical organization means that complicated properties of the scene are
not computed unless they are needed by the matcher. Once computed they are
never recomputed, since they are stored in accessible places for later retrieval if
needed. Each matching level produces multiple interpretations; ambiguity is
treated with backtracking. The system recognizes rotational and translational in-
variance, but must be taught different views of the same object in its different grav-
itationally stable states, It treats these different states basically as different objects.

11.4.3 Informal Feature Classification

The domain of this work is one of small, curved tabletop objects, such as a teacup
(Fig. 11.16) [Barrow and Popplestone 1971]. The primitives in models and image
descriptions are regions which are found by a process irrelevant here. The regions
have certain properties (such as shape or brightness), and they have certain
parameterized relations with other regions (such as distance, adjacency, ‘“‘above-
ness’’). The input and reference data are both relational structures. The properties
and relations are the following:

{a)

Fig. 11.15 A small catalog of part
boundaries (a) and some sample
silhouettes (b). The **heap’” will not
match any part very well, while the
square can match the square model in
four different ways, through rotations.
Gross properties such as area may be
used cheaply to reject matches such as
(b) the square with the axle.
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Fig. 11.16 An object for recognition
by relational matching.

1. Region Properties

Shape 1-Shape 6: the first six root mean square amplitudes of the Fourier com-
ponents of the ¢ (s) curve [Chapter 8].

2. Relations between Regions A and B
Bigger: Area(A)/Area(B)
Adjacency: Fraction of A’s boundary which also is a boundary of B.

Distance: Distance between centroids divided by the geometric mean of aver-
age radii. The average radius is twice the area over the perimeter. Distance is
scale, rotation, translation, reflection invariant.

Compactness: 4+ *area/ perimeter*

Above, Beside: Vertical and horizontal distance between centroids, normal-
ized by average radius. Not rotation invariant.

The model that might be derived for the cup of Fig. 11.16 is shown in Fig. 11.17.

The program works on objects such as spectacles, pen, cup, or ball. During
training, views and their identifications are given to the program, and the program
forms a relational structure with information about the mean and variance of the
values of the relations and properties. After training, the program is presented
with a scene containing one of the learned objects. A relational structure is built
describing the scene; the problem is then to match this input description with a
reference description from the set of models.

One approximation to the goodness of a match is the number of successes
provided by a region correspondence. A one-region object description has 7 rela-
tions to check, a two-region object has 28, a three-region one has 63. Therefore,
the “‘successes’ criterion could imply the choice of a terrible three-region in-
terpretation over a perfect one-region match. The solution adapted in the matching
evaluation is first to grade failures. A failure weight is assigned to a trial match ac-
cording to how many standard deviations o from the model mean the relevant
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Big 0.9

Big 0.1 ~—— N\
Adj 0

Adj 1 ~—
Dist 3.7

Comp 0.9

Fig. 11.17 Relational model for cups such as that of Fig. 11.16.

parameter is. From zero to three ¢ imply a success, or a failure weight of 0; from
three to six o, a failure weight of 1; from six to nine o, failure weight of 2, and so
on. Then the measure ‘‘trials—cumulative failure weight’’ is an improvement on
just “‘successes.”” On the other hand, simple objects are often found as subparts of
complex ones, and one does not want to reject a good interpretation as a complex
object in favor of a less explanatory one as a simple object. The final evaluation
function adapted is

T 1 — (tries-failure v‘ve1ght) 11.5)
number of relations
; K
(1.3 E z . % 5
number of regions in view description

As in Eq. (11.4), the first term measures the average badness of matches
between properties (unary relations) and relations between regions. The second
term is inversely proportional to the number of regions that are matched,
effectively increasing the cost of matches that explain less of the input.

11.4.4 A Complex Matcher

A program to match linear structures like those of Fig. 11.18 is described in [Davis
1976]. This matcher presents quite a diversity of matching techniques incorporated
into one domain-dependent program.
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The matching metric is very close to the general metric of Eg. (11.3). The
match is characterized by a structural match of reference and input elements and a
geometrical transformation (found by parameter fitting) which accounts for the
spatial relations between reference and input. Davis forms an association graph
between reference and input data. This graph is reduced by parallel-iterative relax-
ation (see Section 12.4) using the “‘spring functions’’ to determine which node as-
sociations are too costly. Eliminating one node-node match may render others

Cape Breton Baffin Island

Cuba

(Fig. 11.18 continues on p. 380.)
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Baffin Island Baffin Island

Cape Breton Cape Breton

Fig. 11.18 (a) Reference and (b) input
data for a complex shape matching
Cuba program.

Cuba

(b)

more unlikely, so the node-pruning process iterates until no more nodes are elim-
inated. What remains is something like an r-connected component of the graph,
which specifies an approximate match supported by some amount of consistent re-
lations between nodes.

After the process of constraint relaxation, there are still in general several lo-
cally consistent interpretations for each component of the input structure. Next,
therefore, a tree search is used to establish global consistency and therefore the
best match. The tree search is the familiar ‘““best first”” heuristic search through the
partial match space, with pruning taking place between each stage of search again
by using the parallel-iterative relaxation technique.

EXERCISES

11.1 Relational structures 4 and B are to be matched by the association-graph, clique-
finding method.
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Exercises

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

Relational structure A4: entities u, v, w, x, y, z
relations P(u), P(w), P(y), R(v), R (x), R(2),
Flu, v), F(y, w), Flw, x), Flx, ), F(y, z), F(z, v)

Relational structure B: entities a, &, ¢, d, e, f.
relations P(a), P(8), P(d), 0le), O(f), R (c)
F(b, c),Flc, d),F(d, e), Fle, ), F(f, a).

(a) Construct graph structures corresponding to the structures A and B. Label
the nodes and arcs.

(b) Construct the association graph of structures 4 and B.

(¢) Visually find the largest maximal cliques in the association graph and thus
the best matches between 4 and B. (There are three.)

Suppose in a geometric match that two input points on the xy plane are identified
with two others taken to correspond with two reference points. It is known that the
input data comes about only through rotation and translation of the reference data.
Given the two input points (x|, y;) and (x5, y;) and the two reference points
(x';, ) and (x, y), one way to find the transformation from reference to input is
to solve the equation

2
‘El x; — (axi + by + )12+ [y — (bxi + ay + )]P=0

The resulting values of a, b, ¢, and drepresent the desired transformation. Solve the
equation analytically to get expressions for a, b, ¢, and d in terms of the reference
and input coordinates. What happens if the reference and input data are not related
by simple rotation and translation?

What are the advantages and disadvantages of a uniform method (such as subgraph
isomorphism algorithm approach) to matching as compared to an ad hoc (such as a
decision-tree approach with various empirically derived metrics) one?

In the worst case, for graphs of n nodes, how many partial solutions total will Algo-
rithm 11.1 have to proceed through? Construct “*worst case’” graphs X and Y (label
their nodes 1, . . ., n, of course), assuming that nodes of ¥ are selected in ascending
order at any stage.

Find out something about the state of associative memories in computers. How do
they work? How are they used? Would anything like this technology be useful for
computer vision? Introspect about familiar phenomena of visual recall, recognition,
and memory. Do you have a theory about how human visual memory could possi-
bly work ?

What graph of N nodes has the maximum number of maximal cliques? How many
does it have?

Think about reasoning by analogy and find out something about programs that do
analogical reasoning. In what sense can analogical process be used for computer vi-
sion, and technically do the matching techniques necessary provide any insight?

Compare Nevatia’s structure matching with Hinton’s relaxation-based puppet
recognition (Chapter 12).

Verify the observation made in Section 11.4.3 about the number of relations that
must be checked between regions (one region, 7; two regions, 28; three regions, 63;
etc.).
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Inference 12

Classical and Extended Inference

This chapter explores inference, the process of deducing facts from other
known facts. Inference is useful for belief maintenance and is a cornerstone of ra-
tional thought. We start with predicate logic, and then explore extended inference
systems—production systems, relaxation labeling, and active knowledge (pro-
cedures).

Predicate logic (Section 12.1) is a system for expressing propositions and for
deriving consequences of facts. It has evolved over centuries, and many clear ac-
counts describe predicate logic in its various forms [Mendelson 1964; Robinson
1965]. It has good formal properties, a nontrivial but automatable inference pro-
cedure, and a history of study in artificial intelligence. There are several “‘classical”
extensions (modal logics, higher-order logics) which are studied in well-settled
academic disciplines of metamathematics and philosophy. Extended inference (Sec-
tion 12.2) is possible in automated systems, and is interesting technically and from
an implementational standpoint.

A production system (Section 12.3) is a general rewriting system consisting of
a set of rewriting rules (4 — BC could mean ‘‘rewrite 4 as BC”’) and an executive
program to apply rewrites. More generally, the rules can be considered
““‘situation—action’” pairs (*‘in situation 4, do Band C”’). Thus production systems
can be used to control computational activities. Production systems, like semantic
nets, embody powerful notions that can be used for extended inference.

Labeling schemes (Section 12.4) are unlike most inference mechanisms in
that they often involve mathematical optimization in continuous spaces and can be
implemented with parallel computation. Labeling is like inference because it estab-
lishes consistent “‘probability-like’” values for ‘‘hypotheses’” about the interpreta-
tion of entities.
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Active knowledge (Section 12.5) is an implementation of inference in which
each chunk of knowledge is a program. This technique goes far in the direction of
“proceduralizing’ the implementation of propositions. The design issues for such
a system include the vocabulary of system primitives and their actions, mechan-
isms for implementing the flow of control, and overall control of the action of the
system.

12.1 FIRST ORDER PREDICATE CALCULUS

384

Predicate logic is in many ways an attractive knowledge representation and infer-
ence system. However, despite its historical stature, important technical results in
automated inference, and much research on inference techniques, logic has not
dominated all aspects of mechanized inference. Some reasons for this are present-
ed in Sections 12.1.6 and 12.2. The logical system that has received the most study
is first order predicate logic. General theorem provers in this calculus are cumber-
some for reasons which we shall explore. Furthermore, there is some controversy
as to whether this logical system is adequate to express the reasoning processes
used by human beings [Hayes 1977; Collins 1978; Winograd 1978; McCarthy and
Hayes 1969]. We briefly describe some aspects of this controversy in Section
12.1.6. Our main purpose is to give the flavor of predicate calculus-based methods
by describing briefly how automated inference can proceed with the formulae of
predicate calculus expressed in the convenient clause form. Clause form is appeal-
ing for two reasons. First, it can be represented usefully in relational n-tuple or se-
mantic network notation (Section 12.1.5). Second, the predicate calculus clause
and inference system may be easily compared to production systems (Section
12.3).

12.1.1 Clause-Form Syntax (Informal)

In this section we describe the syntax of clause-form predicate calculus sentences.
In the next, a more standard nonclausal syntax is described, together with a
method for assigning meaning to grammatical logical expressions. Next, we show
briefly how to convert from nonclausal to clausal syntax.

A sentence is a set of clauses. A clause is an ordered pair of sets of atomic for-
mulae, or atoms. Clauses are written as two (possibly null) sets separated by an ar-
row, pointing from the Aypotheses or conditions of the clause to its conclusion. The
null clause, whose hypotheses and conclusion are both null, is written 0. For exam-
ple, a clause could appear as

. Ay,..., A,— By,..., B,
where the A’s and B’s are atoms. An atom is an expression
Pty pons s T
where Pis a predicate symbol which ‘‘expects jarguments,’’ each of which must be

a variable, constant symbol, or a term. A term is an expression
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Sl 1)

where fis a function symbol which “‘expects k arguments,’” each of which may be a
term. It is convenient to treat constant symbols alone as terms.

A careful (formal) treatment of the syntax of logic must deal with technical
issues such as keeping constant and term symbols straight, associating the number
of expected arguments with a predicate or function symbol, and assuring an
infinite supply of symbols.

For example, the following are sentences of logic.

— Obscured (Backface (Block1))
Visible (Kidney) —
Road(x), Unpaved(x) — Narrow(x)

12.1.2 Nonclausal Syntax and Logic Semantics (Informal)

Nonclausal Syntax

Clause form is a simplified but logically equivalent form of logic expressions
which are perhaps more familiar. A brief review of non-clausal syntax follows.

The concepts of constant symbols, variables, terms, and atoms are still basic.
A set of logical connectives provides unary and binary operators to combine atoms
to form well-formed formuiae (wffs). If 4 and B are atoms, then A is a wif, as is "4
(*‘not 4”) A => B (*“A implies B, or *‘if A then B”), AN/ B (“Aor B”), A\ B
(“4and B”), A <> B (‘“‘4is equivalent to B, or ‘4 if and only if B’). Thus
an example of a wif is

Back (Face) \/ (Obscured (Face)) =~ (Visible(Face))

The last concept is that of universal and existential quantifiers, the use of which
is illustrated as follows.

( x) (wff using ““x’’ as a variable).
(3 thing) (wff using ‘“thing’’ as a variable).

A universal quantifier ¥/ is interpreted as a conjunction over all domain ele-
ments, and an existential quantifier 3 as a disjunction over all domain elements.
Hence their usual interpretation as ‘‘for each element . . .”” and ‘‘there exists an
element....”

Since a quantified wi is also a wff, quantifiers may be iterated and nested. A
quantifier quantifies the ‘“‘dummy’’ variable associated with it (x and thing in the
examples above). The wif within the scope of a quantifier is said to have this
quantified variable bound by the quantifier. Typically only wifs or clauses all of
whose variables are bound are allowed.

Semantics

How does one assign meaning to grammatical clauses and formulae? The se-
mantics of logic formulae (clauses and wifs alike) depends on an interpretation and
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on the meaning of connectives and quantifiers. An interpretation specifies the fol-
lowing.

1. A domainof individuals
2. A particular domain element is associated with each constant symbol

3. A function over the domain (mapping k individuals to individuals) is associ-
ated with each function symbol.

4. A relation over the domain (a set of ordered k-tuples of individuals) is associ-
ated with each predicate symbol.

The interpretation establishes a connection between the symbols in the
representation and a domain of discourse (such as the entities one might see in an
office or chest x-ray). To establish the truth or falsity of a clause or wif, a value of
TRUE or FALSE must be assigned to each atom. This is done by checking in the
world of the domain to see if the terms in the atom satisfy the relation specified by
the predicate of the atom. If so, the atom is TRUE; if not, it is FALSE. (Of course,
the terms, after evaluating their associated functions, ultimately specify individu-
als). For example, the atom

GreaterThan(5,7)

is true under the obvious interpretation and false with domain assignments such
that

GreaterThan means ‘‘Is the author of™’
5 means the book Gone With the Wind
7 means Rin-Tin-Tin.

After determining the truth values of atoms, wifs with connectives are given
truth values by using the truth tables of Table 12.1, which specify the semantics of
the logical connectives. The relation of this formal semantics of connectives with
the usual connectives used in language (especially ‘“implies™) is interesting, and
one must be careful when translating natural language statements into predicate
calculus.

The semantics of clause form expressions is now easy to explain. A sentence
is the conjunction of its clauses. A clause

Al, ...,A”_’B], bt Bm
with variables x,, ...,x is to be understood
Table 12.1

"A ANB ANVB A=>B A<= B

T T e -] N
M=
o o
o
-
-

e B B v Moo
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Vxl,...,xk, (A]/\/\A”) %"(BI\/\/B,”)

The null clause is to be understood as a contradiction. A clause with no conditions
is an assertion that at least one of the conclusions is true. A clause with null conclu-
sion is a denial that the conditions (hypotheses) are true.

12.1.3 Converting Nonclausal Form to Clauses

The conversion of nonclausal to clausal form is done by applying straightforward
rewriting rules, based on logic identities (ultimately the truth tables). There is one
trick necessary, however, to remove existential quantifiers. Skolem functions are
used to replace existentially quantified variables, according to the following rea-
soning.

Consider the wif

(¢ x) (3 y) (Behind (y, x))).

With the proper interpretation, this wif might correspond to saying *‘For any object
x we consider, there is another object y which is behind x.”” Since the 3 is within
the scope of the %/, the particular y might depend on the choice of x. The Skolem
function trick is to remove the existential quantifier and use a function to make ex-
plicit the dependence on the bound universally quantified variable. The resulting
wif could be

(% x) (Behind(SomethingBehind(x), x))

which might be rendered in English: *‘Any object x has another object behind it;
furthermore, some Skolem function we choose to call SomethingBehind deter-
mines which object is behind its argument.’” This is a notational trick only; the ex-
istence of the new function is guaranteed by the existential quantification; both no-
tations are equally vague as to the entity the function actually produces.

In general, one must replace each occurrence of an existentially quantified
variable in a wif by a (newly created Skolem) function of all the universally
quantified variables whose scope includes the existential quantifier being elim-
inated. If there is no universal quantifier, the result is a new function of no argu-
ments, or a new constant.

3 x) (Red(x)),

which may be interpreted ““Something is red,”” is rewritten as something like
Red(RedThing)

or
“Something is red, and furthermore let’s call it RedThing.”’

The conversion from nonclausal to clausal form proceeds as follows (for
more details, see [Nilsson 1971]). Remove all implication signs with the identity
(4 =>B) <> ((" A)V/ B). Use DeMorgan’s laws (such as " (4\/ B) <> ((*
A) A\ C B)), and the extension to quantifiers, together with cancellation of double
negations, to force negations to refer only to single predicate letters. Rewrite vari-
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ables to give each quantifier its own unique dummy variable. Use Skolem func-
tions to remove existential quantifiers. Variables are all now universally quantified,
so eliminate the quantifier symbols (which remain implicitly), and rearrange the
expression into conjunctive normal form (a conjunction of disjunctions.) The A’s
now connect disjunctive clauses (at last!). Eliminate the A’s, obtaining from the
original expression possibly several clauses.

At this point, the original expression has yielded multiple disjunctive clauses.
Clauses in this form may be used directly in automatic theorem provers [Nilsson
1971]. The disjunctive clauses are not quite in the clause form as defined earlier,
however; to get clauses into the final form, convert them into implications. Group
negated atoms, reexpanding the scope of negation to include them all and convert-
ing the \/ of ’sintoa”~ of A\’s. Reintroduce one implication to go from

B\ By...\/B,\V CUU ANAy... N A4,)
to
A]/\.../\A,,—’Bl\/Bg...\/Bm

To obtain the final form, replace the connectives (which remain implicitly) with
commas.

12.1.4 Theorem Proving

Good accounts of the basic issues of automated theorem proving are given in
[Nilsson 1971; Kowalski 1979; Loveland 1978]. The basic ideas are as follows. A
sentence is inconsistent, or unsatisfiable, if it is false in every interpretation. Some
trivially inconsistent sentences are those containing the null clause, or simple con-
tradictions such as the same clause being both unconditionally asserted and
denied. A sentence that is true in all interpretations is valid. Validity of individual
clauses may be checked by applying the truth tables unless quantifiers are present,
in which case an infinite number of formulae are being specified, and the truth
status of such a clause is not algorithmically decidable. Thus it is said that first
order predicate calculus is undecidable. More accurately, it is semidecidable, because
any valid wif can be established as such in some (generally unpredictable) finite
time. The validation procedure will run forever on invalid formulae; the rub is that
one can never be sure whether it is running uselessly, or about to terminate in the
next instant.

The notion of a proof is bound up with the notion of logical entailment. A
clause C logically follows from a set of clauses S (we take S to prove C) if every in-
terpretation that makes S true also makes C true. A formal proof is a sequence of
inferences which establishes that C logically follows from S. In nonclausal predi-
cate logic, inferences are rewritings of axioms and previously established formulae
in accordance with rules of inference such as

Modus Ponens: From (4) and (4 => B) infer (B)

Modus Tollens: From (" B) and (4 => B) infer (4)

Substitution: e.g. From (% x) (Convex(x)) infer (Convex(Region31))
Syllogisms,

and so forth.
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Automatic clausal theorem provers usually try to establish that a clause C
logically follows from the set of clauses S. This is accomplished by showing the
unsatisfiability of S and (C) taken together. This rather backward approach is a tech-
nical effect of the way that theorem provers usually work, which is to derive a
contradiction.

The fundamental and surprising result that all true theorems are provable in
finite time, and an algorithmic (but inefficient) way to find the proof, is due to Her-
brand [Herbrand 1930]. The crux of the result is that although the domain of indi-
viduals who might participate in an interpretation may be infinite, only a finite
number of interpretations need be investigated to establish unsatisfiability of a set
of clauses, and in each only a finite number of individuals must be considered. A
computationally efficient way to perform automatic inference was discovered by
Robinson [Robinson 1965]. In it, a single rule of inference called resolution is used.
This single rule preserves the completeness of the system (all true theorems are
provable) and its correctness (no false theorems are provable).

The rule of resolution is very simple. Resolution involves matching a condi-
tion of one clause 4 with a conclusion of another clause B. The derived clause,
called the resolvent, consists of the unmatched conditions and conclusions of 4 and
B instantiated by the matching substitution. Matching two atoms amounts to
finding a substitution of terms for variables which if applied to the atoms would
make them identical.

Theorem proving now means resolving clauses with the hope of producing
the empty clause, a contradiction.

As an example, a simple resolution proof goes as follows. Say it is desired to
prove that a particular wastebasket is invisible. We know that the wastebasket is
behind Brian’s desk and that anything behind something else is invisible (we have
a simpleminded view of the world in this little example). The givens are the
wastebasket location and our naive belief about visibility:

— Behind (WasteBasket, DeskOf(Brian)) (12.1)
Behind (object,obscurer) — Invisible (object) (12.2)

Here Behind and Invisible are predicates, DeskOf is a function, Brian and
WasteBasket are constants (denote particular specific objects), and object and ob-
scurer are (universally quantified) variables. The negation of the conclusion we
wish to prove is

Invisible (WasteBasket) — (12.3)

or, ‘‘Asserting the wastebasket is invisible is contradictory.”” Our task is to show
this set of clauses is inconsistent, so that the invisibility of the wastebasket is
proved. The resolution rule consists of matching clauses on opposite sides of the
arrow which can be unified by a substitution of terms for variables. A substitution
that works is:

Substitute WasteBasket for object and DeskOf(Brian) for obscurer in (12.2).

Then a cancellation can occur between the right side of (12.1) and the left side of
(12.2). Another cancellation can then occur between the right side of (12.2) and
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the left side of (12.3), deriving the empty clause (a contradiction), Quod Erat
Demonstrandum.

Anyone who has ever tried to do a nontrivial logic proof knows that there is
searching involved in finding which inference to apply to make the proof ter-
minate. Usually human beings have an idea of ““‘what they are trying to prove,”
and can occasionally call upon some domain semantics to guide which inferences
make sense. Notice that at no time in a resolution proof or other formal proof of
logic is a specific interpretation singled out; the proof is about all possible interpre-
tations. If deductions are made by appealing to intuitive, domain-dependent,
semantic considerations (instead of purely syntactic rewritings), the deduction
system is informal. Almost all of mathematics is informal by this definition, since
normal proofs are not pure rewritings.

Many nonsemantic heuristics are also possible to guide search, such as trying
to reduce the differences between the current formulae and the goal formula to be
proved. People use such heuristics, as does the Logic Theorist, an early non-
clausal, nonresolution theorem prover [Newell et al. 1963].

A basic resolution theorem prover is guaranteed to terminate with a proof if
one exists, but usually resource limitations such as time or memory place an upper
limit on the amount of effort one can afford to let the prover spend. As all the
resolvents are added to the set of clauses from which further conclusions may be
derived, the question of selecting which clauses to resolve becomes quite a vital
one. Much research in automatic theorem proving has been devoted to reducing
the search space of derivations for proofs [Nilsson 1980; Loveland 1970]. This has
usually been done through heuristics based on formal aspects of the deductions
(such as: make deductions that will not increase drastically the number of active
clauses). Guidance from domain-dependent knowledge is not only hard to imple-
ment, it is directly against the spirit of resolution theorem proving, which attempts
to do all the work with a uniform inference mechanism working on uninterpreted
symbol strings. A moderation of this view allows the “‘intent’’ of a clause to guide
its application in the proof. This can result in substantial savings of effort; an exam-
ple is the treatment of “‘frame axioms’ recommended by Kowalski (Section
13.1.4). Ad hoc, nonformalizable, domain-dependent methods are not usually
welcome in automatic theorem-proving circles; however, such heuristics only
guide the activity of a formal system; they do not render it informal.

12.1.5 Predicate Calculus and Semantic Networks

Predicate calculus theorem proving may be assisted by the addition of more rela-
tional structure to the set of clauses. The structure in a semantic net comes from
links which connect nodes; nodes are accessed by following links, so the availability
of information in nodes is determined by the link structure. Links can thus help by
providing quick access to relevant information, given that one is ““at’ a particular
node.

Although there are several ways of representing predicate calculus formulae
in networks, we adopt here that of [Kowalski 1979; Deliyanni and Kowalski 1979].
The steps are simple:

Ch. 12 Inference



Sec. 12.7

1. Use a partition to represent the clause.
2. Convert all atoms to binary predicate atoms.
3. Distinguish between conditions and conclusions.

Recall that in Chapter 10, a partition is defined as a set of nodes and arcs in a graph.
The internal structure of the partition cannot be determined from outside it. Parti-
tioning extends the structure of a semantic net enough to allow unambiguous
representations of all of first order predicate calculus.

The first step in developing the network representation for clauses is to con-
vert each relation to a binary one. We distinguish between conditions and conclu-
sions by using an additional bit of information for each arc. Diagrammatically, an
arc is drawn with a double line if it is a condition and a single line if it is a conclu-
sion. Thus the earlier example S = {(12.1), (12.2), (12.3)} can be transformed
into the network shown in Fig. 12.1.

This figure hints at the advantages of the network embedding for clauses: It is
an indexing scheme. This scheme does not indicate which clauses to resolve next
but can help reduce the possibilities enormously. If the most recent resolution in-
volved a given clause with a given set of terms, other clauses which also have those
terms will be represented by explicit arcs nearby in the network (this would not be
true if the clauses were represented as a set). Similarly, other clauses involving the
same predicate symbols are also nearby being indexed by those symbols. Again,
this would not be true in the set representation. Thus the embedded network

Behind

/4é—_‘Desk (Brian)

Wastebasket

Invisible

(123) {12.1)

Behind

C?_'—-_ér“: Obscurer

Object
Invisible

(12.2)

Fig. 12.1 Converting clauses to networks.
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representation contains argument indices and predicate indices which can be ex-
tremely helpful in the inference process.

A very simple example illustrates the foregoing points. Suppose that S con-
sists of the set of clauses

SouthOf(river2,x), NorthOf(riverl,x) — Between (riverl, river2, x) (12.4)
— SouthOf (i, silo30) (12.5)
— NorthOf (riverl, silo30) (12.6)

Clause (12.5) might arise when it is determined that ‘‘silo30”’ is south of some
feature in the image whose identity is not known. Bottom up inference derives new
assertions from old ones. Thus in the example above the variable substitutions

u = river2 x = silo30

match assertion (12.5) with the general clause (12.4) and allow the inference

NorthOf(riverl, silo30)
— Between(riverl, river2, silo30) (12.7)

Consequently, use (12.6) and (12.7) to assert

— Between (riverl, river2, silo 30) (12.8)
Suppose that this was not the case: that is, that

Between(riverl, river2, silo30) — (12.9)

and that § = {(12.4), (12.9)}. One could then use top-down inference, which infers
new denials from old ones. In this case

NorthOf(riverl,silo30), SouthOf (river2,silo30) — (12.10)

follows with the variable substitution x = silo30. This can be interpreted as fol-
lows: “If x is really silo30, then it is neither north of riverl or south of river2.”” Fig-
ure 12.2 shows two examples using the network notation.

Now suppose the goal is to prove that (12.8) logically follows from (12.4)
through (12.6) and the substitutions. The strategy would be to negate (12.8), add
it to the data base, and show that the empty clause can be derived. Negating an
assertion produces a denial, in this case (12.9), and now the set of axioms (includ-
ing the denial) consists of {(12.4), (12.5), (12.6), (12.9)}. It is easy to repeat the
earlier steps to the point where the set of clauses includes (12.8) and (12.9), which
resolve to produce the empty clause. Hence the theorem is proved.

12.1.6 Predicate Calculus And Knowledge Representation

Pure predicate calculus has strengths and weaknesses as a knowledge representa-
tion system. Some of the seeming weaknesses can be overcome by technical
““tricks.”” Some are not inherent in the representation but are a property of the
common interpreters used on it (i.e., on state-of-the-art theorem provers). Some
problems are relatively basic, and the majority opinion seems to be that first order
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Fig. 12.2 Resolution using networks. (a) Bottom-up inference as a result of substitu-

tions u = river2, x = silo30. (b) Top-down inference as a result of substitutions w = v, x
= silo30.

predicate logic must be extended in order to become a representation scheme that
is satisfactorily matched to the power of the deductive methods applied by human
beings. Opinion is divided on the technical aspects of such enhancements. Predi-
cate calculus has several strengths, some of which we list below.

1. Predicate logic is a well-polished gem, having been refined and studied for
several generations. It was designed to represent knowledge and inference.
One knows what it means. Its model theory and proof theory are explicit and
lucid [Hayes 1977; 1980].
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Predicate logic can be considered a language with a machine-independent se-
mantics; the meaning of the language is determined by the laws of logic, not
the actual programming system upon which the logic is “‘executed.”

Predicate calculus clauses with only one conclusion atom (Horn clauses) may
be considered as ‘‘procedures,”” with the single conclusion being the name of
the procedure and the conditions being the procedure body, which itself is
made up of procedure calls. This view of logic leads to the development of
predicate logic-based programming languages (such as PROLOG [Warren et
al. 1977, McDermott 1980]). These programs exhibit nondeterminism in
several interesting ways; the order of computations is not specified by the
proof procedure (and is not restricted by it, either). Several resolutions are in
general possible for any clause; the combinations determine many computa-
tions and several distinguishable forms of nondeterminism [Kowalski 1974].

Predicate logic may be interpreted as a problem-reduction system. Then a
(Horn) clause of the form

- B
represents a solved problem. One of the form
A Ly & vy An —

with variables x, . . . ,x, is a goal statement, or command, which is to find the
x’s that solve the problems 44, . .. ,4,. Finding the x’s solves the goal. A
clause

Ay, .., A,— B

is a solution method, which reduces the solution of B to a combination of solu-
tions of A4’s. This interpretation of Horn clauses maps cleanly into a standard
and-or goal tree formulation of problem solving.

Resolutions may be performed on the left or right of clauses, and the resulting
derivation trees correspond, in the problem-solving interpretation of predicate
calculus, to top-down and bottom-up versions of problem solving. This duality
is very important in conceptualizing aspects of problem solving.

There is a uniform proof procedure for logic which is guaranteed to prove in
finite time any true theorem (logic is semidecidable and complete). No false
theorems are provable (logic is correct). These and other good formal proper-
ties are important when establishing formally the properties of a knowledge
representation system.

Predicate calculus is not a favorite of everyone, however; some of the (per-

ceived) disadvantages are given below, together with ways they might be coun-
tered.

1. Sometimes the axioms necessary to implement relatively common con-

cepts are not immediately obvious. A standard example is ‘‘equality.”” These
largely technical problems are annoying but not basic.

2. The “‘first order” in first order predicate calculus means that the system
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does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., ‘“All unary functions are boring”’ cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(block1, surface, situationl), write Holds (On(blockl,sur-
face), situationl). This notation allows inferences about many situations with only
one added axiom. The “‘situational calculus’ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit “‘add lists’ and ““delete lists”> ([Fikes 1977],
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“‘quotation’’), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.
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predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“‘quotation’’), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.
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Automated inference systems usually have inference methods that achieve
efficiency through implementational, computation-based, inference criteria. For
example, truth may be defined as a successful lookup in a data base, falsity as the
failure to find a proof with a given allocation of computational resources, and the
establishment of truth may depend on the order in which deductions are made.

The semantics of computer knowledge representations is intimately related
to the inference process that acts on them. Therefore, it is possible to define
knowledge representations and interpreters in computers whose properties differ
fairly radically from those of classical representations and proof procedures, such
as the first-order predicate calculus. For instance, although the systems are deter-
ministic, they may not be formally consistent (loosely, they may contain contradic-
tory information). They may not be complete (they cannot derive all true
theorems from the givens); it may be possible to prove P from Q but “Pfrom Qand
R. The set of provable theorems may not be recursively enumerable [Reiter 1978].
Efforts are being made to account for the ‘‘extended inference” needed by
artificial intelligence using more or less classical logic [McCarthy 1978; Reiter
1978; Hayes 1977; 1978a; 1978b; Kowalski 1974, 1979]. In each case, the classical
view of logic demands that the deductive process and the deducible truths be in-
dependent. On the other hand, it is reasonable to devote attention to developing a
nonclassical semantics of these inference processes; this topic is in the research
stage at this writing.

Several knowledge representations and inference methods using them are
““classical’’ in the artificial intelligence world; that is, they provide paradigmatic
methods of dealing with the issues of computational inference. They include
STRIPS [Fikes and Nilsson 1971], the situational calculus [McCarthy and Hayes
1969], PLANNER and CONNIVER [Hewitt 1972; Sussman and McDermott
1972], and semantic net representations [Hendrix 1979; Brachman 1979].

To illustrate the issue of consistency, and to illustrate how various sorts of
propositions can be represented in semantic nets, we address the question of how
the order of inference can affect the set of provable theorems in a system.

Consider the semantic net of Fig. 12.3. The idea is that in the absence of
specific information to the contrary, one should assume that railroad bridges are
narrow. There are exceptions, however, such as Bridge02 (which has a highway
bridge above the rail bridge, say). The network is clearly inconsistent, but trouble
is avoided if inferences are made ‘‘from specific to general.”” Such ordering implies
that the system is incomplete, but in this case incompleteness is an advantage.

Simple ordering constraints are possible only with simple inferential powers
in the system [Winograd 1978]. Further, there is as yet little formal theory on the
effects of ordering rules on computational inference, although this has been an ac-
tive topic [Reiter 1978].

12.3 PRODUCTION SYSTEMS

The last section explored why the process of inference itself could be an important
part of the semantics of a knowledge representation system. This idea is an impor-
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Fig. 12.3 An inconsistent network,

tant part of production systems. Perceived limitations in logic inference mechan-
isms and the seductive power of arbitrary algorithmic processes for inference has
spawned the development of rule-based systems which differ from first-order logic
in the following respects:

« Arbitrary additions and deletions to the clausal data base are allowed.

o An interpreter that controls the inference process in special ways is usually an
integral part of the system.

Early examples of systems with the first addition are STRIPS [Fikes and Nilsson
1971] and PLANNER [Hewitt 1972). Later examples of systems with both addi-
tions are given in [Waterman and Hayes-Roth 1978]. The virtues of trying to con-
trol inferences may be appreciated after our brief introduction to clausal automatic
theorem proving, where there are no very good semantic heuristics to guide infer-
ences. However, the price paid for restricting the inference process is the loss of
formal properties of consistency and correctness of the system, which are not
guaranteed in rule-based systems. We shall look in some detail at a particular form
of rule-based inference system called production systems.

A production system supports a general sort of “‘inference.”” It has in common
with resolution that matching is needed to identify which inference to make. It is
different in that the action upon finding a matching data item is less constrained.
Actions of arbitrary complexity are allowed. A production system consists of an ex-
plicit set of situation—action nodes, which can be applied against a data base of sit-
uations. For example, in a very constrained visual domain the rule

(Green (Region X)) — (Grass (Region X)) (12.11)

could infer directly the interpretation of a given region. Segmentation rules can
also be developed; the following example merges two adjacent green regions into a
single region.
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(Green(Region X))/ (Green(Region ¥))A
(Adjacent (Region X), (Region Y))

— (Green(Region Z))A((Region Z) :=
(Union(Region X, Region 1)))

These examples highlight several points. The first is that basic idea of production
systems is simple. The rules are easy to ‘“‘read” by both the programmer and his
program and new rules are easily added. Although it is imaginable that “‘situa-
tions”” could extend down to the pixel level, and production systems could be used
(for instance) to find lines, the system overhead would render such an approach
impractical. In the visual domain, the production system usually operates on the
segmented image (Chapters 4 and 5) or with the high-level internal model. In the
rules above, X and Y are variables that must be bound to specific instances of re-
gions in a data base. This process of binding variables or matching can become very
complex, and is one of the two central issues of this kind of inference. The other is
how to choose rules from a set all of whose situations match the current situation
to some degree.

12.3.1 Production System Details

In its simplest form a production system has three basic components:

1. A database
2. Asetofrules
3. Aninterpreter for the rules
The vision data base is usually a set of facts that are known about the visual en-

vironment. Often the rules are considered to be themselves a manipulable part of
the data base. Examples of some visual facts may be

(ABOVE (Region 5) (Region 10))
(SIZE (Region 5) 300)
(SKY (Region 5)) (12.12)
(TOP (Region 5) 255)

The data base is the sole storage medium for all state variables of the system. In
particular, unlike procedurally oriented languages, there is no provision for
separate storage of control state information—no separate program counter, push-
down stack, and so on [Davis and King 1975].

A rule is an ordered pair of patterns with a left-hand side and a right-hand
side. A pattern may involve only data base primitives but usually will have vari-
ables and special forms as subpatterns which are matched against the data base by
the interpreter. For example, applying the following rule to a data base which in-
cludes (12.12),
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(TOP (Region X) (GreaterThan 200))
— (12.13)
(SKY (Region X))

region 5 can be inferred to be sky. The left-hand side matches a set of data-base
facts and this causes (SKY (Region 5)) to be added to the data base. This example
shows the kinds of matching that the interpreter must do: (1) the primitive TOP in
the data base fact matches the same symbol in the rule, (2) (Region X) matched
(Region 5) and X is bound to 5 as a side effect, and (3) (GreaterThan 200) matches
255. Naturally, the user must design his own interpreter to recognize the meaning
of such operational subpatterns.

However, even the form of the rules outlined so far is relatively restrictive.
There is no reason why the right-hand side cannot do almost arbitrary things. For
instance, the application of a rule may result in various productions being deleted
or added from the set of productions; the data base of productions and assertions
thus can be adaptive [Waterman and Hayes-Roth 1978]. Also, the right-hand side
may specify programs to be run which can result in facts being asserted into the
data base or actions performed.

Control in a basic production system is relatively simple: Rules are applied
until some condition in the data base is reached. Rules may be applied in two dis-
tinct ways: (1) a match on the left-hand side of a rule may result in the addition of
the consequences on the right-hand side to the data base, or (2) a match on the
right-hand side may result in the addition of the antecedents in the left-hand side
to the data base. The order of application of rules in the first case is termed forward
chaining reasoning, where the objective is to see if a set of consequences can be
derived from a given set of initial facts. The second case is known as backward
chaining, the objective is to determine a set of facts that could have produced a par-
ticular consequence.

12.3.2 Pattern Matching

In the process of matching rules against the data base, several problems occur:

e Many rule situations may match data base facts

« Rules designed for a specific context may not be appropriate for larger context
« The pattern matching process may become very expensive

« The data base or set of rules may become unmanageably large.

The problem of multiple matches is important. Early systems simply resolved it by
scanning the data base in a linear fashion and choosing the first match, but this is
an ineffective strategy for large data bases, and has conceptual problems as well.
Accordingly, strategies have evolved for dealing with these conflicts. Like most
inference-controlling heuristics, their effectiveness can be domain-dependent,
they can introduce incompleteness into the system, and so on.

On the principle of least commitment, when there are many chances of errors,
one strategy is to apply the most general rule, defined by some metric on the com-
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ponents of the pattern. One simple such metric is the number of elements in a pat-
tern. Antithetical to this strategy is the heuristic of applying the most specific pat-
tern. This may be appropriate where the likelihood of making a false inference is
small, and where specific actions may be indicated (match (MAD DOG) with
(MAD DOG), not with (DOG)). Another popular but inelegant technique is to
exercise control over the order of production application by using state markers
which are inserted into the data base by right-hand sides and looked for by left-
hand sides.

1. A— B\ <marker1>.
2. A— BN\ <marker2>.
3. BA <marker1> — C.
4, BA <marker2> — D.

Here if rule 1 is executed, ‘‘control goes to rule 3,” i.e., rule 3 is now execut-
able, whereas if rule 2 is applied, ‘‘control goes to rule 4.”” Similarly, such control
paradigms as subroutining, iteration and co-routining may be implemented with
production sytems [Rychner 1978].

The use of connectives and special symbols can make matching become arbi-
trarily complex. Rules might be interpreted as allowing all partial matches in their
antecedent clauses [Bajcsy and Joshi 1978]. Thus

(4 B C)— (D)

is interpreted as
(A4BC) VV (BC)V (UB) V (4C)V (4)V (B)V (€) — (D)

where the leftmost actual match is used to compare the rule to others in the case of
conflicts.

The problem of large data bases is usually overcome by structuring them in
some way so that the interpreter applies the rules only to a subset of the data base
or uses a subset of the rules. This structuring undermines a basic principle of pure
rule-based systems: Control should be dependent on the contents of the data base
alone. Nevertheless, many systems divide the data base into two parts: an active
smaller part which functions like the original data base but is restricted in size, and
a larger data base which is inaccessible to the rule set in the active smaller part.
“Meta-rules’” have actions that move situation-action rules and facts from the
smaller data base to the larger one and vice versa. The incoming set of rules and
facts is presumably that which is applicable in the context indicated by the situation
triggering the meta-rule. This two-level organization of rules is used in ‘“black-
board” systems, such as Hearsay for speech-understanding [Erman and Lesser
1975]. The meta-rules seem to capture our idea of ““mental set,” or ‘‘context,” or
“frame” (Section 10.3.1, [Minsky 1975]). The two data bases are sometimes re-
ferred to as short-term memory and long term memory, in analogy with certain
models of human memory.
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12.3.3 An Example

We shall follow the actions of a production system for vision [Sloan 1977; Sloan
and Bajcsy 1979]. The intent here is to avoid a description of all the details (which
may be found in the References) and concentrate on the performance of the sys-
tem as reflected by a sample of its output. The program uses a production system
architecture in the domain of outdoor scenes. The goal is to determine basic
features of the scene, particularly the separation between sky and ground. The in-
terpreter is termed the ““observer’’ and the memory has a two-tiered structure: (1)
short term memory (STM) and (2) long term memory (LTM), a data base of all
facts ever known or established, structured to prefer access to the most recently
used facts. The image to be analyzed is shown in Fig. 12.4, and the action may be
followed in Fig. 12.5. The analysis starts with the initialization command

*(look 100000 100 nil)

This command directs the Observer to investigate all regions that fall in the size
range 100 to 100000, in decreasing order of size. The LTM is initialized to NIL.

our first look at (region 11)

x y rg yb wb size top Dbottom left right
35 2 24 29 6 2132 35 97 2 127

This report is produced by an image-processing procedure that produces
assertions about (region 11). This region is shown highlighted in Fig. 12.5¢c.

Progress Report

regions on this branch:
(11)

context stack:

Fig. 12.4 Outdoor scene to be analyzed with production system.

Sec. 12.3  Production Systems 401



402

Fig. 12.5 Images corresponding to steps in production system analysis. (a) Tex-
ture in the scene. (b) Region 11 outlined. (c) Sky-Ground separation. (d) Skyline.

nil

contents of short term memory:

((far-left (region 11)) (far-right (region 11))
(right (region 11) 127) (left (region 11) 2)
(bottom (region 11) 97) (top (region 11) 35)
(w-b (region 11) minus) (y-b (region 11) zero)
(r-g (region 11) zero) (size (region 11) 2132))

end of progress report

Note that gray-level information is represented as a vector in opponent color space
(Chapter 2), where the components axes are WHITE-BLACK (w-4), RED-
GREEN (r-g), and YELLOW-BLUE (y-5). Three values (plus, zero, minus) are
used for each component. The display above is generated once after every itera-
tion of the Observer. The report shows that (REGION 11) is being investigated;
there is no known context for this investigation; the information about (REGION
11) created by the image-processing apparatus has been placed in STM. The con-
text stack is for information only, and shows a trace of activated sets of rules.
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i think that (far-left (region 11))

i think that (far-right (region 11))

i think that (right (region 11) 127)
i think that (left (region 11) 2)

i think that (bottom (region 11) 97)
i think that (top (region 11) 35)

i think that (size (region 11) 2132)

This portion of the trace shows assertions moving from STM to LTM. They
are reported because this is the first time they have been REMEMBERed (a special
procedure in the Observer).

Progress Report

regions on this branch:

(11)

context stack:

nil

contents of short term memory:
((color (region 11) black))

end of progress report

The assertions created from the region data structure have been digested,
and lead only to the conclusion that (REGION 11) is BLACK, based on a produc-
tion that looks like:

(w-b (region x) minus) A (»-w (region x) zero)
A (&-w (region x) zero) — (color (region x) black)

Progress Report

regions on this branch:

(1

context stack:

nil

contents of short term memory:

((ground (region 11)) (shadow (region 11)))

end of progress report

The observer knows that things that are black are GROUND and SHADOW.
The facts it deduces about region 11 are again stored in the LTM.

Having discovered a piece of ground, the Observer has activated the
GROUND-RULES, and changed context. It now investigates the neighbors of
(REGION 11).

our first look at (region 16)

X y r-g y-b w-b size top bottom left right
58 2 23 30 3 1833 57 119 2 127
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(REGION 16) is a neighbor of (REGION 11), and the observer is trying to deter-
mine whether or not they are sufficiently similar, in both color and texture, to jus-
tify merging them.

Progress Report

regions on this branch:

(1611)

context stack:

(ground)

contents of short term memory:
((texture-difference (region 16) (region 11)))
(color-similar (region 16) (region 11))

(distance (region 16) near) (ground (region 16))
(color (region 16 black))

end of progress report

The Observer decides that (REGION 16) is ground because it is at the bot-
tom of the picture.

The ground-growing process continues, until finally one of the neighbors of a
ground region is a piece of sky. The Observer will not immediately recognize this
region as sky, but will see that a depth discontinuity exists and that the border
between these two regions represents a section of three dimensional skyline.

our first look at (region 8)
x y rg yb wb size top bottom left right

27 2 13 13 33 394 15 38 2 57
Progress Report

regions on this branch:

(8131611)

context stack:

(ground ground ground)

contents of short term memory:

((new-neighbor (region 800) (far-left (region 8))

(right (region 8) 57) (left (region 8) 2) (bottom (region 8) 38)
(top (region 8) 15) (w-b (region 8) zero) (y-b (region 8) minus)
(r-g (region 8) minus) (size (region 8) 394))

end of progress report

texture descriptors for (region 8) are (54 50)
texture descriptors for (region 13) are (44 51)

Texture measurement is appropriate in the context of ground areas.
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Progress Report
regions on this branch:
(8131611)
context stack:
(ground ground ground)
contents of short term memory:
((texture-similar (region 8) (region 13)) (color-difference
(region 8) (region 13)) (color (region 8) blue-green))

end of progress report

(REGION 8) passes the texture similarity test, but fails the color match.
Progress Report

regions on this branch:

(8131611)

context stack:

(ground ground ground)

contents of short term memory:

((darker (region 13) (region 8)) (brighter (region 8) (region
13))

(yellower (region 13) (region 8)) (bluer (region 8) (region 13))
(redder (region 13) 13)

(below (region 13) (region 8)) (above (region 8) (region 13)))

end of progress report
checking the border between (region 13) and (region 8)

Progress Report

regions on this branch:

(8131611)

context stack:

(skyline ground ground ground)

contents of short term memory:

((segments built) (skyline-segment ((117 42)) (region 13)
(region 8)) (skyline-segment ((14 40) (13 40)) (region 13)
(region 8)))

end of progress report

Progress Report

regions on this branch:
8131611)

context stack:

(skyline ground ground ground)
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contents of short term memory:
((peak (14 40)) (peak (17 42)))

end of progress report

Two local maxima have been discovered in the skyline. On the basis of a
depth judgment, these peaks are correctly identified as treetops.

The analysis continues until all the major regions have been analyzed. The
sky-ground separation is shown in Fig. 12.5a and skyline in Fig. 12.5e.

In most cases, complete analysis of the image follows from the context esta-
blished by the first (largest) region. This implies that initial scanning of such
scenes can be quite coarse, and very simple ideas about gross context are enough
to get started. Once started, inferences about local surroundings lead the
Observer’s attention over the entire scene, often returning many times to the same
part of the image, each time with a bit more knowledge.

12.3.4 Production System Pros and Cons

In their pure form, the productions of production systems are completely “‘modu-
lar,”” and are themselves independent of the control process. The data base of
facts, or situations, is unordered set accessed in undetermined order to find one
matching some rule. The rule is applied, and the system reports the search for a
matching situation and situation-action pair (rule). This completely unstructured
organization of knowledge could be a model for the human learning of ‘‘facts”’
which become available for use by some associative mechanism that finds relevant
facts in our memories. The hope for pure production systems is that performance
will degrade noncatastrophically from the deletion of rules or facts, and that the
rules can interact in synergistic and surprising ways. A learning curve may be simu-
lated by the addition of productions. Thus one is encouraged to experiment with
how knowledge may best be broken up into disjoint fragments that interact to pro-
duce intelligent behavior.

Together with the modularity of productions in a simple system, there is a
corresponding simplicity in the overall control program. The pure controller sim-
ply looks at the data base and somehow finds a matching situation (left-hand side)
among the productions, applies the rule, and cycles. This simple structure remains
constant no matter how the rules change, so any nondeterminism in the perfor-
mance arises from the matcher, which may find different left hand side matches for
sets of assertions in the data base.

The productions usually have a syntax that is machine-readable. Their se-
mantics is similarly constrained, and so it begins to seem hopeful that a program
(perhaps fired up by a production) could reason about the rules themselves, add
them, modify them, or delete them. This is in contrast to the situation with pro-
cedurally embedded knowledge (Section 10.1.3), because it is difficult or impossible
for programs to answer general questions about other programs. Thus the claim is
that a production system can more easily reason about itself than can many other
knowledge representation systems.

Ch. 12 Inference



Productions often interact in ways that are not foreseen. This can be an ad-
vantage or a drawback, depending on the behavior desired. The pattern-matching
control structure allows knowledge to be used whenever it is relevant, not only
when the original designer thought that it might be. Symbiotic interaction of
knowledge may also produce unforeseen insights. Production systems are a pri-
mary tool of knowledge engineering, an enterprise that attempts to encode and use
expert knowledge at such tasks as medical diagnosis and interpretation of mass
spectrograms [Lindsay et al. 1980; Buchanan and Mitchell 1978; Buchanan and
Feigenbaum 1978; Shortliffe 1976; Aikins 1980].

There are many who are not convinced that production systems really offer
the advantages they initially seem to. They use the following sorts of arguments.

The pure form of production system is almost never seen doing anything use-
ful. In particular, the production system is most naturally a forward-chaining infer-
ence system, and one must exercise restraints and guidelines on it to keep it from
running away and deducing lots of irrelevant facts instead of doing useful work. Of
course, production systems may be written to do backward chaining by hypothesiz-
ing a RHS and seeing which LHS must be true for the desired RHS to occur (the
process may be iterated to any depth). In practical systems based on production
systems, there is implicit or explicit ordering of production rules so the matcher
tries them in some order. Often the ordering is determined in a rather complex and
dynamic manner, with groups of related rules being more likely to be applied to-
gether, the most recently used rule not allowed to be reapplied immediately, and
so on. In fact, many production systems’s controllers have all the control structure
tricks mentioned above (and more) built into them; the simple and elegant ‘‘bag of
rules’’ ideal is inadequate for realistic examples. When the rules are explicitly writ-
ten with an idiosyncratic control structure in mind, the system can become unprin-
cipled and inexplicable.

On the same lines, notice how difficult it is to specify a time-ordered se-
quence of actions by a completely modular set of rewriting rules. It is unnatural to
force knowledge about processes that may contain iteration, tests, and recursion
into the form of independent situation—action rules. A view that is more easily de-
fensible is that knowledge about procedures for perception should be encoded as
(embedded in) computer procedures, not assertions or rules. The causal chain that
dictates that some actions are best performed before others is implicit in the
sequential execution of procedures, and the language constraints, such as iterate
and test, test and branch, or subroutine invocation, are all fairly natural ways to
think about solving certain problems. Production systems can in fact be made to
perform all these procedural-like functions, but only through an abrogation of the
ideal of modular, unordered, matching-oriented rule invocation which is the pro-
duction system ideal. The question turns into one of aesthetics; how to use produc-
tions in a good style, and to work with their philosophy instead of against it.

To summarize the previous two objections: Production-based knowledge sys-
tems may in practice be no more robust, easily modified, modular, extensible,
understandable, or self-understanding than any other (say, procedural) system un-
less great care is taken. After a certain level of complexity is reached, they are
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likely to be as opaque as any other scheme because of the control-structuring
methods that must be imposed on the pure production system form.

12.4 SCENELABELING AND CONSTRAINT RELAXATION

408

The general computational problem of assigning labels consistently to objects is
sometimes called the “‘labeling problem,’’ and arises in many contexts, such as
graph and automata homomorphism, graph coloring, Latin square generation, and
of course, image understanding [Davis and Rosenfeld 1976; Zucker 1976; Haralick
and Shapiro 1979]. ““Relaxation labeling,”” ‘‘constraint satisfaction,” and
“‘cooperative algorithms’’ are natural implementations for labeling, and their po-
tential parallelism has been a very influential development in computer vision. As
should any important development, the relaxation paradigm has had an impact on
the conceptualization as well as on the implementation of processes.

Cooperating algorithms to solve the labeling problem are useful in low level
vision (e.g., line finding, stereopsis) and in intermediate-level vision (e.g., line-
labeling, semantics-based region growing). They may also be useful for the
highest-level vision programs, those that maintain a consistent set of beliefs about
the world to guide the vision process.

Section 12.4.1 presents the main concepts in the labeling problem. Section
12.4.2 outlines some basic forms that ‘‘discrete labeling’’ algorithms can take. Sec-
tion 12.4.3 introduces a continuing example, that of labeling lines in a line draw-
ing, and gives a mathematically well-behaved probabilistic “‘linear operator’’ label-
ing method. Section 12.4.4 modifies the linear operator to be more in accord with
our intuitions, and Section 12.4.5 describes relaxation as linear programming and
optimization, thereby gaining additional mathematical rigor.

12.4.1 Consistent and Optimal Labelings

All labeling problems have the following notions.

1. A set of objects. In vision, the objects usually correspond to entities to be la-
beled, or assigned a ‘““‘meaning.”

' 2. A finite set of relations between objects. These are the sorts of relations we saw

in Chapter 10; in vision, they are often geometric or topological relations
between segments in a segmented image. Properties of objects are simply
unary relations. An input scene is thus a relational structure.

3. A finite set of labels, or symbols associated with the ‘“‘meanings’ mentioned
above. In the simplest case, each object is to be assigned a single label. A label-
ing assigns one or more labels to (a subset of) the objects in a relational struc-
ture. Labels may be weighted with ‘‘probabilities’’; a (label, weight) pair can
indicate something like the ‘‘probability of an object having that label.”’

4. Constraints, which determine what labels may be assigned to an object and
what sets of labels may be assigned to objects in a relational structure.
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Sec. 12.4 Scene Labeling and Constraint Relaxation

A basic labeling problem is then: Given a finite input scene (relational struc-
ture of objects), a set of labels, and a set of constraints, find a ‘‘consistent label-
ing.”” That is, assign labels to objects without violating the constraints. We saw this
problem in Chapter 11, where it appeared as a matching problem. Here we shall
start with the discrete labeling of Chapter 11 and proceed to more general labeling
schemes.

As a simple example, consider the indoor scene of Fig. 12.6. The segmented
office scene is to have its regions labeled as Door, Wall, Ceiling, Floor, and Bin,
with the obvious interpretation of the labels. Here are some possible constraints,
informally stated. Note that these particular constraints are in terms of the input
relational structure, not the world from which the structure arose. A more com-
plex (but reasonable) situation arises if scene constraints must be derived from
rules about the three dimensional domain of the scene and the imaging process.
Unary constraints use object properties to constrain labels; n-ary constraints force
sets of label assignments to be compatible.

Unary constraints

1. The Ceiling is the single highest region in the image.
2. The Floor must be checkered.

DBFWC
DBFWC
DBFWC
DB
'EW DB
FW
c
DBFWC
L
(a)
c
L w
D
B
F

(c)

Fig. 12.6 A stylized *“‘segmented office scene.”” The regions are the objects to be
assigned labels D, B, F, W, C (Door, Bin, Floor, Wall, Ceiling). In (a), each ob-
ject is assigned all labels. In (b) unary constraints have been applied (see text). In
(c), relational constraints have been applied, and a unique label for each region
results.
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N-ary constraints

3. A Wallis adjacent to the Floor and Ceiling.
4. A Door is adjacent to the Floor and a Wall.
5. A Binisadjacent to a Floor.

6. A Binis smaller than a Door.

Obviously, there are many constraints on the appearance of segments in such
a scene; which ones to use depends on the available sensors, the ease of computa-
tion of the relations and their power in constraining the labeling. Here the applica-
tion of the constraints (Fig. 12.6) results in a unique labeling. Although the con-
straints of this example are purely for illustration, a system that actually performs
such labeling on real office scenes is described in [Barrow and Tenenbaum 1976].

Labelings may be characterized as inconsistent or consistent. A weaker notion
is that of an optimal labeling. Each of these adjectives reflects a formalizable pro-
perty of the labeling of a relational structure and the set of constraints. If the con-
straints admit of only completely compatible or absolutely incompatible labels,
then a labeling is consistent if and only if all its labels are mutually compatible, and
inconsistent otherwise. One example is the line labels of Section 9.5; line drawings
that could not be consistently labeled were declared ‘‘impossible.’” Such a black-
and-white view of the scene interpretation problem is convenient and neat, but it is
sometimes unrealistic. Recall that one of the problems with the line-labeling ap-
proach of Chapter 9 is that it does not cope gracefully with missing lines; strictly,
missing lines often mean ‘‘impossible’’ line drawings. Such an uncompromising
stance can be modified by introducing constraints that allow more degrees of com-
patibility than two (wholly compatible or strictly incompatible). Once this is done,
both consistent and inconsistent labelings may be ranked on compatibility and
likelihood. It is possible that a formally inconsistent labeling may rank better than a
consistent but unlikely labeling.

Some examples are shown in Fig. 12.7. In 12.7b, the ‘‘inconsistent’’ labels
are not nonsensical, but can only arise from (a very unlikely) accidental alignment
of convex edges with three of the six vertices of a hexagonal hole in an occluding
surface. The vertices that arise are not all included in the traditional catalog of legal
vertices, hence the “‘inconsistent’’ labeling. The ‘‘floating cube’’ interpretation is
consistent, but the “‘sitting cube”’ interpretation may be more likely if support and
gravity are important concepts in the system. In Fig.12.7c, the scene with a missing
line cannot be consistent according to the traditional vertex catalog, but the “‘in-
consistent’ labels shown are still the most likely ones. Labelings are only “‘con-
sistent,”” “‘inconsistent,” or “‘optimal’’® with respect to a given relational structure
of objects (an input scene) and a set of constraints. These examples are meant to
be illustrative only.

12.4.2 Discrete Labeling Algorithms
Let us consider the problem of finding a consistent set of labels, taken from a

discrete finite set. This problem may be placed in an abstract algebraic context
[Haralick and Kartus 1978; Haralick 1978; Haralick et al. 1978]. Perhaps the sim-
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Fig. 12.7 Three scenes (A, B, C) and their labelings. Labelings are only “‘consistent,”
“inconsistent,”” or ‘‘optimal® with respect to a given relational structure of objects (an
input scene) and a set of constraints. These examples are meant to be illustrative only.
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plest way to find a consistent labeling of a relational structure (we shall often say
““labeling of a scene”) is to apply a depth-first tree search of the labeling possibili-
ties, as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently —in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label for a previously labeled object.

This labeling algorithm can be computationally inefficient. First, it does not
prune the search tree very effectively. Second, if it is used to generate all con-
sistent labelings, it does not recognize important independences in the labels. That
is, it does not notice that conclusions reached (labels assigned) in part of the tree
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After each
such change, the new labeling is used to determine which object to process next.
This technique has proved useful in some applications [Feldman and Yakimovsky
1974]. :

Assign all possible labels to each object in accordance with

unary constraints.

Iterate until a globally consistent labeling is found:
Somehow pick an object to be processed.
Modify its labels to be consistent with the current
labeling.

A parallel iterative algorithm adjusts all object labels at once; we have seen
this approach in several places, notably in the ‘““Waltz filtering algorithm’” of Sec-
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.

Iterate until a globally consistent labeling is found:

In parallel, eliminate from each object’s label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replaced
with an asynchronous interaction of labeled objects. Such interaction may be imple-
mented with multiple cooperating processes or in a data base with ‘““demons’’ (Ap-
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pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaum
1976]. Here imagine that each object is an active process that knows its own label
set and also knows about the constraints, so that it knows about its relations with
other objects. The program of each object might look like this.

IfT have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, then I change my label set to be
consistent, else I suspend myself.

Whenever I change my label set, I activate other objects
whose label set may be affected, then I suspend myself.

To use such a set of active objects, one can give each one all possible labels
consistent with the unary constraints, establish the constraints so that the objects
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a graph
structure [Freuder 1978]. Each object to be labeled initially corresponds to a node
in the graph, which contains all legal labels according to unary constraints. Higher
order constraints involving more and more nodes are incorporated successively as
new nodes in the graph. At each step the new node constraint is propagated, that is,
the graph is checked to see if it is consistent with the new constraint. With the in-
troduction of more constraints, node pairings that were previously consistent may
be found to be inconsistent. As an example consider the following graph coloring
problem: color the graph in Fig. 12.8 so that neighboring nodes have different
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8a,
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node con-
straints are given, order two constraints are synthesized as follows: (1) make a
node for each node pairing; (2) add all labelings that satisfy the constraint. The
result is shown in Fig. 12.8b. The single constraint of order three is synthesized in
the same way, but now the graph is inconsistent: the match ¢ ¥, Z: Red,Green”’ is
ruled out by the third order legal label set (RGY,GRY). To restore consistency the
constraint is propagated through node (Y,Z) by deleting the inconsistent labelings.
This means that the node constraint for node Z is now inconsistent. To remedy
this, the constraint is propagated again by deleting the inconsistency, in this case
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,Z:
Red,Green) and finally the network is consistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs after
every order greater than one. Of course it may be impossible to find a consistent
graph. This is the case when the labels for node Z in our example are changed from
(G, V) to (G, R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for the
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Fig. 12.8 Coloring a graph by building constraints of increasingly higher order.

object. However, which of an object’s multiple labels goes with which of another
object’s multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain-
ing after the relaxation.

Convergence properties of relaxation algorithms are important; convergence
means that in some finite time the labeling will “*settle down”’ to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are el-
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable.
In schemes where labels are added, or where labels have complex structure (such
as real number ‘“‘weights” or ‘‘probabilities’’), convergence is often not
guaranteed mathematically, though such schemes may still be quite useful. Some
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.
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It is possible to use relaxation schemes without really considering their
mathematical convergence properties, their semantics (What is the semantics of
weights attached to labels—are they probabilities?), or a clear definition of what
exactly the relaxation is to achieve (What is a good set of labels?). The fact that
some schemes can be shown to have unpleasant properties (such as assigning
nonzero weights to each of two inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that their
behavior is not formally characterizable or possibly even predictable. As relaxation
computations become more common, the less formalizable, less predictable, and
less conceptually elegant forms of relaxation computations will be replaced by
better behaved, more thoroughly understood schemes.

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuous
weights or supposition values on labels. In Sections 12.4.3 and 12.4.4 we follow
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum of
label weights for each object be constrained to sum to unity. Then the weights are
reminiscent of probabilities, reflecting the “‘probability that the label is correct.”
When the labeling algorithm converges, a label emerges with a high weight if it oc-
curs in a probable labeling of the scene. Weights, or supposition values, are in fact
hard to interpret consistently as probabilities, but they are suggestive of likelihoods
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value of a probability density function. Let a relational structure
with n objects be given by a;, i=1, ..., n, each with m discrete labels A, ..., A,,.
The shorthand p; () denotes the weight, or (with the above caveats) the *‘proba-
bility’* that the label A (actually A , for some k) is correct for the object ;. Then the
probability axioms lead to the following constraints,

0<p (M) g1 (12.14)
Xp () =1 (12.15)

The labeling process starts with an initial assignment of weights to all labels
for all objects [consistent with Egs. (12.14) and (12.15)]. The algorithm is parallel
iterative: It transforms all weights at once into a new set conforming to Eqgs.
(12.14) and (12.15), and repeats this transformation until the weights converge to
stable values.

Consider the transformation as the application of an operator to a vector of la-
bel weights. This operator is based on the compatibilities of labels, which serve as
constraints in this labeling algorithm. A compatibility p;; looks like a conditional
probability.

:E.p,-j- AA) =1 forall i, j, A’ (12.16)
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pi WN) =1 iff A=A, elseO. (12.17)

The p; (A |A") may be interpreted as the conditional probability that object g; has la-
bel A given that another object a; has label A". These compatibilities may be gath-
ered from statistics over a domain, or may reflect a priori belief or information.

The operator iteratively adjusts label weights in accordance with other
weights and the compatibilities. A new weight p;(A) is computed from old weights
and compatibilities as follows.

pA) =Z ¢; { Z py WA p;(AD) (12.18)
J A

The ¢;; are coefficients such that
/4

In Eq. (12.18), the inner sum is the expectation that object g, has label A, given the
evidence provided by object a;. p; () is thus a weighted sum of these expecta-
tions, and the ¢; are the weights for the sum.

To run the algorithm, simply pick the p,; and ¢, , and apply Eq. (12.18) re-
peatedly to the p; until they stop changing. Equation (12.18) is in the form of a ma-
trix multiplication on the vector of weights, as shown below; the matrix elements
are weighted compatibilities, the ¢;p;;. The relaxation operator is thus a matrix; if it
is partitioned into several component matrices, one for each set of non-interacting
weights, linear algebra yields proofs of convergence properties [Rosenfeld et al.
1976]. The iteration for the reduced matrix for each component does converge,
and converges to the weight vector that is the eigenvector of the matrix with eigen-
value unity. This final weight vector is independent of the initial assignments of la-
bel weights; we shall say more about this later.

An Example

Let us consider the input line drawing scene of Fig. 12.9a used in [Rosenfeld
et.al. 1976]. The line labels given in Section 9.5 allow several consistent labels as
shown in Fig. 12.9b-e, each with a different physical interpretation.

In the discrete labelling ‘““filtering’’ algorithm presented in Section 9.5 and
outlined in the preceding section, the relational structure is imposed by the neigh-
bor relation between vertices induced by their sharing a line. Unary constraints are
imposed through a catalog of legal combinations of line labels at vertices, and the
binary constraint is that a line must not change its label between vertices. The algo-
rithm eliminates inconsistent labels.

Let us try to label the sides of the triangle a;, a,, and a3 in Fig. 12.9 with the
solid object edge labels {>, <, +, —]. To do this requires some ‘‘conditional prob-
abilities”” for compatibilities p; (A [A"), so let us use those that arise if all eight in-
terpretations of Fig. 12.9 are equally likely. Remembering that

2 (X|Y) = % (12.20)
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Fig. 12.9 A triangle and its possible
labels. (a) Edge names. (b) Floating.

(c) Flap folded up. (d) Triangular hole.
(e) Flap folded down.

and taking p (X, ¥) to mean the probability that labels X and ¥ occur consecutively
in clockwise order around the triangle, one can derive Table 12.2. Of course, we
could choose other compatibilities based on any considerations whatever as long as
Eqs. (12.16) and (12.17) are preserved.

Table 12.2 shows that there are two noninteracting components, {—,>} and
{+,<]. Consider the first component that consists of the weight vector

[p1(>), pl(—), p2(>), pz(_), p3(>), p;(—)] (12.21)

The second is treated similarly. This vector describes weights for the subpopula-
tion of labelings given by Fig. 12.9b and ¢. The matrix M of compatibilities has
columns of weighted p;;.

[ClEP11(> 1>) capn (>]>)
cupn(> =) cupu(>1-)
cp12(>1>)  copn(>1[>) .-

M= cip(>-)  ecppn(>-) .- a2
ciapi3(>1>)  capna(>1>)

cpis(>1-)  caapn(>1-) J
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Table 12.2

Ao pOp A p(A)

=

A%
'V IV

=
QI -

+A+ALT T VYV

A T oL o
— = R
Sodooooo

|

+ Aot

o™=
QI =R

++ A A

If we let ¢; = Jsforall i, j, then

1 0 2% % k%

0O 1 1 0 1 0
1 B B 1 0 % B

M==11 001 1 0

b % B oL oo

1 01 0 0 1

An analytic eigenvector calculation (Appendix 1) shows that the M of Eq.
(12.23) yields (for any initial weight vector) the final weight vector of

(34, Y, %, %, %, %] (12.24)

Thus each line of the population in the component we chose (Fig. 12.9b and ¢) has
label > with “probability’® %, —with ‘‘probability’’ %. In other words, from an ini-
tial assumption that all labelings in Fig. 12.9b and ¢ were equally likely, the system
of constraints has ‘‘relaxed’’ to the state where the ‘““most likely’” labeling is that of
Fig. 12.9b, the floating triangle.

This relaxation method is a crisp mathematical technique, but it has some
drawbacks. It has good convergence properties, but it converges to a solution en-
tirely determined by the compatibilities, leaving no room for preferences or local
scene evidence to be incorporated and affect the final weights. Further, the algo-
rithm perhaps does not exactly mirror the following intuitions about how relaxa-
tion should work.

(12.23)
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1. Increase p,(A) if high probability labels for other objects are compatible with
assignment of A to a;.

2. Decrease p,(7) if high probability labels are incompatible with the assignment
of A to a;.

3. Labels with low probability, compatible or incompatible, should have little
influence on p;(\).

However, the operator of this section decreases p;(\) the most when other labels
have both low compatibility and low probability. Thus it accords with (1) above,
but not with (2) or (3). Some of these difficulties are addressed in the next section.

12.4.4 A Nonlinear Operator

The Formulation

If compatibilities are allowed to take on both positive and negative values,
then we can express strong incompatibility better and obtain behavior more like
(1), (2), and (3) just above. Denote the compatibility of the event *‘label A on a,”
with the event ““label X on a,” by r; (A, \"). If the two events occur together often,
r; should be positive. If they occur together rarely, r; should be negative. If they
are independent, r; should be 0. The correlation coefficient behaves like this, and
the compatibilities of this section are based on correlations (hence the the notation
te for compatibilities). The correlation is defined using the covariance.

cov(X, Y)=p(X, Y) — p(X)p(Y)

Now define a quantity o which is like the standard deviation

o(X) = [pX) — (p(xX)* (12.25)
then the correlation is the normalized covariance
cov(X, Y)
X Y)= —"7—2—- 2.2
cor( ) > (Do (1) (12.26)

This allows the formulation of an expression precisely analogous to Eq.
(12.18), only that r;; instead of p;; is used to obtain a means of calculating the posi-
tive or negative change in weights.

GoM) =T [Ty, A2 (12.27)
y A’

In Egs. (12.27)-(12.29) the superscripts indicate iteration numbers. The weight
change (Eq. 12.27) could be applied as follows,

pEDO) = OO + g0 ) (12.28)

but then the resultant label weights might not remain nonnegative. Fixing this in a
straightforward way yields the iteration equation

M + ¢ ©0)]

Epj(k)()\)[l + qi(“(A)] (12.29)
A

pi(k% D) =
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The convergence properties of this operator seem to be unknown, and like
the linear operator it can assign nonzero weights to maximally incompatible label-
ings. However, its behavior can accord with intuition, as the following example
shows.

An Example

Computing the covariances and correlations for the set of labels of Fig.
12.9b-e yields Table 12.3.

Figure 12.10 shows the nonlinear operator of Eq.(12.29) operating on the ex-
ample of Fig. 12.9. Figure 12.10 shows several cases.
1. Equal initial weights: convergence to apriori probabilities (Js, 7, s, Y5).

2. Equal weights in the component {>,—}: convergence to ‘““most probable”’
floating triangle labeling.

3. Slight bias toward a flap labeling is not enough to overcome convergence to the
“most probable” labeling, as in (2).

Like (3), but greater bias elicits the ““improbable’’ labeling.

5. Contradicatory biases toward ‘‘improbable’ labelings: convergence to ‘“most
probable’ labeling instead.

6. Like (5), but stronger bias toward one ‘‘improbable’” labeling elicits it.

7. Bias toward one of the components {>,—]}, {<,+] converges to most prob-
able labeling in that component.

8. Like (7), only biased to less probable labelling in a component.

12.4.5 Relaxation as Linear Programming

The Idea

Linear programming (LP) provides some useful metaphors for thinking
about relaxation computations, as well as actual algorithms and a rigorous basis
[Hummel and Zucker 1980]. In this section we follow the development of [Hinton
1979].

Table 12.3

A Ao COV(K;, )\2) COT(A[, )\2)

N Tos hs

> - Yea 5/V/105
- > 64 5/4/105
= —Yoa —h
> < ~ o4 —¥s
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a, p,(>) “e e

(¥4 4

a a2
2 :
a, ag ) s o ng’)
(a) (b)
After 2t0 3 After 20 to 30

Case Initial weights iterations iterations Limit

025 0.25 0.25 0.25 03 03 02 02 0.33 033 0.17 0.7 0.37 0.37 0.13 0.13
(1 0.25 0.25 026 0.25 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13

025 0.25 0.25 0.25 03 03 02 0.2 0.33 033 0.17 0.17 0.37 037 0.13 0.13

0.5 0 05 0 0.8 0 02 0 098 0 02 0 1 0 0 0
{2) 0.5 0 05 0 0.8 0 02 0 098 0 02 0 1 0 0 0

0.5 0 05 0 0.8 0 02 0 098 0 02 0 1 (1] 0 0

0.5 0 05 0 062 0 037 0 1 0 0 0 1 0 0 0
(3) 0.4 0 06 0 049 0 051 0 097 0 003 O 1 0 0 0

0.5 0 05 0 062 0 037 0 1 0 0 0 1 0 0 0

0.5 0 05 0 064 0 036 0O 1 0 0 0 1 0 0 0
(4) 0.3 o 07 0 03 0 064 0O 007 0 093 0 0 0 1 0

0.5 0 05 0 064 0 036 O 1 0 0 0 1 0 0 0

0.3 0 07 0 0.5 0 05 0 095 0 005 O 1 0 0 0
{5) 0.3 0 0.7 0 0.5 0 05 0 095 0 005 O 1 0 0 0

0.5 0 05 0 084 0 016 0 1 0 0 0 1 0 0 0

0.2 0 08 0 0.3 0 07 0 006 0 094 0 0 0 1 0
{6) 0.3 0 0.7 0 051 0 049 O 1 0 0 0 1 0 0 0

0.5 0 05 0 083 0 017 © 1 0 0 ] 1 0 0 0

03 02 03 02 0.41 0.13 032 0.14 098 0 002 0 1 Q 0 0
{7) 0.3 02 03 0.2 0.41 0.13 0.32 0.14 098 0 002 O 1 0 0 0

03 02 03 02 0.41 0.13 0.32 0.14 098 0 002 0O 1 0 0 0

03 02 03 02 0.38 0.17 0.29 0.16 1 0 0 0 1 0 0 0
(8) 0.25 0.25 0.25 0.25 0.35 0.20 0.25 0.20 1 (4] 0 0 1 0 0 0

02 02 04 02 0.23 0.16 0.45 0.16 0.2 0 08 0 0 0 1 0

(c)

Fig. 12.10 The nonlinear operator produces labelings for the triangle in (a). (b) shows
how the label weights are displayed, and (c) shows a number of cases (see text).
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To put relaxation in terms of linear programming, we use the following trans-

lations.

LABEL WEIGHT VECTORS ==> POINTS IN EUCLIDEAN N-SPACE. Each
possible assignment of a label to an object is a Aypothesis, to which a weight
(supposition value) is to be attached. With N hypotheses, an N-vector of
weights describes a labeling. We shall call this vector a (hypothesis or label)
weight vector. For m labels and n objects, we need at most Euclidean nm-space.

CONSTRAINTS == INEQUALITIES. Constraints are mapped into /inear ine-
qualities in hypothesis weights, by way of various identities like those of ‘‘fuzzy
logic”” [Zadeh 1965]. Each inequality determines an infinite half-space. The
weight vectors within this half-space satisfy the constraint. Those outside do
not. The convex solid that is the set intersection of all the half-spaces includes
those weight vectors that satisfy all the constraints: each represents a ‘‘con-
sistent’” labeling. In linear programming terms, each such weight vector is a
Sfeasible solution. We thus have the usual geometric interpretation of the linear
programming problem, which is to find the best (optimal) consistent (feasible)
labeling (solution, or weight vector). Solutions should have integer-valued (1-
or 0-valued) weights indicating convergence to actual labelings, not probabilis-
tic ones such as those of Section 12.4.3, or the one shown in Fig. 12.10c¢, case 1.

HYPOTHESIS PREFERENCES == PREFERENCE VECTOR. Often some
hypotheses (label assignments) are preferred to others, on the basis of a priori
knowledge, image evidence, and so on. To express this preference, make an
N-dimensional preference vector, which expresses the relative importance
(preference) of the hypotheses. Then
« The preference of a labeling is the dot product of the preference vector
and the weight vector (it is the sum for all hypotheses of the weight of
each hypothesis times its preference).

« The preference vector defines a preference direction in N-space. The op-
timal feasible solution is that one ‘‘farthest’” in the preference direc-
tion. Let x and y be feasible solutions; they are N-dimensional weight
vectors satisfying all constraints. If z = x — y has a component in the
positive preference direction, then x is a better solution than y, by the
definition of the preference of a labeling.

It is helpful for our intuition to let the preference direction define a ““down-
ward”’ direction in N-space as gravity does in our three-space. Then we wish to
pick the lowest (most preferred) feasible solution vector.

LABELING =>OPTIMAL SOLUTION. The relaxation algorithm must solve
the linear programming problem—find the best consistent labeling. Under the
conditions we have outlined, the best solution vector occurs generally at a ver-
tex of the N-space solid. This is so because usually a vertex will be the “‘lowest”’
part of the convex solid in the preference direction. It is a rare coincidence that
the solid “‘rests on a face or edge,”” but when it does a whole edge or face of the
solid contains equally preferred solutions (the preference direction is normal to
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the edge or face). For integer solutions, the solid should be the convex hull of
integer solutions and not have any vertices at noninteger supposition values.

The “‘simplex algorithm”’ is the best known solution method in linear pro-
gramming. It proceeds from vertex to vertex, seeking the one that gives the op-
timal solution. The simplex algorithm is not suited to parallel computation, how-
ever, so here we describe another approach with the flavor of hill-climbing optimi-
zation. Basically, any such algorithm moves the weight vector around in N-space,
iteratively adjusting weights. If they are adjusted one at a time, serial relaxation is
taking place; if they are all adjusted at once, the relaxation is parallel iterative. The
feasible solution solid and the preference vector define a ““cost function™ over all
N-space, which acts like a potential function in physics. The algorithm tries to
reach an optimum (minimum) value for this cost function. As with many optimi-
zation algorithms, we can think of the algorithm as trying to simulate (in N-space)
a ball bearing (the weight vector) rolling along some path down to a point of
minimum gravitational (cost) potential. Physics helps the ball bearing find the
minimum; computer optimization techniques are sometimes less reliable.

Translating Constraints to Inequalities

The supposition values, or hypothesis weights, may be encoded into the in-
terval [0, 1], with 0 meaning *‘false,”” 1 meaning ‘‘true.”’ The extension of weights
to the whole interval is reminiscent of “‘fuzzy logic,”” in which truth values may be
continuous over some range [Zadeh 1965]. As in Section 12.4.3, we denote suppo-
sition values by p(-); H, A, B, and C are label assignment events, which may be
considered as hypotheses that the labels are correctly assigned. =, V/, A, => and
<= are the usual logical connectives relating hypotheses. The connectives allow
the expression of complex constraints. For instance, a constraint might be ““Label
x as ‘y’ if and only if z is labeled ‘w’ or ¢ is labelled ‘v’.>’ This constraint relates
three hypotheses: iy (xis “y°), ha: (zis “w™), hy: (gis ““v°). The constraint is
then h; < (/’!2\/ h3)

Inequalities may be derived from constraints this way.

1. Negation. p(H) = 1—p("(H)).

2.  Disjunction. The sums of weights of the disjunct are greater than or equal to
one. p(4V BV ...\ O) gives the inequality p(4) + p(B) + ... + p(C) =
1.

3. Conjunction. These are simply separate inequalities, one per conjunct. In par-
ticular, a conjunction of disjunctions may be dealt with conjunct by conjunct,
producing one disjunctive inequality per conjunct,

4. Arbitrary expressions. These must be put into conjunctive normal form
(Chapter 10) by rewriting all connectives as A’s and \/’s. Then (3) applies.

As an example, consider the simple case of two hypotheses 4 and B, with the
single constraint that 4 ==> B. Applying rules 1 through 4 results in the following
five inequalities in p(4) and p (B); the first four assure weights in [0, 1]. The fifth
arises from the logical constraint, since 4 => Bis the same as B\/ “(4).
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0<p(4)
p4) €1
0< p(B)
p(B) <1
pB)+ (0 —-p(4)) =21 or p(B)=p4)

These inequalities are shown in Fig. 12.11. As expected from the => con-
straint, optimal feasible solutions exist at: (1,1) or (4,B8); (0,1) or ((4),B); (0,0)
or ("(4), “(B)). Which of these is preferred depends on the preference vector. If
both its components are positive, (4, B) is preferred. If both are negative, ("(4),
“(B)) is preferred, and so on.

A Solution Method

Here we describe (in prose) a search algorithm that can find the optimal feasi-
ble solution to the linear programming problem as described above. The descrip-
tion makes use of the mechanical analogy of an N-dimensional solid of feasible
solutions, oriented in N-space so that the preference vector induces a ““downward’”
direction in space. The algorithm attempts to move the vector of hypothesis
weights to the point in space representing the feasible solution of maximum prefer-
ence. It should be clear that this is a point on the surface of the solid, and unless the
preference vector is normal to a face or edge of the solid, the point is a unique
“‘lowest’’ vertex.

To establish a potential that leads to feasible solutions, one needs a measure
of the infeasibility of a weight vector for each constraint. Define the amount a vec-
tor violates a constraint to be zero if it is on the feasible side of the constraint hy-
perplane. Otherwise the violation is the normal distance of the vector to the hyper-
plane. If h; is the coefficient vector of the i hyperplane (Appendix 1) and w the
weight vector, this distance is

d=w:- h,» (1230)

plQ) =p (P}
(1, 0) (1, 1]'2 &

SR pl@) <1

pl@) X
Fig. 12.11 The feasible region for two
\\ hypotheses A and B and the constraint A
(0,0) Z \\\\ p(Q) >0 B. Optimal solutions may occur at the

c‘.'- Vs three vertices. The preferred vertex will
o (P) ——> = be that one farthest in the direction of
,66\ g the preference vector, or lowest if the
piPYZ0 pP =1 preference vector defines “down.”
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If we then define the infeasibility as

v
I= 2l (12.31)
i 2
then 0//dd; = d; is the rate the infeasibility changes for changes in the violation.
The force exerted by each constraint is proportional to the normal distance from
the weight vector to the feasible region defined by that constraint, and tends to pull
the weight vector onto the surface of the solid.

Now add a weak “‘gravity-like”” force in the preference direction to make the
weight vector drift to the optimal vertex. At this point an optimization program
might perform as shown in Fig. 12.12.

Figure 12.12 illustrates a problem: The forces of preference and constraints
will usually dictate a minimum potential outside the solid (in the preference direc-
tion). Fixes must be applied to force the weight vector back to the closest (presum-
ably the optimum) vertex. One might round high weights to 1 and low ones to 0, or
add another local force to draw vectors toward vertices.

Examples

An algorithm based on the principles outlined in the preceeding section was
successfully used to label scenes of “‘puppets’ such as Fig. 12.13 with body parts
[Hinton 1979].

The discrete, consistency-oriented version of line labeling may be extended
to incorporate the notion of optimal labelings. Such a system can cope with the ex-
plosive increase in consistent labelings that occurs if vertex labels are included for
cases of missing lines, accidental alignment, or “‘two-dimensional’’ objects such as
folded paper. It allows modeling of the fact that human beings do not “‘see’ all
possible interpretations of scenes with accidental alignments. If labelings are given

7

Best vertex

Best vertex

Feasible
region

Feasible
region

T

Preference
vector

T

Preference
S vector

(a) {b)

Fig. 12.12 In (a), the weight vector moves from S to rest at T, under the com-
bined influence of the preferences and the violated constraints. In (b), conver-
gence is speeded by making stronger preferences, but the equilibrium is farther
away from the optimal vertex.
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!.bestset;

Bl BOT NECK HEAD C1 TRUNK Al

€l BOT HEAD NECK B1

D2 TOP UPPERARM TRUNK Al LOWERARM E4
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM G2
G2 TOP LOWERARM UPPERARM F2 HAND H2
HZ2 TOP HAND LOWERARM G2

I3 TOP THIGH TRUNK Al CALF J4

J4 BOT CALF THIGH I3 FOOT -

K2 BOT THIGH TRUNK Al CALF L4

L4 BOT CALF THIGH K2 FOOT -

Itrytointerpret [trunk as upright importance=1];
Itrytointerpret [thigh as upright importance=1];

!.bestset;
A2 TOP TRUNK NECK - UPPERARM I2 K1 THIGH D3 F3
81 BOT NECK HEAD Cl1 TRUNK -

C1 BOT HEAD NECK Bl

D3 TOP THIGH TRUNK A2 CALF E3

E3 TOP CALF THIGH D3 FOOT -

F3 TOP THIGH TRUNK A2 CALF E3

G3 TOP CALF THIGH F3 FOOT Hl

Hl TOP FOQT CALF G3

12 TOP UPPERARM TRUNK A2 LOWERARH J3
J3 BOT LOWERARM UPPERARM 12 HAND -
K1 BOT UPPERARM TRUNK A2 LOWERARM L3
L3 BOT LOWERARM UPPERARM K1 HAND -

(b)

!.bestset;
Al TOP HEAD NECK B1
Bl TOP NECK HEAD Al TRUNK C2

D3 TOP THIGH TRUNK C2 CALF E3

E3 TOP CALF' THIGH D3 FOOT -

F3 TOP THIGH TRUNK C2 CALF G3

G3 TOP CALF THIGH F3 FOQT-

H1 TOP UPPERARM TRUNK C2 LOWERARM I1
I1 TOP LOWERARM UPPERARM H1 HAND -
J1  TOP LOWERARM TRUNK C2 LOWERARM K4
K4 BOT LOWERARM UPPERARM J1 HAND L6
L6 BOT HAND LOWERARM K4

(c)

Fig. 12.13 Puppet scenes interpreted by linear programming relaxation. (a)
shows an upside down puppet. (b) is the same input zlong with preferences to in-
terpret the trunk and thighs as upright; these result in an interpretation with trunk
and neck not connected. In (c), the program finds only the “‘best™ puppet, since it
was only expecting one.

Ch. 12
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costs, then one can include labels for missing lines and accidental alignment as
high-cost labels, rendering them usable but undesirable. Also, in a scene-analysis
system using real data, local evidence for edge appearance can enhance the a priori
likelihood that a line should bear a particular label. If such preferences can be ex-
tracted along with the lines in a scene, the evidence can be used by the line
labeling algorithm.

The inconsistency constraints for line labels may be formalized as follows.
Each line and vertex has one label in a consistent labeling; thus for each line L and
vertex J,

p(L haslabel LLABEL) = 1 (12.32)

all line labels

p{J haslabel VLABEL) = 1 (12.33)

all vertex labels

Of course, the VLABELS and LLABELS in the above constraints must be
forced to be compatible (if L has LLABEL, JLABEL must agree with it). For a line
L and a vertex Jat its end,

p(L hasLLABEL) = ¥  p(J haslabel VLABEL) (12.34)

all VLABELS
giving LLABEL tof

This constraint also enforces the coherence rule (a line may not change its label
betwen vertices).

Using these constraints, linear programming relaxation labeled the triangle
example of Fig. 12.7 as shown in Fig. 12.14, which shows three cases.

1. Preference 0.5 for each of the three junction label assignments (hypotheses)
corresponding to the floating triangle, 0 preference for all other junction and
line label hypotheses: converges to floating triangle.

2. Like (1), but with equal preferences given to the junction labels for the tri-
angular hole interpretation, 0 to all other preferences.

3. Preference 3 to the convex edge label for a 2 overrides the three preferences of
1/2 for the floating triangle of case (1). All preferences but these four were 0.

Some Extensions

The translation of constraints to inequalities described above does not
guarantee that they produce a set of half-spaces whose intersection is the convex
hull of the feasible integer solutions. They can produce ‘‘noninteger optima,” for
which supposition values are not forced to 1 or 0. This is reminiscent of the
behavior of the linear relaxation operator of Section 12.4.3, and may not be objec-
tionable. If it is, some effort must be expended to cope with it. Here is an example
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> < - 4+

pla, =>) -
a, as '
- plag =+)
as
(a) {b)
After 10 After 20 After 30 to 40
Case iterations iterations iterations
(1) 065 022 0.01 014 090 007 0 004 0.99 0 0o o
0.65 0.22 0.01 0.14 090 007 0 004 0.99 0 0 0
0.65 022 0.01 014 090 007 0 004 0.99 0 0 0
(2) 0.39 0.89 0 0 0.14 095 0 0 0 099 0 0
039 08 0 0 014 095 0 0 0 099 0 o0
039 0.89 0 0 0.14 09 0 0 0 099 0 O
(3) 056 048 O 0.05 081 023 0 0 0.99 0 0 o0 i
0 034 0 0.99 0 015 0 0.99 0 0 0 0.99
0.56 0438 0 0.05 081 023 0 0 099 O 0 o0

{c}

Fig. 12.14 As in Fig. 12.10, the triangle of (a) is to be assigned labels, and the changing
label weights are shown for three cases in (c) using the format of (b). Supposition values
for junction labels were used as well, but are not shown. All initial supposition values
were 0.

of the problem. Assume three logical constraints, (4 A B), "(BA O, and “(CA
A). Suppose A, B, and C have equal preferences of unity (the preference vector is
(1,1, 1)). Translating the constraints yields

p4)+pB) <1
p(B) +p(C) £1 (12.35)
p(C)+p4) €1

The best feasible solution has a total preference of 112, and is
p4)=p(B)=p(C)=1¥ (12.36)

Here the ““best” solution is outside the convex hull of the integer solutions (Fig.
12.15).

The basic way to ensure integer solutions is to use stronger constraints than
those arising from the simple rules given above. These may be introduced at first,
or when some noninteger optimum has been reached. These stronger constraints
are called cutiing planes, since they cut off the noninteger optima vertices. In the
example above, the obvious stronger constraint is

p4) +p(B) +p(C) <1 (12.37)
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pB} =0

A
& pla)
plA) +p(B) <1
(A) + plB) <1
’ i p(C) plA) +p(8) +p(C) <1
piC)
pla)=0
233
p(B) +plC) <1
p(B} p(B)
(a) (b)

Fig. 12.15 (a) shows part of the surface of the feasible solid with constraints - (4 & B),
-(B & C), ~(C & A), and the non-integer vertex where the three halfspaces intersect.
(b) shows a cutting plane corresponding to the constraint “‘at most one of 4, B, or C* that
removes the non-integer vertex.

which says that at most one of 4, B, and Cis true (this is a logical consequence of
the logical constraints). Such cutting planes can be derived as needed, and can be
guaranteed to eliminate all noninteger optimal vertices in a finite number of cuts
[Gomory 1968; Garfinkel and Nemhauser 1972]. Equality constraints may be
introduced as two inequality constraints in the obvious way: This will constrain the
feasible region to a plane.

Suppose that one desires ‘‘weak rules,”” which are usually true but which can
be broken if evidence demands it? For each constraint arising from such a rule,
add a hypothesis to represent the situation where the rule is broken. This
hypothesis is given a negative preference depending on the strength of the rule,
and the constraint enhanced to include the possibility of the broken rule. For
example, if a weak rule gives the constraint P \/ Q, create a hypothesis H
equivalent to “(P\/ Q) = (~(P) A “(Q)), and replace the constraint with P\/ Q\/
H. Then by ‘“‘paying the cost’’ of the negative preference for H, we can have nei-
ther Pnor Qtrue.

Hypotheses can be created as the algorithm proceeds by having demon-like
“‘generator hypotheses.”” The demon watches the supposition value of the genera-
tor, and when it becomes high enough, runs a program that generates explicit
hypotheses. This is clearly useful; it means that all possible hypotheses do not need
to be generated in advance of any scene investigation. The generator can be given a
preference equal to that of the best hypotheses that it can generate.

Relaxation sometimes should determine a real number (such as the slope of
aline) instead of a truth value. A generator-like technique can allow the method to
refine the value of real-valued hypotheses. Basically, the idea is to assign a
(Boolean-valued) generator hypothesis to a range of values for the real value to be
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determined. When this generator triggers, more hypotheses are generated to get a
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation give
some idea of the flexibility of the basic idea, but also reveal that the method is not
at all cut-and-dried, and is still open to basic investigation. One of the questions
about the method is exactly how to take advantage of parallel computation capabili-
ties. Each constraint and hypothesis can be given its own processor, but how
should they communicate? Also, there seems little reason to suppose that the
optimization problems for this form of relaxation are any easier than they are for
any other multidimensional search, so the method will encounter the usual prob-
lems inherent in such optimization. However, despite all these technical details
and problems of implementation, the linear programming paradigm for the relaxa-
tion computation is a coherent formalization of the process. It provides a relatively
““classical” context of results and taxonomy of problems [Hummel and Zucker
1980].

12.5 ACTIVE KNOWLEDGE

430

Active knowledge systems [Freuder 1975] are characterized by the use of pro-
cedures as the elementary units of knowledge (as opposed to propositions or data
base items, for instance). We describe how active knowledge might work, because
it is a logical extreme of the procedural implementation of propositions. In fact,
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this reason
active knowledge is more easily applied to belief maintenance than to planning; it
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a “‘chunk’” of knowledge, and knows how to manage it
with respect to different visual inputs. Control in an active knowledge system is
completely distributed. Active knowledge can also be viewed as an extension of
the constraint relaxation problem; powerful procedures can make arbitrary de-
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so forth.
Thus the choice of “‘what to do next’’ is contained in the modules and is not made
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il-
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides a
less structured mechanism for construction and exploration of hypotheses than
does LP-relaxation. Using primitive control functions of the system, the user may
write programs for establishing hypotheses and for using the conclusions so
reached. The programs are ‘‘procedurally embedded’’ knowledge about a problem
domain (e.g. how events relate one to another, what may be conjectured or in-
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses are
created, or instantiated, on the basis of low-level input, high-level beliefs, or any
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reason in between. The process of establishing the initial hypotheses leads to a
propagation of activity (creation, verification, and disconfirmation of hypotheses).
Activation patterns will generally vary with the particular task, in heterarchical
fashion. A priority mechanism can rank hypotheses in importance depending on
the data that contribute to them. Generally, the actions that occur are conditioned
by previous assumptions, the data, the success of methods, and other factors.
HYPER can be used for planning applications and for multistep vision processing
as well as inference (procedures then should generate parallel activity only under
tight control). We shall thus allow HYPER to make use of a context-oriented data
base (Section 13.1.1). It will use the context mechanism to implement ‘‘alternative
worlds’’ in which to reason.

12.5.1 Hypotheses

A HYPER hypothesis is the attribution of a predicate to some arguments; its name
is always of the form (PREDICATE ARGUMENTS). Sample hypothesis names
could be (HEAD-SHAPED REGIONI1), (ABOVE A B), (TRIANGLE (X1,Y1)
(X2,Y2) (X3,Y3)). A hypothesis is represented as a data structure with four com-
ponents; the status, contents, context, and links of the hypothesis.

The status represents the state of the HYPER’s knowledge of the truth of the
hypothesis; it may be T (rue), F(alse), (in either case the hypothesis has been esta-
blished) or P(ending). The contents are arbitrary; hypotheses are not just truth-
valued assertions. The hypothesis was asserted in the data-base context given in
context. The links of a hypothesis H are pointers to other hypotheses that have
asked that H be established because they need H’s contents to complete their own
computations.

12.5.2 HOW-TO and SO-WHAT Processes

Two processes are associated with every predicate P which appears as the predicate
of a hypothesis. Their names are (HOW-TO P) and (SO-WHAT P). In them is em-
bedded the procedural knowledge of the system which remains compiled in from
one particular task to another in a problem domain. (HOW-TO P) expresses how
to establish the hypothesis (P arguments). It knows what other hypotheses must
be established first, the computations needed to establish (P arguments), and so
forth. It has a backward-chaining flavor. Similarly, (SO-WHAT P) expresses the
consequences of knowing P: what hypotheses could possibly now be established
using the contents of (P arguments), what alternative hypotheses should be ex-
plored if the status of (P arguments) is F, and so on. The feeling here is of forward
chaining.

12.5.3 Control Primitives

HYPER hypotheses interact through primitive control statements, which affect the
investigation of hypotheses and the ramification of their consequences. The primi-
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tives are used in HOW-TO and SO-WHAT programs together with other general
computations. Most primitives have an argument called priority, which expresses
the reliability, urgency, or importance of the action they produce, and is used to
schedule processes in a nonparallel computing environment (implemented as a
priority job queue [Appendix 2]). The primitives are GET, AFFIRM, DENY, RE-
TRACT, FAIL, WONDERIF, and NUDGE.

GET is to ascertain or establish the status and contents of a hypothesis. It
takes a hypothesis H and priority PRI as arguments and returns the status and con-
tents of the hypothesis. If H’s status is T or F at the time of execution of the state-
ment, the status and contents are returned immediately. If the status is P (pend-
ing), or if H has not been created yet, the current HOW-TO or SO-WHAT program
calling GET (call it CURPROG) is exited, the proper HOW-TO job (i.e., the one
that deals with H’s predicate) is run at priority PRI with argument H, and a link is
planted in H back to CURPROG. When H is established, CURPROG will be reac-
tivated through the link mechanism.

AFFIRM is to assert a hypothesis as true with some contents.
AFFIRM (H,CONT,PRI) sets H’s status to T, its contents to CONT, activates its
linked programs and then executes the proper SO-WHAT program on it. The
newly activated SO-WHAT programs are performed with priority PRI.

DENY is to assert that a hypothesis with some contents is false.
DENY (H,CONT,PRI) is like AFFIRM except that no activation though links oc-
curs, and the status of H is of course set to F.

ASSUME is to assert a hypothesis as true hypothetically.
ASSUME (H,CONT,PRI) uses the data base context mechanism to create a new
context in which H is AFFIRMED; the original context in which the ASSUME
command is given is preserved in the context field of H. H itself is stored into a
context-dependent item named LASTASSUMED:; this corresponds to remember-
ing a decision point in PLANNER. By using the information in LASTASSUMED
and the primitive FAIL (see below), simple backtracking can take place in a tree of
contexts.

RETRACT(H) establishes as false a hypothesis that was previously AS-
SUMEd. RETRACT is always carried out at highest priority, on the principle that it
is good to leave the context of a mistaken assumption as quickly as possible. Infor-
mation (including the name of the context being exited) is transmitted back to the
original context in which H was ASSUMEd by passing it back in the fields of H.

FAIL just RETRACTS the hypothesis that is the value of the item LASTAS-
SUMED in the present context.

WONDERIF is to pass suggested contents to HOW-TQ processes for
verification. It can be useful if verifying a value is easier than computing it from
scratch, and is the primitive that passes substantive suggestions. WONDERIF(H1,
CONT, H2, PRI) approximates the notion ‘“H2 wonders if Hl has contents
CONT.”

NUDGE is to wake up HOW-TO programs. NUDGE(H,PRI) runs the
HOW-TO program on H with priority PRI. It is used to awaken hypotheses that
might be able to use information just computed. Typically it is a SO-WHAT pro-
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gram that NUDGEs others, since the SO-WHAT program is responsible for using
the fact that a hypothesis is known.

12.5.4 Aspects of Active Knowledge

The active knowledge style of computation raises a number of questions or prob-
lems for its users.

A hypothesis whose contents may attain a large range can be established for
some contents and thus express a perfectly good fact (e.g., that a given location of
an x-ray does not contain evidence for a tumor) but such a fact is usually of little
help when we want to reason about the predicate (about the location of tumors).
The SO-WHAT program for a predicate should be written so as to draw conclu-
sions from such negative facts if possible, and from the conclusions endeavor to
establish the hypothesis as true for some contents. Usually, therefore, it would set
the status of the hypothesis back to P and initiate a new line of attack, or at its dis-
cretion abandon the effort and start an entirely new line of reasoning.

Priorities

A major worry with the scheme as described is that priorities are used to
schedule running of HOW-TO and SO-WHAT processes, not to express the im-
portance {or supposition value) of the hypotheses. The hypothesis being investi-
gated has no way to communicate how important it is to the program that operates
on it, so it is impossible to accumulate importance through time. A very significant
fact may lie ignored because it was given to a self-effacing process that had no way
of knowing it had been handed something out of the ordinary.

The obvious answer is to make a supposition value a field of the hypothesis,
like its status or contents—a hypothesis should be given a measure of its impor-
tance. This value may be used to compute execution priorities for jobs involving it.
This solution is used in some successful systems [Turner 1974].

Structuring Knowledge

One has a wide choice in how to structure the ‘‘theory’’ of a complex prob-
lem in terms of HYPER primitives, predicates, arguments, and HOW-TO and SO-
WHAT processes. The set of HOW-TO and SO-WHAT processes specify the com-
plete theory of the tasks to be performed; HYPER encourages one to consider the
interrelations between widely separated and distinct-sounding facts and conjec-
tures about a problem, and the structure it imposes on a problem is minimal.

Since HOW-TO and SO-WHAT processes make explicit references to one
another via the primitives, they are not ““modular” in the sense that they can easily
be plugged in and unplugged. If HOW-TO and SO-WHAT processes are invoked
by patterns, instead of by names, some of the edge is taken off this criticism. Re-
moving a primitive from a program could modify drastically the avenues of activa-
tion, and the consequences of such a modification are sometimes hard to foresee in
a program that logically could be running in parallel.

Writing a large and effective program for one domain may not help to write a
program for another domain. New problems of segmenting the theory into predi-
cates, and quantifying their interactions via the primitives, setting up a priority
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structure, and so forth will occur in the new domain, and it seems quite likely that
little more than basic utility programs will carry over between domains.

12.1

12.2

12.3

12.4
12.5
12.6

12.7
12.8

12.9
12.10

12.11

12.12

12.13

12.14

EXERCISES

In the production system example, write a production that specifies that blue re-
gions are sky using the opponents color notation. How would you now deal with
blue regions that are lakes (a) in the existing color-only system; (b) in a system
which has surface orientation information?

This theorem was posed as a challenge for a clausal automatic theorem prover
[Henschen et al. 1980]. It is obviously true: what problems does it present?

(@) ) (P(x) <= P())]
= [[Bx)0K)) = (W) (PO <=
{{E (W) Q&) = 0]
= [[Bx)P()] = [(dp) (@I

Prove that the operator of Eq.(12.18) takes probability vectors into probability vec-
tors, thus deriving the reason for Eq.(12.19).

Verify (12.23).

How do the ¢; of (12.18) affect the labeling? What is their semantics?

If events X and Y always co-occur, then p (X, ¥) = p(X) = p(¥). What is the
correlation in this case? If Xand ¥ never co-occur, what values of p (X) and p(Y)
produce a minimum correlation? If X and Y are independent, how is p (X, ¥) re-
lated to p (X) and p (¥)? What is the value of the correlation of independent X and
Y?

Complete Table 12.3.

Use only the labels of Fig. 12.9b and c to compute covariances in the manner of
Table 12.3. What do you conclude?

Show that Eq.(12.29) preserves the important properties of the weight vectors.
Think of some rival normalization schemes to Eq.(12.29) and describe their pro-
perties.

Implement the linear and nonlinear operators of Section 12.4.3 and 12.4.4 and in-
vestigate their properties. Include your ideas from Exercise 12.10.

Show a case that the nonlinear operator of Eq.(12.29) assigns nonzero weights to
maximally incompatible labels (those with r; = —1).

How can a linear programming relaxation such as the one outlined in sec. 12.4.5
cope with faces or edges of the feasible solution solid that are normal to the prefer-
ence direction, yielding several solutions of equal preference?

In Fig. 12.11, what (P, Q) solution is optimal if the preference vector is (1,4)?
4, D?21,1D?20,-1)?
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Goal Achievement and Vision

Goals and plans are important for visual processing.
Some skilled vision actually is like problem solving.

Vision for information gathering can be part of a planned sequence of actions.

Planning can be a useful and efficient way to guide many visual computations,
even those that are not meant to imply ‘‘conscious’ cognitive activity.

The artificial intelligence activity often called planning traditionally has dealt

with “‘robots”’ (real or modeled) performing actions in the real world. Planning has
several aspects.

Avoid nasty ‘‘subgoal interactions’” such as getting painted into a corner.

Find the plan with optimal properties (least risk, least cost, maximized ‘‘good-
ness’’ of some variety). '

Derive a sequence of steps that will achieve the goal from the starting situation.

Remember effective action sequences so that they may be applied in new situa-
tions.

Apply planning techniques to giving advice, presumably by simulating the
advisee’s actions and making the next step from the point they left off.

Recover from errors or changes in conditions that occur in the middle of a plan.

Traditional planning research has not concentrated on plans with information

gathering steps, such as vision. The main interest in planning research has been
the expensive and sometimes irrevocable nature of actions in the world. Our goal is
to give a flavor of the issues that are pursued in much more detail in the planning



literature [Nilsson 1980; Tate 1977; Fahlman 1974; Fikes and Nilsson 1971; Fikes
etal. 1972a; 1972b; Warren 1974; Sacerdoti 1974; 1977; Sussman 1975].

Planning concerns an active agent and its interaction with the world. This
conception does not fit with the idea of vision as a passive activity. However, one
claim of this book is that much of vision is a constructive, active, goal-oriented
process, replete with uncertainty. Then a model of vision as a sequence of deci-
sions punctuated by more or less costly information gathering steps becomes more
compelling. Vision often is a sequential (recursive, cyclical) process of alternating
information gathering and decision making. This paradigm is quite common in
computer vision [Shirai 1975; Ballard 1978; Mackworth 1978; Ambler et al. 1975].
However, the formalization of the process in terms of minimizing cost or maximiz-
ing utility is not so common [Feldman and Sproull 1977; Ballard 1978; Garvey
1976]. This section examines the paradigms of planning, evaluating plans with
costs and utilities, and how plans may be applied to vision processing.

13.1 SYMBOLIC PLANNING

Sec. 13.1

In artificial intelligence, planning is usually a form of problem-solving activity in-
volving a formal “‘simulation’” of a physical world. (Planning, theorem proving,
and state-space problem solving are all closely related.) There is an agent (the
“‘robot”’) who can perform actions that transform the state of the simulated world.
The robot planner is confronted with an initial world state and a set of goals to be
achieved. Planning explores world states resulting from actions, and tries to find a
sequence of actions that achieves the goals. The states can be arranged in a tree
with initial state as the root, and branches resulting from applying different actions
in a state. Planning is a search through this tree, resulting in a path or sequence of
actions, from the root to a state in which the goals are achieved. Usually there is a
metric over action sequences; the simplest is that there be as few actions as possi-
ble. More generally (Section 13.2), actions may be assigned some cost which the
planner should minimize.

13.1.1 Representing the World

This section illustrates planning briefly with a classical example—block stacking. In
one simple form there are three blocks initially stacked as shown on the left in Fig.
13.1, to be stacked as shown.

This task may be “‘formalized’’ [Bundy 1978] using only the symbolic objects
Floor, 4, B, and C. (A formalization suitable for a real automated planner must be
much more careful about details than we shall be). Assume that only a single block
can be picked up at a time. Necessary predicates are CLEAR (X) which is true if a
block may be put directly on X and which must be true before X may be picked up,
and ON(X, ¥), which is true if X is resting directly on Y. Let us stipulate that the
Floor is always CLEAR, but otherwise if ON(X, Y) is true, Yis not CLEAR. Then
the initial situation in Fig. 13.1 is characterized by the following assertions.
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Floor Floor
Initial stacks Goal stack Fig. 13.1 A simple block stacking task.

INITIAL STATE: ON(C,A), ON(A, Floor), ON(B, Floor),
CLEAR(C), CLEAR(B), CLEAR (Floor)

The goal state is one in which the following two assertions are true.
GOAL ASSERTIONS: ON(A,B), ON(B,C)

With only these rules, the formalization of the block stacking world yields a very
“loose”” semantics. (The task easily translates to sorting integers with some re-
strictions on operations, or to the ““seriation’’ task of arranging blocks horizontally
in order of size, or a host of others.)

Actions transform the set of assertions describing the world. For problems of
realistic scale, the representation of the tree of world states is a practical problem.
The issue is one of maintaining several coexisting ““hypothetical worlds’’ and rea-
soning about them. This is another version of the frame problem discussed in sec.
12.1.6. One way to solve this problem is to give each assertion an extra argument,
naming the hypothetical world (usually called a situation [Nilsson 1980; McCarthy
and Hayes 1969]) in which the assertion holds. Then actions map situations to situ-
ations as well as introducing and changing assertions.

An equivalent way to think about (and implement) multiple, dependent, hy-
pothetical worlds is with a tree-structured context-oriented data base. This idea is a
general one that is useful in many artificial intelligence applications, not just sym-
bolic planning. Such data bases are included in many artificial intelligence
languages and appear in other more traditional environments as well. A context-
oriented data base acts like a tree of data bases; at any node of the tree is a set of
assertions that makes up the data base. A new data base (context) may be spawned
from any context (data base) in the tree. All assertions that are true in the spawn-
ing (ancestor) context are initially true in the spawned (descendant) context.
However, new assertions added in any context or deleted from it do not affect its
ancestor. Thus by going back to the ancestor, all data base changes performed in
the descendent context disappear.

Implementing such a data base is an interesting exercise. Copying all asser-
tions to each new context is possible, but very wasteful if only a few changes are
made in each context. The following mechanism is much more efficient. The root
or initial context has some set of assertions in it, and each descendant context is
merely an add list of assertions to add to the data base and a delete list of assertions
to delete. Then to see if an assertion is true in a context, do the following.

1. If the context is the root context, look up “‘as usual.”

2. Otherwise, if the assertion is on the add list of this context, return frue. If the
assertion is on the delete list of this context, return false.
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3. Otherwise, recursively apply this procedure to the ancestor of this context.

In a general programming environment, contexts have names, and there is
the facility of executing procedures “‘in’® particular contexts, moving around the
context tree, and so forth. However, in what follows, only the ability to look up
assertions in contexts is relevant.

13.1.2 Representing Actions

Represent an action as a triple.
ACTION ::= [PATTERN, PRECONDITIONS, POSTCONDITIONS].

Here the pattern gives the name of the action and names for the objects with which
it deals—its ‘““formal parameters.”” Preconditions and postconditions may use the
formal variables of the pattern. In a sense, the preconditions and postconditions
are the “body” of the action, with subroutine-like ‘“‘variable bindings’’ taking
place when the action is to be performed. The preconditions give the world states
in which the action may be applied. Here the preconditions are assumed simply to
be a list of assertions all of which must be true. The postconditions describe the
world state that results from performing the action. The context-oriented data
base of hypothetical worlds can be used to implement the postconditions.

POSTCONDITIONS ::= [ADD-LIST, DELETE-LIST].

An action is then performed as follows.

1. Bind the pattern variables to entities in the world, thus binding the associated
variables in the preconditions and postconditions.

2. If the preconditions are met (the bound assertions exist in the data base), do
the next step, else exit reporting failure.

3. Delete the assertions in the delete list, add those in the add list, and exit re-
porting success.

Here is the Move action for our block-stacking example.

Move Object X from Yo Z
PATTERN PRECONDITIONS  DELETE-LIST  ADD-LIST

Move(X,Y,Z) CLEAR(X) ON(X,Y) ON(X.Z)
CLEAR(Z) CLEAR(Z) CLEAR(Y)
ON(X,Y)

Here X, Y, and Z are all variables bound to world entities. In the initial state
of Fig. 13.1, Move(C, 4,Floor) binds Xto C, Yto 4, Z to Floor, and the precondi-
tions are satisfied; the action may proceed.

However, notice two things.
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1. The action given above deletes the CLEAR (Floor) assertion that always
should be true. One must fix this somehow; putting CLEAR (Floor) in the
add-list does the job, but is a little inelegant.

2. What about an action like Move(C,4,C)? It meets the preconditions, but
causes trouble when the add and delete lists are applied. One fix here is to keep
in the data base (‘“‘world model’’) a set of assertions such as Different (4,B),
Different (4,Floor), . . . , and to add assertions such as Different (X,Z) to the
preconditions of Move.

Such housekeeping chores and details of axiomatization are inherent in ap-
plying basically syntactic, formal solution methods to problem solving. For now,
let us assume that CLEAR (Floor) is never deleted, and that Move(X, ¥,Z) is ap-
plied only if Z is different from Xand Y.

13.1.3 Stacking Blocks

In the block-stacking example, the goal is two simultaneous assertions, ON(A4, B)
and ON(B,C). One solution method proceeds by repeatedly picking a goal to work
on, finding an operator that moves closer to the goal, and applying it. In this case of
only one action the question is how to apply it—what to move where. This is
answered by looking at the postconditions of the action in the light of the goal. The
reasoning might go like this: ON (B, C) can be made true if Xis Band Zis C. That is
possible in this state if Yis A; all preconditions are satisfied, and the goal ON(B,C)
can be achieved with one action.

Part of the world state (or context) tree the planner must search is shown in
Fig. 13.2, where states are shown diagrammatically instead of through sets of asser-
tions. Notice the following things in Fig. 13.2.

1. Trying to achieve ON(B,C) first is a mistake (Branch 1).

2. Trying to achieve ON(A4,B) first is also a mistake for less obvious reasons
(Branch 2).

3. Branches 1 and 2 show ‘‘subgoal interaction.”’ The goals as stated are not in-
dependent. Branch 3 must be generated somehow, either through backtrack-
ing or some intelligent way of coping with interaction. It will never be found by
the single-minded approach of (1) and (2). However, if ON(C,Floor) were
one of the goal assertions, Branch 3 could be found.

Clearly, representing world and actions is not the whole story in planning. In-
telligent search of the context is also necessary. This search involves subgoal selec-
tion, action selection, and action argument selection. Bad choices anywhere can
mean inefficient or looping action sequences, or the generation of impossible
subgoals. “Intelligent’’ search implies a meta-level capability: the ability of a pro-
gram to reason about its own plans. ‘‘Plan critics”’ are often a part of sophisticated
planners; one of their main jobs is to isolate and rectify unwanted subgoal interac-
tion [Sussman 1975].
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Move (B, F, C) Move (C, A, F}

[e] [4]

Move (@ Move (A, F, B) Move (8, F, C)

2]
EE

Branch 1

Branch 2

Branch 3

Fig. 13.2 A state tree generated in planning how to stack three blocks.

Intelligent choice of actions is the crux of planning, and is a major research is-
sue. Several avenues have been and are being tried. Perhaps subgoals may be or-
dered by difficulty and achieved in that order. Perhaps planning should proceed at
various levels of detail (like multiresolution image understanding), where the stra-
tegic skeleton of a plan is derived without details, then the details are filled in by
applying the planner in more detail to the subgoals in the low-resolution plan.
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13.1.4 The Frame Problem

All planning is plagued by aspects of the frame problem (introduced in Section
12.1.6).

1. Itis impractical (and boring) to write down in an action all the things that stay
the same when an action is applied.

2. Similarly, it is impractical to reassert in the data base all the things that remain
true when an action is implied.

3. Often an action has effects that cannot be represented with simple add and
delete lists.

The add and delete list mechanism and the context-oriented data base
mechanism addressed the first two problems. The last problem is more trouble-
some.

Add and delete lists are simple ideas, whereas the world is a complex place. In
many interesting cases, the add and delete lists depend on the current state of the
world when the action is applied. Think of actions TURNBY (X) and MOVEBY (2)
in a world where orientation and location are important. The orientation and loca-
tion after an action depend not just on the action but on the state of the world just
before the action.

Again, the action may have very complex effects if there are complex depen-
dencies between world objects. Consider the problem of the ““monkey and bana-
nas,”” where the monkey plans to push the box under the bananas and climb on it
to reach them (Fig. 13.3). Implementation of realistically powerful add and delete
lists may in fact require arbitrary amounts of deduction and computation.

R\ Vs

Fig. 13.3 Actions may have complex
effects.
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This quick précis of symbolic planning does not address many ‘“classical”
topics, such as learning or remembering useful plans. Also not discussed are: plan-
ning at varying levels of abstraction, plans with uncertain information, or plans
with costs. The interested reader should consult the References for more informa-
tion. The next section addresses plans with costs since they are particularly
relevant to vision; some of the other issues appear in the Exercises.

13.2 PLANNING WITH COSTS

Decision making under uncertainty is an important topic in its own right, being of
interest to policymakers and managers [Raiffa 1968]. Analytic techniques that can
derive the strategy with the ‘‘optimal expected outcome’” or ‘‘maximal expected
utility’” can be based on Bayesian models of probability.

In [Feldman and Sproull 1977] these techniques are explored in the context
of action planning for real-world actions and vision. As an example of the tech-
niques, they are used to model an extended version of the ‘‘monkey and bananas”’
problem of the last section, with multiple boxes but without the maddening pulley
arrangement. In the extended problem, there are boxes of different weights which
may or may not support the monkey, and he can apply tests (e.g., vision) at some
cost to determine whether they are usable. Pushing weighted boxes costs some
effort, and the gratification of eating the bananas is “‘worth’’ only some finite
amount of effort. This extended set of considerations is more like everyday deci-
sion making in the number of factors that need balancing, in the uncertainty in-
herent in the universe, and in the richness of applicable tests. In fact, one might
make the claim that human beings always ‘‘maximize their expected utility,’’ and
if one knew a person’s utility functions, his behavior would become predictable.
The more intuitive claim that humans beings plan only as far as “‘sufficient ex-
pected utility’’ can be cast as a maximization operation with nonzero ‘“cost of plan-
ning.”’

The sequential decision-making model of planning with the goal of maximiz-
ing the goodness of the expected outcome was used in a travel planner [Sproull
1977]. Knowledge of schedules and costs of various modes of transportation and
the attendant risks could be combined with personal prejudices and preferences to
produce an itinerary with the maximum expected utility. If unexpected situations
(canceled flights, say) arose en route, replanning could be initiated; this incremen-
tal plan ramification is a natural extension of sequential decision making.

This section is concerned with measuring the expected performance of plans
using a single number. Although one might expect one number to be inadequate,
the central theorem of decision theory [DeGroot 1970] shows essentially that one
number is enough. Using a numerical measure of goodness allows comparisons
between normally incomparable concepts to be made easily. Quite frequently nu-
merical scores are directly relevant to the issues at stake in planning, so they are
not obnoxiously reductionistic. Decision theory can also help in the process of ap-
plying a plan—the basic plan may be simple, but its application to the world may be
complex, in terms of when to declare a result established or an action unsuccessful.
The decision-theoretic approach has been used in several artificial intelligence and
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vision programs [Feldman and Yakimovsky 1974; Bolles 1977; Garvey 1976; Bal-
lard 1978; Sproull 19771.

13.2.1 Planning, Scoring, and Their Interaction

For didactic purposes, the processes of plan generation and plan scoring are con-
sidered separately. In fact, these processes may cooperate more or less intimately.
The planner produces ““sequences’” of actions for evaluation by the scorer. Each ac-
tion (computation, information gathering, performing a real-world action) has a
cost, expressing expenditure of resources, or associated unhappiness. An action
has a set of possible outcomes, of which only one will really occur when the action is
performed. A goal is a state of the world with an associated ““happiness’ or utility.
For the purposes of uniformity and formal manipulation, goals are treated as (null)
actions with no outcomes, and negative utilities are used to express costs. Then the
plan has only actions in it; they may be arranged in a strict sequence, or be in loops,
be conditional on outcomes of other actions, and so forth.

The scoring process evalutes the expected utility of a plan. In an uncertain
world, a plan prior to execution has only an expected goodness—something might
go wrong. Such a scoring process typically is not of interest to those who would use
planners to solve puzzles or do proofs; what is interesting is the result, not the
effort. But plans that are “‘optimal’’ in some sense are decidedly of interest in real-
world decision making. In a vision context, plans are usually useful only if they
can be evaluated for efficiency and efficacy.

Scoring can take place on “‘complete’ plans, but it can also be used to guide
plan generation. The usual artificial intelligence problem-solving techniques of
progressive deepening search and branch-and-bound pruning may be applied to
planning if scoring happens as the plan is generated [Nilsson 1980]. Scoring can be
used to assess the cost of planning and to monitor planning horizons (how far
ahead to look and how detailed to make the plan). Scoring will penalize plans that
loop without producing results. Plan improvements, such as replanning upon
failure, can be assessed with scores, and the contribution of additional steps (say
for extra information gathering) can be assessed dynamically by scoring. Scoring
can be arbitrarily complex utility functions, thus reflecting such concepts as “‘risk
aversion’’ and nonlinear value of resources [Raiffa 1968].

13.2.2 Scoring Simple Plans

Scoring and an Example

A simple plan is a tree of nodes (there are no loops). The nodes represent ac-
tions (and goals). Outcomes are represented by labeled arcs in the tree. A probabil-
ity of occurrence is associated with each possible outcome; since exactly one out-
come actually occurs per action, the probabilities for the possible outcomes of any
action sum to unity.

The score of a plan is its expected utility. The expected utility of any node is re-
cursively defined as its utility times the probability of reaching that node in the
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plan, plus the expected utilities of the actions at its (possible) outcomes. The pro-
bability of reaching any ‘‘goal state” in the plan is the product of probabilities of
outcomes forming a path from the root of the plan to the goal state.

As an example, consider the plan shown in Fig. 13.4. If the plan of Fig. 13.4

Test for table
u: —100

Table located Table not located

Decide
no telephone
present
u: 0

Threshold, find
blobs, compute
shapes
U: —300

P13 P14
. Do not
Find telephone find telephone Telephone No telephone
shape shape there there

Correctly

Decide Decide Incorrectly beli
telephone no telephone believe no el'e":
present present telephone there ne tteheep one
re

u: 0 : % o=
u:o0 u: —200 U: 800

Telephone No telephone Telephone No telephone
there there there there

Correctly Incorrectly Incor_rectlv Ct;rrfr_actlv
find find Jniss ? “’r‘:"’
telephone false telephone finding no telephone
U: 1000 U: —300 telephone there

U: —200 U: 800

Fig. 13.4 This plan to find a telephone in an office scene involves finding a table first
and looking there in more detail. The actions and outcomes are shown. The probabilities
of outcomes are assigned symbols (P10, etc.). Utilities (denoted by U:) are given for the
individual actions. Note that negative utilities may be considered costs. In this example,
decision-making takes no effort, image processing costs vary, and there are various penal-
ties and rewards for correct and incorrect finding of the telephone.
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has probabilities assigned to its outcomes, we may compute its expected utility.
Figure 13.5 shows the calculation. The probability of correctly finding the tele-
phone is 0.34, and the expected utility of the plan is 433.

Although the generation of a plan may not be easy, scoring a plan is a trivial
exercise once the probabilities and utilities are known. In practice, the assignment
of probabilities is usually a source of difficulty. The following is an example using

E (U): 4326
U: =100

Table located Table not located

E (U): 460
U: =300

0.05 0.95
. Do not
Find telephone 4 Telephone No telephone
find telephone
shape shape there there

£ (U): —200
U: —200

E (U): 870
u:0

E {U): 650
u:0

E(U): 800
U: 800

0.9

Telephone No telephone Telephone No telephone
there there there there

E (U): 1000 E(U): — 300 E(U): — 200
U: 1000 U: — 300 U: =200

E(U): 800
U: 800

Fig. 13.5 As for Fig. 13.4. U: gives the utility of each action. E(U): gives the expected
utillity of the action, which depends on the outcomes below it. Values for outcome proba-
bilities are given on the outcome arcs.
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the telephone-finding plan and some assumptions about the tests. Different as-
sumptions yield different scores.

Computing Outcome Probabilities: An Example
This example relies heavily on Bayes’ rule:

P(B|A)P(4) = P(A\B) = P(4|B)P(B). (13.1)

Let us assume a specific a priori probability that the scene contains a tele-
phone.

P, = apriori probability of Telephone (13.2)

Also assume that something is known about the behavior of the various tests in the
presence of what they are looking for. This knowledge may accrue from experi-
ments to see how often the table test found tables when telephones (or tables)
were and were not present. Let us assume that the following are known probabili-

ties.
P; = P(table located|telephone in scene) (13.3)
P; = P(table located|no telephone in scene) (13.4)
Either there is a telephone or there is not, and a table is located or it is not, so
P, = apriori probability of no telephone = 1 — P, (13.5)
P, = P(no table located | telephone in scene) = 1 — P; (13.6)
P¢ = P(no table located |no telephone in scene) = 1 — Ps (13.7D

Similarly with the “‘shape test’ for telephones: assume probabilities

P, = P(telephone shape located |telephone) (13.8)

Py = P(telephone shape located |no telephone) (13.9)
with

Py 1—Ps, Py 1=Hy (13.10)
as above.

There are a few points to make: First, it is not necessary to know exactly these
probabilities in order to score the plan; one could use related probabilities and
Bayes’ rule. Other useful probabilities are of the form

P (telephone |telephone shape located).

In some systems [Garvey 1976] these are assumed to be available directly. This
section shows how to derive them from known conditional probabilities that
describe the behavior of detectors given certain scene phenomena.

Second, notice the assumption that although both the outcome of the table
test and the shape test depend on the presence of telephones, they are taken to be
independent of each other. That is, having found a table tells us nothing about the
likelihood of finding a telephone shape. Independence assumptions such as this are
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useful to limit computations and data gathering, but can be somewhat unrealistic.
To account for the dependence, one would have to measure such quantities as

P(telephone shape found |table located).
Now to compute some outcome probabilities: Consider the probability
P, = P(table located) (13.11)
Let us write

TL for Table Located
TNL for Table Not Located.

A table may be located whether or not a telephone is in the scene. In terms of
known probabilities, Bayes’ rule yields

Py=P3; P+ Ps P, (13.12)
Then
P;; = P(TNL) = 1—-Py, (13,13)
Calculating P;3 shows a neat trick using Bayes’ Rule:
Py3 = P(telephone|TNL) (13.14)

That is, Py3 is the probability that there is a telephone in the scene given that
search for a table was unsuccessful. This probability is not known directly, but

P (telephone and TNL)

P(TNL)
P (TNL and telephone)
Py
_1p (TNLlteleph;ne)P(telephone)] (13.15)
12

Pyg=

[Py P]
Py
Then, of course
Puy=1—Pg; (13.16)

Reasoning in this way using the conditional probabilities and assumptions
about their independence allows the completion of the calculation of outcome pro-
babilities (see the Exercises). One possibly confusing point occurs in calculation of
P;s, whichis

P,5s = P(telephone shape found |table located) (13.17)

By assumption, these events are only indirectly related. By the simplifying assump-
tions of independence, the shape operator and the table operator are independent
in their operation. (Such assumptions might be false if they used common image
processing subroutines, for example.) Of course, the probability of success of each
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depends on the presence of a telephone in the scene. Therefore their performance
is linked in the following way (see the Exercises). (Write TSL for Telephone Shape
Located.)

Ps= P(TSL|TL) P (TSL|telephone) P (telephone|TL) (13.18)
+P (TSL|no telephone) P (no telephone|TL)

13.2.3 Scoring Enhanced Plans

The plans of Section 13.2.2 were called “‘simple’” because of their tree structure,
complete ordering of actions, and the simple actions of their nodes. With a richer
output from the symbolic planner, the plans may have different structure. For ex-
ample, there may be OR nodes, any one of whose sons will achieve the action at
the node; AND nodes, all of which must be satisfied (in any order) for the action to
be satisfactorily completed; SEQUENCE nodes, which specify a set of actions and a
particular order in which to achieve them. The plan may have loops, shared
subgoal structure, or goals that depend on each other. How enhanced plans are in-
terpreted and executed depends on the scoring algorithms, the possibilities of
parallel execution, whether execution and scoring are interleaved, and so forth.
This treatment ignores parallelism and limits discussion to expanding enhanced
plans into simple ones.

It should be clear how to go about converting many of these enhanced plans
to simple plans. For instance, sequence nodes simply go to a unique path of ac-
tions. Alternatively, depending on assumptions about outcomes of such actions
(say whether they can fail), they may be coalesced into one action, as was the
““threshold, find blobs, and compute shapes’’ action in the telephone-finding plan.

Rather more interesting are the OR and AND nodes, the order of whose
subgoals is unspecified. Each such node yields many simple plans, depending on
the order in which the subgoals are attacked. One way to score such a plan is to
generate all possible simple plans and score each one, but perhaps it is possible to
do better. For example, loops and mutual dependencies in plans can be dealt with
in various ways. A loop can be analyzed to make sure that it contains an exit (such
as a branch of an OR node that can be executed). One can make ad hoc assump-
tions that the cost of execution is always more than the cost of planning [Garvey
1976], and score the loop by its executable branch. Another idea is to plan incre-
mentally with a finite horizon, expanding the plan through some progressive
deepening, heuristic search, or pruning strategy. The accumulated cost of going
around a loop will soon remove it from further consideration.

Recall (Figs. 13.4 and 13.5) that the expected utility of a plan was defined as
the sum of the utility of each leaf node times the probability of reaching that node.
However, the utilities need not combine linearly in scoring. Different monotonic
functions of utility express such different conceptions as “‘aversion to risk’” or
““gambling addiction.”” These considerations are real ones, and nonlinear utilities
are the rule rather than the exception. For instance, the value of money is notori-
ously nonlinear. Many people would pay $5 for an even chance to win $15; not so
many people would pay $5,000 for an even chance to win $15,000.
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One common way to compute scores based on utilities is the ‘“‘cost/benefit”
ratio. This, in the form ‘“‘cost/confidence’’ ratio, is used by Garvey in his planning
vision system. This measure is examined in Section 13.2.5; roughly, his “cost”
was the effort in machine cycles to achieve goals, and his “‘confidence” approxi-
mated the probability of a goal achieving the correct outcome. The utility of correct
outcomes was not explicitly encoded in his planner.

Sequential plan elaboration or partial plan elaboration can be interleaved with
execution and scoring. Most practical planning is done in interaction with the
world, and the plan scoring approach lends itself well to assessing such interac-
tions. In Section 13.2.5 considers a planning vision system that uses enhanced
plans and a limited replanning capability.

A thorny problem for decision making is to assess the cost of planning itself.
The planning process is given its own utility (cost), and is carried only out as far as
is indicated. Of course, the problem is in general infinitely recursive, since there is
also the cost of assessing the cost of planning, etc. If, however, there is a known
upper bound on the utility of the best achievable plan, then it is known that infinite
planning could not improve it. This sort of reasoning is weaker than that needed to
give the expected benefits of planning; it measures only the cost and maximum
value of planning.

Another more advanced consideration is that the results of actions can be
continuous and multidimensional, and discrete probabilities can be extended to
probability distribution functions. Such techniques can reflect the precision of
measurements.

An obviously desirable extension to a planner is a ‘““learner,”” that can
abstract rules for action applicability and remember successful plans. One approach
would be to derive and remember ranges of planning parameters arising during ex-
ecution; a range could be associated with a rule specifying appropriate action. This
problem is difficult and the subject of current research.

13.2.4 Practical Simplifications

The expected utility calculations allow plans to be evaluated in a more or less
“realistic” manner, However, in order to complete the calculations certain proba-
bilities are necessary, and many of these reflect detailed knowledge about the in-
teraction of phenomena in the world. It is thus often impractical to go about a full-
blown treatment of scoring in the style of Section 13.2.2. This section presents
some possible simplifications.

Of course, in many planning problems, such as those whose costs are nil or ir-
relevant, or all of whose goals are equally valuable, there is no need to address util-
ity of plans at all. Such plans are typically not concerned with expenditure of real-
world or planning resources.

Independence of various probabilities is one of the most helpful and per-
vasive assumptions in the calculation of probabilities. An example appeared in Sec-
tion 13.2.2 with the table and telephone shape detectors.

Certain information can be ignored. Garvey [Garvey 1976] ignores failure in-
formation. His planning parameters include the ‘“‘cost™ of an action (strictly nega-

Ch. 13 Goal Achievement



tive utilities reflecting effort), the probability of the action “‘succeeding,”” and the
conditional probability that the state of the world is correctly indicated, given suc-
cess. Related to ignoring some information is the assumption that certain out-
comes are more reliable than others. For instance, the decision not to plan past
“‘failure’’ reports means that they are assumed reliable.

Non-Bayesian rules of inference abound in planners [Shortliffe 1976]; the
idea of assigning a single numerical utility score to plans is by no means the only
way to make decisions.

13.2.5 A Vision System Based on Planning

Overview

This section outlines some features of a working vision system whose actions
are controlled by the planning paradigm [Garvey 1976]. As with all large vision
systems, more issues are addressed in this work than with the planning paradigm as
a control mechanism. For one thing, the system uses multisensory input, including
range and color information. An interactive facility aids in developing and testing
low-level operators and ‘‘strategies’ for object location. The machine-usable
representation of knowledge about the objects in the scene domains and how they
could be located is of course a central component.

The domain is office scenes (Fig. 13.6). For the task of locating different ob-
jects in such scenes, a “‘uniform strategy”’ is adopted. That is, the vision task is al-
ways broken down into a sequence of major goals to be performed in order. Such
uniform strategies, if they are imposed on a system at all, tend to vary with
different tasks, with different sensors or domain, or with different research goals.

Garvey’s uniform strategy consists of the following steps.

1. Acquire some pixels thought to be in the desired region (the area of scene mak-
ing up the image of the desired object).

Fig. 13.6 The planning vision system
uses input scenes such as these, imaged
in different wavelengths and with a
rangefinder.
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2. Verify to some confidence that indeed the region was the desired one.
3. Boundthe region accurately.

The outline the plan generation, scoring, and execution used in the system
are described in the following paragraphs. The plans generated by the system are
typically enhanced versions of plans like the telephone finder. Plan scoring
proceeds as expected for such plans; allowances are made for the enhanced seman-
tics of plan nodes. A “‘cost/confidence’’ scoring function is used, and various prac-
tical simplifications are made that do not affect the planning paradigm itself.

An Example Plan and Its Execution

The system’s plans are enhanced plans, in the sense of Section 13.2.3. Ac-
tions can be AND, OR or SEQUENCE actions, and shared plan structure and loops
are permitted. Loops that contain only internal, planning actions would never ter-
minate. However, a loop with an OR node can terminate (has an exit) if one of the
subactions of the OR is executable. A plan for locating a chair in an office scene is
shown in Fig. 13.7. In Fig. 13.7, the acquire-validate-bound strategy is evident in
the two SEQUENCE subgoals of the Find Chair main goal, which is an AND goal.
The loop in the plan is evident, and makes sense here because often planning is
done for information gathering, not for real world actions.

As noted in Section 13.2.3, an enhanced plan may not be completely
specified. If it is to be executed one subgoal at a time (no parallelism is allowed),
sequences of subactions must be determined for its AND and OR actions. In
Garvey’s planner, these sequences are determined initially on the basis of apriori
information, but the partial results of actions are ‘‘fed back,” so that dynamic
rescoring and hence dynamic reordering of goal sequences is possible. For exam-
ple, if one subgoal of an AND action fails, the AND action is abandoned. Thus this
planner is to some degree incremental.

In execution, Fig. 13.7 might result in the sequence of actions depicted in
Fig. 13.8. The acquisition phase of object location has the most alternatives, so
plan generation effort is mainly spent there. Acquisition proceeds either directly or
indirectly. Direct acquisition is the classification of input data gathered from a ran-
dom sampling of a window in the image; the input data are rich enough to allow
basic pattern recognition techniques to identify the source of individual pixels.

Indirect acquisition is the use of the location of other ‘““objects’ (really
identified regions) in the scene to locate the desired region. The desired region
might be found by ““scanning’” vertically or horizontally from the already identified
region, for instance. The idea is a planning version of a common one (e.g., the
geometric location networks of Section 10.3.2): use something already located to
limit and direct search for something else.

Plan Generation

A plan such as Fig. 13.7 is “‘elaborated”’ from the basic Find Chair goal by re-
cursively expanding goals. Some goals (such as to find a chair) are not directly exe-
cutable; they need further elaboration. Elaboration continues until all the subgoals
are executable. Executable subgoals are those that analyze the image, run filters
and detectors over parts of it, and generate decisions about the presence or absence
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Fig. 13.7 An enhanced plan to locate a chair in an office scene. Untied multiple arcs
denote OR actions, arcs tied together denote AND actions, those with *’s denote SE-
QUENCE actions. The loop in the plan has executable exits.



(a) (b)

(c) (d)

Fig. 13.8 The plan of Fig. 13.7 finds the most promising execution sequence for finding
the chair in the scene of Fig. 13.6: find the seat first, then scan upwards from the seat
looking for the back. Acquisition of the seat proceeds by sampling (a), followed by
classification (b). The Validation procedure eliminates non-chair points (c), and the
Bounding procedure produces the seat region (d). To find the back, scanning proceeds in
the manner indicated by (e) (actually fewer points are examined in each scan). The back
is acquired and bounded, leading to the final location of the chair regions (f).
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(e) (f)

Fig. 13.8 (cont.)

of image phenomena. This straightforward elaboration is akin to macro expansion,
and is not a very sophisticated planning mechanism (the program cannot criticize
and manipulate the plan, only score it). A fully elaborated plan is presented for
scoring and execution.

The elaboration process, or planner, has at its disposal several sorts of
knowledge embodied as modules that can generate subgoals for a goal. Some are
general (to find something, find all its parts); some are less general (a chair has a
back and a seat); some are quite specific, being perhaps programs arising from an
earlier interactive method-generation phase. The elaborator is guided by informa-
tion stored about objects, for instance this about a tabletop:

OBJECT PROPERTIES RELATIONS

Table TOP  Hue:26-58 Supports Telephone 0.6
Sat.:0.23-0.32  Supports Book 0.4
Bright.: 18-26  Occludes Wall 1
Height: 26-28
Orient.: —7-7

Here the orientation information indicates a vertical surface normal. The
planner knows that it has a method of locating horizontal surfaces, and the plan
elaborator can thus create a goal of direct acquisition by first locating a horizontal
plane. The relational information allows for indirect acquisition plans. The elabora-
tor puts direct and indirect alternatives under an OR node in the plan. Information
not used for acquisition (height, color) may be used for validation.

Loops may occur in an elaborated plan because each newly generated goal is
checked against goals already existing. Should it or an equivalent goal already ex-
ist, the existing goal is substituted for the newly generated one. Goals may thus
have more than one ancestor, and may depend on one another.
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At this stage, the planner does not use any planning parameters (cost, utili-
ties, etc.); it is strictly symbolic. As mentioned above, important information
about execution sequences in an enhanced plan is provided by scoring.

Plan Scoring and Execution

The scoring in the vision plan is a version of that explained in Sections 13.2.2
through 13.2.4. Each action in a plan is assumed either to succeed (S) in locating
an object or to fail. Each action may report either success (‘“S”’) or failure. An ac-
tion is assumed to report failure correctly, but possibly to be in error in reporting
success. Each action has three ‘‘planning parameters’” associated with it. They are
C, its ““cost” (in machine cycles), P(‘‘S”’) the probability of it reporting success,
and P(S|*S’"), the probability of success given a report of success.

As shown earlier, the product

P(S|“S”)P(“S") (13.19)

is the probability that the action has correctly located an object and reported suc-
cess. This product is called the “‘confidence’’ of the action. An action has structure
as shown in Fig. 13.9.

The score of an action is computed as

score = —28t (13.20)
confidence
The planner thus must minimize the score.

The initial planning parameters of an executable action typically are deter-
mined by experimentation. The parameters of internal (AND, OR, SEQUENCE)
actions by scoring methods alluded to in Sections 13.2.2, 13.2.3, and the Exercises
(there are a few idiosyncratic ad hoc adjustments.).

It may bear repeating that planning, scoring, and execution are not separated
temporally in this sytem. Scoring is used after the enhanced plan is generated to
derive a simple plan (with ordered subgoals). Execution can affect the scores of
nodes, and so execution can alternate with “‘replanning”” (really rescoring result-
ing in a reordering). Recall the example of failure of an AND or SEQUENCE
subgoal, which can immediately fail the entire goal. More generally, the entire goal
and ultimately the plan may be rescored. For instance, the parameters of a success-
ful action are modified by setting the cost of the executed action to 0 and its
confidence to its second parameter, P (S|*‘S™").

Given a scored plan, execution is then easy; the execution program starts at
the top goal of the plan, working its way down the best path as defined by the scores
of nodes it encounters. When an executable subgoal is found (e.g. ““look for a
green region’’), it is passed to an evaluation function that “‘runs’’ the action asso-
ciated with the subgoal. '

The subgoal is either achieved or not; in either case, information about its
outcome is propagated back up the plan. Failure is easy; a failed subgoal of an
AND or SEQUENCE goal fails the goal, and this failure is propagated. A failed
subgoal of an OR goal is removed from the plan. The use of success information is
more complex, involving the adjustment of confidences and planning parameters
illustrated above.
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Exercises
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Fig. 13.9 This is the microstructure of a node (**action’’) of Garvey’s planning
system in terms of simple plans. Think of actions as being object detectors which
announce “‘Found™ or ‘“Not Found.” Garvey’s planning parameters are
P(“Found’’) and P(Object is there|*Found’’). Confidence in the action is their
product; it is the probability of correcily detecting the object. All other outcomes

are lumped together and not used for plan

Incorrectly
decide object
present

ning.

After the outcome of a goal is used to adjust the parameters of other goals,
the plan is rescored and another cycle of execution performed. The execution can
use knowledge about the image picked up along the way by prior execution. This is
how results (such as acquired pixels) are passed to later processing stages (such as
the validation process). Such a mechanism can even be used to remember success-

ful subplans for later use.

EXERCISES

13.1 Complete the computation of outcome probabilities in the style of Section 13.2.2,
using the assumptions given there. Check your work by showing (symbolically)
that the probabilities of getting to the terminal actions (*‘goal states’’) of the plan

sumto 1.
13.2

Assume in Section 13.2.2 that the results of the ‘‘table’” and ‘“‘telephone shape”’

detectors are not independent. Formulate your assumptions and compute the new

outcome probabilities for Fig. 13.4.
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13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

Show that

)= PB|AANC)HPUA]|C)
P(B|C)

Band C are independent if P(BA C) = P(B) P(C). Assuming that Band C are
independent, show that

P(A|(BAC)

P(B|C) = P(B)
PUBAC)A)=P(B|A)P(C|4)
P(B|(4AC)) = P(B|4)

Starting from the fact that
PAAB)=PUABAC)+PUAUABAC))

show how Ps was computed in Section 13.2.2.

A sequence D (N) of N detectors is used to detect an object; the detectors either
succeed or fail. Detector outputs are assumed independent of each other, being
conditioned only on the object. Using previous results, show that the probability of
an object being detected by applying a sequence of N detectors D (N) is recursively
rewritable in terms of the output of the first detector D1 and the remaining se-
quence D(N—1) as

P(D1]0)P(O|D(N~1))
P(D1|D(N-1))

P(O|D(N))=

Consider scoring a plan containing an OR node (action). Presumably, each subgoal
of the OR has an expected utility. The OR action is achieved as soon as one of the
subgoals is achieved. Is it possiblesto order the subgoals for trial so as to maximize
the expected utility of the plan? (This amounts to a unique “‘best’’ rewriting of the
plan to make it a simple plan.)

Answer question 13.7 for an AND node; remember that the AND will fail as soon
as any of its subgoals fails.

What can you say about how the cost/confidence ratio of Garvey’s planner is re-
lated to the expected utility calculations of Section 13.2.2?

You are at Dandy Dan’s used car lot. Consumer Reporis says that the a priori proba-
bility that any car at Dandy Dan’s is a lemon is high. You know, though, that to test
a car you kick its tire. In fact, with probability:

P(“C”|O) : akick correctly announces *‘creampuff”’ when the
car actually is a creampuff

P(“C”|L) : akick incorrectly announces ‘“‘creampuff”” when
the car is actually a lemon

P(L) : the a priori probability that the car is a lemon

Your plan for dealing with Dandy Dan is shown below; give expressions for the
probabilities of arriving at the nodes labeled S,, S,, F;, Fy, and F;. Give numeric
answers using the following values

P(C"C)Y=105, P("C”|L) =05, P(L)=10.75
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Ex. 13.10

13.11 Two bunches of bananas are in a room with a monkey and a box. One of the
bunches is lying on the floor, the other is hanging from the ceiling. One of the
bunches is made of wax. The box may be made of flimsy cardboard. Given that:

P(WH) = 0.2:probability that the hanging bananas are wax
P(WL) = 0.8:probability that the lying bananas are wax

P(C) = 0.5 probability that the box is cardboard
Uleat) = 200:utility of eating a bunch of bananas
C(walk) = —10:cost of walking a unit distance
C(push) = —20:cost of pushing the box a unit distance
C(climb) = —20:cost of climbing up on box

(a) Analyze two different plans for the monkey, showing all paths and calcula-
tions. Give criteria (based upon extra information not given here) that
would allow the monkey to choose between these plans.
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(b) Suppose the monkey knows that the probability that the box will collapse is
inversely proportional to the cost of pushing the box a unit distance (and
that he can sense this cost after pushing the box 1 unit distance). For
example,

P(C) = 1.0— [C(push) x 0.01]
P(C(push) = 10) = 0.1
P(C(push) = 20)=0.1
P(C(push) = 100) = 0.1

Repeat part(a) (in detail).
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Some
Mathematical Tools
Appendix 1

A1.1 COORDINATE SYSTEMS

A1.1.1 Cartesian

The familiar two- and three-dimensional rectangular (Cartesian) coordinate sys-
tems are the most generally useful ones in describing geometry for computer vi-
sion. Most common is a right-handed three-dimensional system (Fig. A1.1.). The
coordinates of a point are the perpendicular projections of its location onto the
coordinate axes. The two-dimensional coordinate system divides two-dimensional
space into quadrants, the three-dimensional system divides three-space into oc-
tants.

A1.1.2 Polar and Polar Space

Coordinate systems that measure locations partially in terms of angles are in many
cases more natural than Cartesian coordinates. For instance, locations with respect

x Fig. Al.1 Cartesian coordinate systems.
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to the pan-tilt head of a camera or a robot arm may most naturally be described us-
ing angles. Two- and three-dimensional polar coordinate systems are shown in Fig.
Al.2.

Cartesian Coordinates  Polar Coordinates

X p cos @
P o p sin @
(x* + yz) # P
tan”! | £ 0
X

Cartesian Coordinates  Polar Space Coordinates
(x, y, z) (p cos &, p cosm, p cos L)
F+pp+aflE p
x
_] ;

=]

cos
p

cos™!|L M
p

cos”!|£ Z
p

In these coordinate systems, the Cartesian quadrants or octants in which points fall
are often of interest because many trigonometric functions determine only an an-
gle modulo 7/2 or 7 (one or two quadrants) and more information is necessery to
determine the quadrant. Familiar examples are the inverse angle functions (such
as arctangent), whose results are ambiguous between two angles.

A1.1.3 Spherical and Cylindrical

The spherical and cylindrical systems are shown in Fig. A1.3.

Y z
']
[\ AN
X Y
Fig. A1.2 Polar and polar space
X

coordinate systems.
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Cartesian Coordinates

X
Y
z
(x2 + _y2+zz)'/"
tan™! .3
X
—11 2
cos ==
P

Cartesian Coordinates

X

Y

Z

(x*+ yH*
tan~! [£
x

A1.1.4 Homogeneous Coordinates

Fig. A1.3 Spherical and cylindrical
coordinate systems.

Spherical Coordinates

p sin ¢ cos @ .

p sin ¢ sin @ = x tan #
p cos @

p

0

¢

Cylindrical Coordinates
r cos @

r sin @

Z

F

Homogeneous coordinates are a very useful tool in computer vision (and com-
puter graphics) because they allow many important geometric transformations to
be represented uniformly and elegantly (see Section A1.7). Homogeneous coordi-
nates are redundant: a point in Cartesian n-space is represented by a line in homo-
geneous (# + 1)-space. Thus each (unique) Cartesian coordinate point
corresponds to infinitely many homogeneous coordinates.

Cartesian Coordinates Homogeneous Coordinates

(x, y, 2) (wx, wy, wz, w)
&L L L (x, y, z w)
woowow
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Here x, y, z, and w are real numbers, wx, wy, and wz are the products of the two
reals, and x/wand so on are the indicated quotients.

A1.2. TRIGONOMETRY

A1.2.1 Plane Trigonometry

Referring to Fig. Al.4, define

sine: sin (4) (sometimes sin 4) = %
cosine: cos (4) (orcos 4) = %
tangent:  tan (4) (ortan 4) = -i—

The inverse functions arcsin, arccos, and arctan (also written sin™!, cos™!, tan™!)
map a value into an angle. There are many useful trigonometric identities; some of
the most common are the following.

sin (x) _
cos (x)

sin (x + y) = sin (x) cos (y) + cos (x) sin (y)
cos (x + y) = cos (x) cos (y) — sin (x) sin (y)

tan (x) ¥ tan (y)
1 xtan (x) tan(y)

tan (x) = —tan(—x)

tan (x = y) =

In any triangle with angles A, B, C opposite sides a, b, ¢, the Law of Sines holds:

a_ _ b _ c
sin A sin B sin C

as does the Law of Cosines:

a’= b*+ ¢ —2bc cos A4

a=bcosC+ccosB

b ¢ Fig. Al1.4 Plane right triangle.
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A1.2.2, Spherical Trigonometry

The sides of a spherical triangle (Fig. A1.5) are measured by the angle they sub-
tend at the sphere center; its angles by the angle they subtend on the face of the
sphere.

Some useful spherical trigonometric identities are the following.

sind _ sinB _ sinC
sin a sin b sin ¢

cos b cos(c + @)

cosa = cosb cosc + sinb sine cosd =
cos@
Where tan # = tan b cos 4,
cos4 = —cosB cosC + sinB sinC cosa

A1.3. VECTORS

Vectors are both a notational convenience and a representation of a geometric con-
cept. The familiar interpretation of a vector v as a directed line segment allows for a
geometrical interpretation of many useful vector operations and properties. A
more general notion of an n-dimensional vector v = (vy, v,, ..., v,) is that of an
n-tuple abiding by mathematical laws of composition and transformation. A vector
may be written horizontally (a row vector) or vertically (a column vector).

A point in n-space is characterized by its n coordinates, which are often writ-
ten as a vector. A point at X, Y, Z coordinates x, y, and z is written as a vector x
whose three components are (x, y, z). Such a vector may be visualized as a
directed line segment, or arrow, with its tail at the origin of coordinates and its
head at the point at (x, y, z). The same vector may represent instead the direction
in which it points—toward the point (x, y, z) starting from the origin. An impor-
tant type of direction vector is the normal vector, which is a vector in a direction
perpendicular to a surface, plane, or line.

Vectors of equal dimension are equal if they are equal componentwise. Vec-
tors may be multiplied by scalars. This corresponds to stretching or shrinking the
vector arrow along its original direction.

Ax= (Ax, Axy, ..., AXx,)

A # c Fig. A1.5 Spherical triangle.
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Vector addition and subtraction is defined componentwise, only between vectors
of equal dimension. Geometrically, to add two vectors x and y, put y’s tail at x’s
head and the sum is the vector from x’s tail to y’s head. To subtract y from x, put
y’s head at x’s head; the difference is the vector from x’s tail to y’s tail.

x+xy=03%p,x % Yy ., X, £ 9,)

The length (or magnitude) of a vector is computed by an n-dimensional version of
Euclidean distance.

Ix|= (xf +xF + -+ +xD*

A vector of unit length is a unit vector. The unit vectors in the three usual Carte-
sian coordinate directions have special names.

i=(1,0,0)
j=1(0,1,0)
k=1(0,0,1)

The inner (or scalar, or dot) product of two vectors is defined as follows.
x-y=|x|lylcos® = xy; + xap2 + <+ + X0

Here 8 is the angle between the two vectors. The dot product of two nonzero
numbers is 0 if and only if they are orthogonal (perpendicular). The projection of x
onto y (the component of vector x in the direction y) is

|x|cos® = e s
|yl

Other identities of interest:

X'y=Yy'X
x-(y+z)=x-y+x-2z
Ax-y)=0x)-y=x-Qy)
x - x=|x]?
The cross (or vector) product of two three-dimensional vectors is defined as
follows.

x Xy = (X2y3 = X3¥2, X3V1 = X3, X1¥2 = X21)

Generally, the cross product of x and y is a vector perpendicular to both x and y.
The magnitude of the cross product depends on the angle # between the two vec-
tors.

|x x y|=[x||y[sin®

Thus the magnitude of the product is zero for two nonzero vectors if and only if
they are parallel.
Vectors and matrices allow for the short formal expression of many symbolic

App. T Some Mathematical Tools



expressions. One such example is the formal determinant (Section Al.4) which
expresses the definition of the cross product given above in a more easily remem-

bered form.
i j k
x X y=det[x; x; X3
Y1 Y2 Y3
Also,

XXy=-yXx
xX(yxz)=xXyxxxz

AMx Xy)=Ax X y=xXD\y

ixj=k
ixk=i
kxi=]j
The triple scalar product is x - (y % z), and is equivalent to the value of the
determinant
X1 X2 X3
det |y; y2 »3
21 Zy Zj

The triple vector product is

xx(yxz)=(x-2y— (x-yz

A1.4. MATRICES

A matrix A4 is a two-dimensional array of elements; if it has m rows and » columns
it is of dimension m X n, and the element in the ith row and jth column may be
named a;;. If mor n = 1, a row matrix or column matrix results, which is often
called a vector. There is considerable punning among scalar, vector and matrix
representations and operations when the same dimensionality is involved (the 1 x
1 matrix may sometimes be treated as a scalar, for instance). Usually, this practice
is harmless, but occasionally the difference is important.

A matrix is sometimes most naturally treated as a collection of vectors, and
sometimes an m X n matrix Mis written as

M = [81 a - a,,]
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or

where the a’s are column vectors and the b’s are row vectors.

Two matrices 4 and B are equal if their dimensionality is the same and they
are equal elementwise. Like a vector, a matrix may be multiplied (elementwise) by
a scalar. Matrix addition and subtraction proceeds elementwise between matrices
of like dimensionality. For a scalar k& and matrices 4, B, and C of like dimensional-
ity the following is true.

A=B+C ifay=b;+x¢c; 1<i<m 1<j<n

Two matrices 4 and B are conformable for multiplication if the number of
columns of 4 equals the number of rows of B. The product is defined as

C = AB whereanelement c; isdefined by ¢; = X, auxby;
k

Thus each element of C is computed as an inner product of a row of 4 with a
column of B. Matrix multiplication is associative but not commutative in general.
The multiplicative identity in matrix algebra is called the identity matrix I 7is all
zeros except that all elements in its main diagonal have value 1 (a,-j = 1ifi=j, else
a; = 0). Sometimes the n X nidentity matrix is written /,.

The transpose of an m X n matrix 4 is the n X m matrix 47 such that the

i,jth element of A is the j,ith elementof A7. If AT = A, A is symmetric.
The inverse matrix of an n x nmatrix A is written 4", If it exists, then

A4 =474 =1
If its inverse does not exist, an n x » matrix is called singular.
With & and p scalars, and A, B, and C m x n matrices, the following are
some laws of matrix algebra (operations are matrix operations):
A+B=B+A4
Ad+B)+C=4+(B+C)
k(4 + B) = kA + kB
(k + p)d = kA + pA
AB # BA in general
(4B)C = A (BC)
A(B + C) = AB + AC
(4 +B)C=AC + BC
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A(kB) = k(4B) = (kA)B

I,A = Al = 4
(4+BN=4"+B"
(4B)"=BTAT

(AB) ' = 147!

The determinant of an n» X » matrix is an important quantity; among other
things, a matrix with zero determinant is singular. Let 4;; be the (n —1) x (n—1)
matrix resulting from deleting the ith row and jth column from an n X n matrix A4.
The determinant of a 1 x 1 matrix is the value of its single element. Forn > 1,

1
det 4 = Y, a; (=1 det 4,
i=1
for any j between 1 and n. Given the definition of determinant, the inverse of a
matrix may be defined as
oy o D det 4,
T T et 4

In practice, matrix inversion may be a difficult computational problem, but
this important algorithm has received much attention, and robust and efficient
methods exist in the literature, many of which may also be used to compute the
determinant. Many of the matrices arising in computer vision have to do with
geometric transformations, and have well-behaved inverses corresponding to the
inverse transformations. Matrices of small dimensionality are usually quite compu-
tationally tractable.

Matrices are often used to denote linear transformations; if a row (column)
matrix X of dimension nis post (pre) multiplied by an n x n matrix A, the result X
= XA (X' = AX) is another row (column) matrix, each of whose elements is a
linear combination of the elements of X, the weights being supplied by the values
of A. By employing the common pun between row matrices and vectors, x' = x4
(x’ = 4 x) is often written for a linear transformation of a vector x.

An eigenvector of an # X n matrix A is a vector v such that for some scalar A
(called an eigenvalue),

]

vA = AV

That is, the linear transformation 4 operates on v just as a scaling operation. A ma-
trix has n eigenvalues, but in general they may be complex and of repeated values.
The computation of eigenvalues and eigenvectors of matrices is another computa-
tional problem of major importance, with good algorithms for general matrices be-
ing complicated. The r eigenvalues are roots of the so-called characteristic polyno-
mial resulting from setting a formal determinant to zero:

det (4 — AI) =0.
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Eigenvalues of matrices up to 4 X 4 may be found in closed form by solving the
characteristic equation exactly. Often, the matrices whose eigenvalues are of in-
terest are symmetric, and luckily in this case the eigenvalues are all real. Many al-
gorithms exist in the literature which compute eigenvalues and eigenvectors both
for symmetric and general matrices.

A1.5. LINES

474

An infinite line may be represented by several methods, each with its own advan-
tages and limitations. An example of a representation which is not often very use-
ful is two planes that intersect to form the line. The representations below have
proven generally useful.

A1.5.1 Two Points

A two-dimensional or three-dimensional line (throughout Appendix 1 this short-
hand is used for *‘line in two-space’’ and “‘line in three-space’’; similarly for ‘‘two
(three) dimensional point’’) is determined by two points on it, x1 and x2. This
representation can serve as well for a half-line or a line segment. The two points
can be kept as the rows of a (2 X n) matrix.

A1.5.2 Point and Direction

A two-dimensional or three-dimensional line (or half-line) is determined by a
point x on it (its endpoint) and a direction vector v along it. This representation is
essentially the same as that of Section A1.5.1, but the interpretation of the vectors
is different.

A1.5.3 Slope and Intercept

A two-dimensional line can often be represented by the Y value b where the line
intersects the Y axis, and the slope m of the line (the tangent of its inclination with
the x axis). This representation fails for vertical lines (those with infinite slope).
The representation is in the form of an equation making explicit the dependence of
yonx

y=mx +b

A similar representation may of course be based on the Xintercept.
A1.5.4 Ratios

A two-dimensional or three-dimensional line may be represented as an equation of
ratios arising from two points x1 = (x;, y;, z;) and x2 = (x,, y,, z,)on the line.
X—xy y—»N _ z7—z

X2 — X Y2 — N Zy— 2}
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A1.5.5 Normal and Distance from Origin (Line Equation)

This representation for two-dimensional lines is elegant in that its parts have useful
geometric significance which extends to planes (not to three-dimensional lines).
The coefficients of the general two-dimensional linear equation represent a two-
dimensional line and incidentally give its normal (perpendicular) vector and its
(perpendicular) distance from the origin (Fig. A1.6).

From the ratio representation above, it is easy to derive (in two dimensions)
that

(x —x))sind —(—yp)cost=0
so for
d = —(xy sin 6 —y, cos ),

xsinf—ycos@+d=0

This equation has the form of a dot product with a formal homogeneous vector
Cx, y, D:

(x, y, 1) - (sinf, —cos®, d) =0

Here the two-dimensional vector (sin #, —cos #) is perpendicular to the line (itisa
unit normal vector, in fact), and dis the signed distance in the direction of the nor-
mal vector from the line to the origin. Multiplying both sides of the equation by a
constant leaves the line invariant, but destroys the interpretation of 4 as the dis-
tance to the origin.

This form of line representation has several advantages besides the interpre-
tations of its parameters. The parameters never go to infinity (this is useful in the
Hough algorithm described in Chapter 4). The representation extends naturally to
representing n-dimensional planes. Least squared error line fitting (Section A1.9)
with this form of line equation (as opposed to slope-intercept) minimizes errors
perpendicular to the line (as opposed to those perpendicular to one of the coordi-
nate axes).

/ Fig. Al.6 Two-dimensional line with
normal vector and distance to origin.
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A1.5.6 Parametric

It is sometimes useful to be able mathematically to “‘walk along’ a line by varying
some parameter t. The basic parametric representation here follows from the two-
point representation. If x1 and x2 are two particular points on the line, a general
point on the line may be written as

x = x1 + (x2 —x1)

In matrix terms this is
x=1[ 1IL

where L is the 2 X » matrix whose first row is (x2 — x1) and whose second is x1.
Parametric representations based on points on the lines may be transformed by the
geometric point transformations (Section A1.7).

A1.6. PLANES

476

The most common representation of planes is to use the coordinates of the plane
equation. This representation is an extension of the line-equation representation
of Section A1.5.5. The plane equation may be written

ax + by +cz+d=0

which is in the form of a dot product x - p= 0. Four numbers given by
p = (a, b, ¢, d) characterize a plane, and any homogeneous point x = (x, y, z, w)
satisfying the foregoing equation lies in the plane. In p, the first three numbers
(a, b, ¢) form a normal vector to the plane. If this normal vector is made to be a
unit vector by scaling p, then 4 is the signed distance to the origin from the plane.
Thus the dot product of the plane coefficient vector and any point (in homogene-
ous coordinates) gives the distance of the point to the plane (Fig. A1.7).

z

</ Fig. A1.7 Distance from a point to a plane.
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Three noncollinear points x1, x2, x3 determine a plane p. To find it, write

x1

x2 8
x3 P= 10
000 1 1

If the matrix containing the point vectors can be inverted, the desired vector p is
thus proportional to the fourth column of the inverse.
Three planes pl1, p2, p3 may intersect in a point x. To find it, write

pl p2 p3 0

0

1

If the matrix containing the plane vectors can be inverted, the desired point p is
given by the fourth row of the inverse. If the planes do not intersect in a point, the
inverse does not exist.

A1.7 GEOMETRIC TRANSFORMATIONS

This section contains some results that are well known through their central place
in the computer graphics literature, and illustrated in greater detail there. The idea
is to use homogeneous coordinates to allow the writing of important transforma-
tions (including affine and projective) as linear transformations. The transforma-
tions of interest here map points or point sets onto other points or point sets. They
include rotation, scaling, skewing, translation, and perspective distortion (point
projection) (Fig. A1.8).

A point x in three-space is written as the homogeneous row four-vector
(x, y, z, w), and postmultiplication by the following transformation matrices ac-
complishes point transformation. A set of m points may be represented as an
m x 4 matrix of row point vectors, and the matrix multiplication transforms all
points at once.

A1.7.1 Rotation

Rotation is measured clockwise about the named axis while looking along the axis

toward the origin.
Rotation by 8 about the X axis:

0 0
cos® —sin @
sinf cos#@

0 0

OO -
—0 OO
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{a) (b) (c)

(d) (e) (f)

Fig. A1.8 Transformations: (a) original, (b) rotation, (c) scaling, (d) skewing,
(e) translation, and (f) perspective.

Rotation by 8 about the Y axis:

cos@ 0 sind 0
0 1 0 0
—sinf 0 cosé@ O
0 0 0 1

Rotation by # about the Z axis:

cosd —siné 0
sinf® cosf O
0 0 1
0 0 0

—oO OO

A1.7.2 Scaling

Scaling is stretching points out along the coordinate directions. Scaling can
transform a cube to an arbitrary rectangular parallelepiped.
Scale by S, S,, and S, in the X, ¥, and Z directions:

S 0 0 0
0 S 0 0
g .0 & 1
6 0 o 1

App. 1 Some Mathematical Tools



A1.7.3 Skewing

Skewing is a linear change in the coordinates of a point based on certain of its other
coordinates. Skewing can transform a square into a parallelogram in a simple case:

con, —
OO
o=Ooo
—o oo

In general, skewing is quite powerful:

om R,
O3 =&
O 3
—_—0 o

Rotation is a composition of scaling and skewing (Section A1.7.7).
A1.7.4 Translation

Translate a point by (¢, u, v):

1 0 0 0
01 00
0010
P u v 1

With a three-dimensional Cartesian point representation, this transformation is ac-
complished through vector addition, not matrix multiplication.

A1.7.5 Perspective

The properties of point projection, which model perspective distortion, were
derived in Chapter 2. In this formulation the viewpoint is on the positive Z axis at
(0,0, £, 1) looking toward the origin: facts like a ‘‘focal length’*. The visible world
is projected through the viewpoint onto the Z = 0 image plane (Fig. A1.9).

X Fig. A1.9 Geometry of image formation.
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Similar triangles arguments show that the image plane point for any world
point (x, y, 2) is given by

Sfx
f—z' f—z

Using homogeneous coordinates, a “‘perspective distortion’® transformation can
be written which distorts three-dimensional space so that after orthographic projec-
tion onto the image plane, the result looks like that required above for perspective
distortion. Roughly, the transformation shrinks the size of things as they get more
distant in Z. Although the transformation is of course linear in homogeneous coor-
dinates, the final step of changing to Cartesian coordinates by dividing through by
the fourth vector element accomplishes the nonlinear shrinking necessary.
Perspective distortion (situation of Fig. A1.9):

LI il =

000
I 0
-1
] ——
f

1
0
0
0 0 1

o O

Perspective from a general viewpoint has nonzero elements in the entire fourth
column, but this is just equivalent to a rotated coordinate system and the perspec-
tive distortion above (Section A1.7).

A1.7.6 Transforming Lines and Planes

Line and plane equations may be operated on by linear transformations, just as
points can. Point-based parametric representations of lines and planes transform as
do points, but the line and plane equation representations act differently. They
have an elegant relation to the point transformation. If T'is a transformation matrix
(3 x 3 for two dimensions, 4 x 4 for three dimensions) as defined in Sections
Al.7.1to A1.7.5, then a point represented as a row vector is transformed as

x'=xT

and the linear equation (line or plane) when represented as a column vector v is
transformed by

A1.7.7 Summary

The 4 x 4 matrix formulation is a way to unify the representation and calculation of
useful geometric transformations, rigid (rotation and translation), and nonrigid
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(scaling and skewing), including the projective. The semantics of the matrix are
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another row
vector, transformations may be concatenated by repeated matrix multiplication.
Such composition of transformations follows the rules of matrix algebra (it is asso-
ciative but not commutative, for instance). The semantics of

x' = xABC

is that x' is the vector resulting from applying transformation A to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 X 4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrices
are just the matrices expressing the inverse transformations, and are easy to
derive,

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

The aim of this section is to explore the correspondence between world and image
points. A (half) line of sight in the world corresponds to each image point. Camera
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to an
image point. Given an inverse perspective transform and the knowledge that a visi-
ble point lies on a particular world plane (say the floor, or in a planar beam of
light), then its precise three-dimensional coordinates may be found, since the line
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
zZ
Translate Zoom
Fig. A1.10 The 4 X 4 homogeneous
transformation matrix.
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A1.8.1 Camera Calibration

This section is concerned with the ‘‘camera model’’; the model takes the form of a
4 x 3 matrix mapping three-dimensional world points to two-dimensional image
points. There are many ways to derive a camera model. The one given here is easy
to state mathematically; in practice, a more general optimization technique such as
hill climbing can be most effective in finding the camera parameters, since it can
take advantage of any that are already known and can reflect dependencies between
them.

Let the image plane coordinates be {/and V; in homogeneous coordinates an
image plane point is (u,v,t). Thus

~le ==

U

4

Call the desired camera model matrix C, with elements C; and column four-
vectors C;. Then for any world point (x, y, z) a Cis needed such that
x5 21)C=(4vt)
So
u=(x,y 2z 1DC,
v=>(xy 2z 1C;
=(x,y 2z 1C;

o~

Expanding the inner products and rewriting ¥ — U= 0and v — Vt = 0,

XC]] iy yC21 + ZC31 + C4| = UXC13 - Uyng, - UZC33 — UC43 =0
XC];J_ '?'ngz 4 ZC32 o+ C42 = VXC|3 = VyC23 = VZC33 == VC43 = 0

The overall scaling of C is irrelevant, thanks to the homogeneous formulation, so
C43 may be arbitrarily set to 1. Then equations such as those above can be written
in matrix form:

ybo22 1 0 0 o0 o0 -Ux' -uh! -yl |
0 0 0 x! ' ozt 1 —vixt -yl -yl C Ul
pr 2 1 - : Ca 4

* [}H’
0 0 0 x"‘ yﬂ zn 1 el Vﬂxﬁ oAt Vﬁ.yﬂ il VH'ZJ? C34 Vﬂ
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Eleven such equations allow a solution for C. Two equations result for every
association of an (x, y, z) point with a (U, ¥) point. Such an association must be
established using visible objects of known location (often placed for the purpose).
If more than 5% such observations are used, a least-squared-error solution to the
overdetermined system may be obtained by using a pseudo-inverse to solve the
resulting matrix equation (Section A1.9).

A1.8.2 Inverse Perspective

Finding the world line corresponding to an image point relies on the fact that the
perspective transformation matrix also affects the z component of a world point.
This information is lost when the z component is projected away orthographically,
but it encodes the relation between the focal point and the z position of the point.
Varying this third component references points whose world positions vary in z but
which project onto the same position in the image. The line can be parameterized
by a variable p that formally occupies the position of that z coordinate in three-
space that has no physical meaning in imaging.
Write the inverse perspective transform P! as

Oy, pDP = y, p 1+ £)

4
Rewriting this in the usual way gives these relations between the (x, y, z) points on
the line.
Sx' Sy Jo'

(xyzl= . ] ok

f+p f+p f+p

Eliminating the parameter p between the expressions for z and x and those for z
and y leaves

Thus x, y, and z are linearly related; as expected, all points on the inverse perspec-
tive transform of an image point lie in a line, and unsurprisingly both the viewpoint
(0, 0, f) and the image point (x/, y’, 0) lie on it.

A camera matrix C determines the three-dimensional line that is the inverse
perspective transform of any image point. Scale C so that C43 = 1, and let world
points be written x = (x, y, z, 1) and image points u = (, v, t). The actual image
points are then

U=—?,V+~:, sou="Ut, v+ Vt
Since
u=xC,
u=Ut=x(C
v=Vt=xC;
t =xC;
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Substituting the expression for ¢into that for v and vgives
UxCy=xC
VxCs; = xC,
which may be written
x(C,—UC3) =0
x(C,— VCy) =0

These two equations are in the form of plane equations. For any U, Vin the image
and camera model C, there are determined two planes whose intersection gives the
desired line. Writing the plane equations as

ax+by+tcz+td =0
ax + by +cz+dy=0
then
ay=Cy~— Cpl du® Cyp—Cpl

and so on. The direction (A, u, v) of the intersection of two planes is given by the
cross product of their normal vectors, which may now be written as

(A, M, V) 2 (dl, b], C]) X (ag, by, 6‘2)
= (bicy— byc1, c1a2— c2ay, ar1by— azby)
Then if v # 0, for any particular z;,

_ by (Cz zp + dz) - b (C] Zg — dl)
albg = blag

X0

s (Clzo + d]) - a (6‘220 a dz)
ayby; — biay

Yo

and the line may be written

X—Xp Y —JYo Z7Zp

A M v

A1.9. LEAST-SQUARED-ERROR FITTING
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The problem of fitting a simple functional model to a set of data points is a com-
mon one, and is the concern of this section. The subproblem of fitting a straight
line to a set of (x, y) points (‘‘linear regression’’) is the first topic. In computer vi-
sion, this line-fitting problem is encountered relatively often. Model-fitting
methods try to find the “‘best’ fit; that is, they minimize some error. Methods
which yield closed-form, analytical solutions for such best fits are at issue here.
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The relevant “‘error’ to minimize is determined partly by assumptions of depen-
dence between variables. If x is independent, the line may be represented as y =
mx + band the error defined as the vertical displacement of a point from the line.
Symmetrically, if x is dependent, horizontal error should be minimized. If neither
variable is dependent, a reasonable error to minimize is the perpendicular distance
from points to the line. In this case the line equation ax + by + 1 = 0 can be used
with the method shown here, or the eigenvector approach of Section A1.9.2 may
be used.

A1.9.1 Pseudo-Inverse Method

Infitting an » x 1 observations matrix y by some linear model of p parameters, the
prediction is that the linear model will approximate the actual data. Then

Y=XB+E

where X is an #n X p formal independent variable matrix, Bis a p x 1 parameter
matrix whose values are to be determined, and E represents the difference
between the prediction and the actuality: itisan n x 1 error matrix.

For example, to fit a straight line y = mx + b to some data (x;, y,) points,
form Yas a column matrix of the y;.

1 X

X2

e M
_| b
B m

Now the task is to find the parameter B (above, the b and m that determine
the straight line) that minimizes the error. The error is the sum of squared
difference from the prediction, or the sum of the elements of E squared, or ETE (if
we do not mind conflating the one-element matrix with a scalar). The mathemati-
cally attractive properties of the squared-error definition are almost universally
taken to compensate for whatever disadvantages it has over what is really meant by
error (the absolute value is much harder to calculate with, for example).

To minimize the error, simply differentiate it with respect to the elements of
B and set the derivative to 0. The second derivative is positive: this is indeed a
minimum. These elementwise derivatives are written tersely in matrix form. First
rewrite the error terms:

(Y — XB)™(Y — XB)
= YTy — B'XTy — Y'XB + BTX"XB
YTy — 2B'XTY + BTXTXB

ETE

I
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(here, the combined terms were 1 % 1 matrices.) Now differentiate: setting the
derivative to 0 yields

0=X"XB - X"y
and thus
B=(XTX)y1XTy = XY
where X is called the pseudo-inverse of X.
The pseudo-inverse method generalizes to fitting any parametrized model to
data (Section A1.9.3). The model should be chosen with some care. For example,
Fig. Al.11 shows a disturbing case in which the model above (minimize vertical

errors) is used to fit a relatively vertical swarm of points. The “‘best fit”” line in this
case is not the intuitive one.

A1.9.2 Principal Axis Method

The principal axes and moments of a swarm of points determine the direction and
amount of its dispersion in space. These concepts are familiar in physics as the
principal axes and moments of inertia. If a swarm of (possibly weighted) points is
translated so that its center of mass (average location) is at the origin, a symmetric
matrix M may be easily calculated whose eigenvectors determine the best-fit line
or plane in a least-squared-perpendicular-error sense, and whose eigenvalues tell
how good the resulting fit is.

Given a set {x') row of vectors with weights w/, define their ‘‘scatter matrix”’
to be the symmetric matrix M, where x' = (x{, x5, x5):

M=Y xi'x
My=2 xx) 1<kp<3

Define the dispersion of the x' in a direction v (i.e., ‘““dispersion around the
plane whose normal is v’*) to be the sum of weighted squared lengths of the x'in
the direction v. This squared error E? is

E2=Y w(x' -v)P=v (T wixTx)vl = vMvT

. Fig. Al.L11 A set of points and the

P X “pest fit” line minimizing error in Y.
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To find the direction of minimum dispersion (the normal to the best-fit line or
plane), note that the minimum of vMv7 over all unit vectors v is the minimum
eigenvalue A; of M. If v, is the corresponding eigenvector, the minimum disper-
sion is attained at v = v,. The best fit line or plane of the points goes through the
center of mass, which is at the origin; inverting the translation that brought the
centroid to the origin yields the best fit line or plane for the original point swarm.

The eigenvectors correspond to dispersions in orthogonal directions, and the
eigenvalues tell how much dispersion there is. Thus with a three-dimensional
point swarm, two large eigenvalues and one small one indicate a planar swarm
whose normal is the smallest eigenvector. Two small eigenvalues and one large
one indicate a line in the direction of the normal to the ‘‘worst fit plane”’, or eigen-
vector of largest eigenvalue. (It can be proved that in fact this is the best-[it line in a
least squared perpendicular error sense). Three equal eigenvalues indicate a
“‘spherical’ swarm.

A1.9.3 Fitting Curves by the Pseudo-Inverse Method

Given a function f(x) whose value is known on n points xy, ..., X, it may be use-
ful is to fit it with a function g (x) of m parameters (b4, ..., b,,). If the squared er-
ror at a point x; is defined as

(e)?=[r(x;) — gx)1?

a sequence of steps similar to that of Section A1.9.1 leads to setting a derivative to
zero and obtaining

0=G'Gb— Gt
where b is the vector of parameters, f the vector of n values of £ (x), and

( 0g(x;) 9g(xy)
0b; d9b;

G-
dg(x,)

b,

As before, this yields
b= (G'G)' G™f

Explicit least-squares solutions for curves can have nonintuitive behavior. In
particular, say that a general circle is represented

Alx, y) = x>+ y* + 2Dx + 2By + F

this yields values of D, E, and F which minimize

2= il (f, I)Z
e E‘gx ¥
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for n input points. The error term being minimized does not turn out to accord
with our intuitive one. It gives the intuitive distance of a point to the curve, but
weighted by a factor roughly proportional to the radius of the curve (probably not
desirable). The best fit criterion thus favors curves with high average curvature,
resulting in smaller circles than expected. In fitting ellipses, this error criterion
favors more eccentric ones.

The most successful conic fitters abandon the luxury of a closed-form solu-
tion and go to iterative minimization techniques, in which the error measure is ad-
justed to compensate for the unwanted weighting, as follows.

) _ S Gy
> [lvm, ]

A1.10 CONICS
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The conic sections are useful because they provide closed two-dimensional curves,
they occur in many images, and they are well-behaved and familiar polynomials of
low degree. This section gives their equations in standard form, illustrates how the
general conic equation may be put into standard form, and presents some sample
specific results for characterizing ellipses.

All the standard form conics may be subjected to rotation, translation, and
scaling to move them around on the plane. These operations on points affect the
conic equation in a predictable way.

Circle: r = radius  x2 + y*=r?

2

2
Ellipse: a, & = major, minor axes x_z + y_2 =]
a b

Parabola: (p, 0) = focus, p = directrix ~ y* = 4px

2
x %——y—"=1

Hyperbola: vertices (£ g, 0), asymptotes y = =+ | — %
a

The general conic equation is
Ax* +2Bxy + O* +2Dx +2Ey + F=0

This equation may be written formally as

A B D| |[x
x y 1) (B C E| |y|l=xMx"=0
D E F 1

Putting the general conic equation into one of the standard forms is a common ana-
lytic geometry exercise. The symmetric 3 X 3 matrix M may be diagonalized, thus
eliminating the coefficients B, D, and F from the equation and reducing it to be
close to standard form. The diagonalization amounts to a rigid motion that puts the
conic in a symmetric position at the origin. The transformation is in fact the 3 x 3
matrix £whose rows are eigenvectors of M. Recall that if v is an eigenvector of M,

vM = \v
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Then if Dis a diagonal matrix of the three eigenvalues, A, Ay, A3,
EM = DE
but then
EME'= DEE'=D

and M has been transformed by a similarity transformation into a diagonal matrix
such that

xDx"=10

This general idea is of course related to the principal axis calculation given in Sec-
tion A1.9.2, and extends to three-dimensional quadric surfaces such as the ellip-
soid, cone, hyperbolic paraboloid, and so forth. The general result given above has
particular consequences illustrated by the following facts about the ellipse. Given a
general conic equation representing an ellipse, its center (x., y.) is given by

4, BE—-2CD
‘ B’-44C
Py 2EA— BD
‘ B'-44C
The orientation is
6 = tan! ﬁ‘
The major and minor axes are
—-2G

4d+0C) =B+ U-0O))"

where
G=F— (Ax} 4+ er " + Cy‘?)

A1.11 INTERPOLATION

Interpolation fits data by giving values between known data points. Usually, the in-
terpolating function passes through each given data point. Many interpolation
methods are known; one of the simplest is Lagrangean interpolation.

A1.11.1 One-Dimensional

Given n + 1 points (x;, y,), xo < x; < -+ < Xx,, the idea is to produce an nth-
degree polynomial involving » + 1 so-called Lagrangean coefficients. It is

Flx) = i L;(x)y;
J=0
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] ® (xo, ¥y) ® (x;,¥3)

h T O (xy + gk, y, +ph)
|1
J— ® (xq, ¥o! ®(x,, ¥,)
}— gk —»=
Fig. Al1.12 Four point lagrangean
ISR SREE, interpolation on rectangular grid.
where L;(x) is the jth coefficient;
o= =2y} oo Ge=g 1} e —ogiiq) ~ =~ (x~—ux)
LJ(X) =
Gg—as) Gg—omd =+« y—mpi) Cy—agg) == Gg—wp)

Other interpolative schemes include divided differences, Hermite interpola-
tion for use when function derivatives are also known, and splines. The use of a po-
lynomial interpolation rule can always produce surprising results if the function be-
ing interpolated does not behave locally like a polynomial.

A1.11.2 Two-Dimensional

The four-point Lagrangean method is for the situation shown in Fig. A1.12. Let f;
= f(x;, y;). Then

Flxo+ gk, yo+ ph) = U—=p) (01—q) foo+qU=p) fio+ pl—q) for + pafi

A1.12 THE FAST FOURIER TRANSFORM
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The following routine computes the discrete Fourier transform of a one-
dimensional complex array XIn of length N = 28N and produces the one-
dimensional complex array XOut. It uses an array W of the N complex Nth roots of
unity, computed as shown, and an array Bits containing a bit-reversal table of
length N. N, LogN, W, and Bits are all global to the subroutine as written. If the
logical variable Forward is TRUE, the FFT is performed; if Forward is FALSE, the
inverse FFT is performed.

SUBROUTINE FFT (XIn, KOut, Forward)
GLOBAL W, Bits, N, LogN

LOGICAL Forward

COMPLEX XlIn, Xout, W, A, B
INTEGER Bits '

ARRAY (0:N) W, Bits, XIn, XOut
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DO (I =0, N— 1) XOut(I) = XIn(Bits(I))
JOff = N/2
JPnt = N/2
JBk =2
IOFF =1
DO (I =1, LogN)
DO (IStart = 0, N— 1, JBk)
JWPnt =0
DO (K = IStart, IStart + IOff — 1)
WHEN (Forward)
A = XOut(K + I0ff) * W(JWPnt) + XOut(K)
B = XOut(K + I0ff) » W(JWPnt + JOII) + XOut(K)
... FIN
ELSE
A = XOut (K + IOff) * CONJIG (W (JWPnt)) + XOut(K)
B = XOut(K + 10ff) * CONJG (W (JWPnt + JOf)) + XOu
... FIN
XOut(K) = A
XOut(K + I0ff) =B
JWPnt = JWPnt + JPnt
... FIN
... FIN
JPnt = JPnt/2
IOff = JBk
JBk = JBk =2
... FIN
UNLESS (Forward)
DO (I=0,N-1) XOut(I) = XOut(I)/N
... FIN
END

TO INIT-W
Pi = 3.14159265
DO (K=0,N-1)
Theta = 2 * Pi/N
W (K) = CMPLX(COS(Theta *K), SIN(Theta = K))
... FIN
FIN

TO BIT-REV
Bits(0) =0
M=1
DO (I=0,LogN—1)
DO J=0,M—-1)
Bits(J)} = Bits(J) =2
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Bits(J + M) = Bits(J) + 1
... FIN
M=M=2
... FIN
FIN

A1.13 THE ICOSAHEDRON

Geodesic dome constructions provide a useful way to partition the sphere (hence
the three-dimensional directions) into relatively uniform patches. The resulting

polyhedra look like those of Fig. Al1.13.

The icosahedron has 12 vertices, 20 faces, and 30 edges. Let its center be at
the origin of Cartesian coordinates and let each vertex be a unit distance from the

center. Define

t, the golden ratio = 1+—2\/§
_ Ve
0_5‘/‘
1
b=___
Wt 5%

1
=g +2b=—
c=a 5

b
d=a+b=—,},

54

A = angle subtended by edge at origin = arccos(TS)
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Fig. A1.13 Multifaceted polyhedra from the icosahedron.
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Then

angle between radius and an edge = » = arccos ()
edge length = 25
distance from origin to center of edge = a

distance from origin to center of face = %

The 12 vertices may be placed at

Then midpoints of the 20 faces are given by
h(+d, +d, +d)
h( 0, +a, =+c)
h(+e, 0, +a)
i(+a, +c, 0)

To subdivide icosahedral faces further, several methods suggest themselves,
the simplest being to divide sach edge into » equal lengths and then construct n?2
congruent equilateral triangles on each face, pushing them out to the radius of the
sphere for their final position. (There are better methods than this if more uniform
face sizes are desired.)

A1.14 ROOT FINDING

Since polynomials of fifth and higher degree are not soluble in closed form, numer-
ical (approximate) solutions are useful for them as well as for nonpolynomial func-
tions. The Newton-Raphson method produces successive approximations to a real
root of a differentiable function of one variable.

i+l — i — f(xf)

f(x)
Here x'is the ith approximation to the root, and f(x") and f’(x") are the function
and its derivative evaluated at x’. The new approximation to the root is x'*!. The
successive generation of approximations can stop when they converge to a single
value. The convergence to a root is governed by the choice of initial approximation
to the root and by the behavior of the function in the vicinity of the root. For in-
stance, several roots close together can cause problems.

The one-dimensional form of this method extends in a natural way to solving
systems of simultaneous nonlinear equations. Given » functions F;, each of n
parameters, the problem is to find the set of parameters that drives all the func-
tions to zero. Write the parameter vector x.

X
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X1
X2

Xn

Form the function column vector F such that

F] (X)
Fz(x)
F(x)=|
F,(x)
The Jacobean matrix Jis defined as
OF, 0OF, o aF,
8x1 6x2 axn
J=
oF, wiimiin oF,
{axl axn ]

Then the extension of the Newton-Raphson formula is

x* = xi — JUx) F(x')

which requires one matrix inversion per iteration.

Al.2

Al.3
Ald4
AlS

EXERCISES

x and y are two two-dimensional vectors placed tail to tail. Prove that the area of the
triangle they define is|x X y|/2.

Show that points q in a plane defined by the three points x, y, and z are given by
q- [(y—x) X (z—x)] =x-(yxz)

Verify that the vector triple product may be written as claimed in its definition.
Given an arctangent routine, write an arcsine routine.
Show that the closed form for the inverse of a 2 x 2 A matrix is

1 an —an
det 4 |79z an

Prove by trigonometry that the matrix transformations for rotation are correct.
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Al1.7

Al.8
Al.9
Al1.10

Al.11
Al.12

Al.13

Al.14

Al.15

Al.16
Al.17

Al.18

Al.19

A1.20

Al.21
Al.22

What geometric transformation is accomplished when a44 of a geometric transfor-
mation matrix A varies from unity?

Establish conversions between the given line representations.
Write a geometric transform to mirror points about a given plane.

What is the line-equation representation of a line L1 through a point x and per-
pendicular to a line L2 (similarly represented) ? Parallel to L27?

Derive the ellipse results given in Section A1.10.
Explicitly derive the values of D, E, and F minimizing the error term
n
Y G2
j=1
in the general equation for a circle

xX+y?+2Dx +2Ey + F=0

Show that if points and lines are transformed as shown in Section Al1.7.6, the
transformed points indeed lie on the transformed lines.

Explicitly derive the least-squared-error solution for lines represented as ax + by
+1=0.

If three planes intersect in a point, is the inverse of
pl p2 p3 0
0
0
1

guaranteed to exist?
What is the angle between two three-space lines?

In two dimensions, show that two lines u and v intersect at a point x given by x =
uxy.
How can you tell if two line segments (defined by their end points) intersect in the
plane?

Find a 4 X 4 matrix that transforms an arbitrary direction (or point) to lie on the Z
axis.

Derive a parametric representation for planes based on three points lying in the
plane.

Devise a scheme for interpolation on a triangular grid.
What does the homogeneous point (x, y, z, 0) represent?
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Advanced
Control Mechanisms
Appendix 2

This appendix is concerned with specific control mechanisms that are provided by
programming languages or that may be implemented on top of existing languages
as aids to doing computer vision. The treatment here is brief; our aim is to expose
the reader to several ideas for control of computer programs that have been
developed in the artificial intelligence context, and to indicate how they relate to
the main computational goals of computer vision.

A2.1 STANDARD CONTROL STRUCTURES

For completeness, we mention the control mechanisms that are provided as a
matter of course by conventional research programming languages, such as Pascal,
Algol, POP-2, SAIL, and PL/1. The influential language LISP, which provides a
base language for many of the most advanced control mechanisms in computer vi-
sion, ironically is itself missing (in its pure form) a substantial number of these
more standard constructs. Another common language missing some standard con-
trol mechanisms is SNOBOL. These standard constructions are so basic to the
current conception of a serial von Neumann computer that they are often realized
in the instruction set of the machine. In this sense we are almost talking here of
computer hardware.
The standard mechanisms are the following:

Sequence. Advance the program counter to the next intruction.

Branch instruction. Go to a specific address.

3. Conditional branch. Go to a specific address if a condition is true, otherwise, go
to the next instruction.

4. Iteration. Repeat a sequence of instructions until a condition is met.
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5. Subroutines. Go to a certain location; execute a set of instructions using a set of
supplied parameters; then return to the next instruction after the subroutine
call.

All the standard control structures should be in the toolkit of a programmer.
They will be used, together with the data structures and data types supplied in the
working language, to implement other control mechanisms. The remainder of this
appendix deals with “‘nonstandard” control mechanisms; those not typically pro-
vided in commercial programming languages and which have no close correlates in
primitive machine instructions. Nonstandard control mechanisms, although not at
all domain-specific, have developed to meet needs that are not the “‘lowest com-
mon denominator’ of computer programming. They impose their own view of
problem decomposition just as do the standard structures.

Less standard mechanisms are recursion and co-routining. Co-routining can
be thought of as a form of recursion.

A2.1.1 Recursion

Recursion obeys all the constraints of subroutining, except that a routine may call
upon ‘‘itself.”” The user sees no difference between recursive and nonrecursive
subroutines, but internally recursion requires slightly more bookkeeping to be per-
formed in the language software, since typically the hardware of a computer does
not extend to managing recursion (although some machines have instructions that
are quite useful here).

A typical use of a recursive control paradigm in computer vision might be:

To Understand-Scene (X);
(
If Immediately-Apparent (X)
then Report-Understanding-Of(X);
else
( SimplerParts + Decompose(X);
ForEach Part in SimplerParts
Understand-Scene (Part);
)

[)

Recursion is an elegant way to specify many important algorithms (such as tree
traversals), but in a way it has no conceptual differences from subroutining. A rou-
tine is broken up into subroutines (some of which may involve smaller versions of
the original task); these are attacked sequentially, and they must finish before they
return control to the routine that invokes them.

A2.1.2 Co-Routining
Co-routines are simply programs that can call (invoke) each other. Most high-level
languages do not directly provide co-routines, and thus they are a nonstandard

control structure. However, co-routining is a fundamental concept [Knuth 1973]
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and serves here as a bridge between standard and nonstandard control mechan-
isms.

Subroutines and their calling programs have a “‘slave-master’” aspect: con-
trol is always returned to the master calling program after the subroutine has car-
ried out its job. This mechanism not only leads to efficiencies by reducing the
amount of executable code, but is considered to be so useful that it is built into the
instruction set of most computers. The pervasiveness of subroutining has subtle
effects on the approach to problem decomposition, encouraging a hierarchical sub-
problem structure. The co-routine relationship is more egalitarian than the
subroutine relationship. If co-routine 4 needs the services of co-routine B, it can
call B, and (here is the difference) conversely, Bcan call 4 if Bneeds 4’s services.

Here is a simple (sounding) problem [Floyd 1979]: “‘Read lines of text, until
a completely blank line is found. Eliminate redundant blanks between the words.
Print the text, 30 characters to a line, without breaking words between lines.’” This
problem is hard to program elegantly in most languages because the iterations in-
volved do not nest well (try it!). However, an elegant solution exists if the job is
decomposed into three co-routines, calling each other to perform input, format-
ting, and output of a character stream.

A useful paradigm for problem solving, besides the strictly hierarchical, is
that of a “*heterarchical”” community of experts, each performing a job and when
necessary calling on other experts. A heterarchy can be implemented by co-
routines. Many of the nonstandard mechanisms discussed below are in the spirit of
co-routines.

A2.2 INHERENTLY SEQUENTIAL MECHANISMS

A2.2.1 Automatic Backtracking

The PLANNER language [Hewitt 1972] implicitly implemented the feature of
“automatic backtracking.”” The advisability of uniformly using this technique,
which is equivalent to depth-first search, was questioned by those who wished to
give the programmer greater freedom to choose which task to activate next [Suss-
man and McDermott 1972].

A basic backtracking discipline may be provided by recursive calls, in which a
return to a higher level is a “‘backtrack.’”” The features of automatic backtracking
are predicated on an ability to save and reinstate the computational state of a proc-
ess automatically, without explicit specification by the programmer.

Automatic backtracking has its problems. One basic problem occurs in sys-
tems that perform inferences while following a particular line of reasoning which
may ultimately be unsuccessful. The problem is that along the way, perhaps many
perfectly valid and useful computations were performed and many facts were add-
ed to the internal model. Mixed in with these, of course, are wrong deductions
which ultimately cause the line of reasoning to fail. The problem: After having re-
stored control to a higher decision point after a failure is noticed, how is the system

Sec. A2.2  Inherently Sequential Mechanisms 499



to know which deductions were valid and which invalid? One expensive way sug-
gested by automatic backtracking is to keep track of all hypotheses that contributed
to deriving each fact. Then one can remove all results of failed deduction paths.
This is generally the wrong thing to do; modern trends have abandoned the au-
tomatic backtracking idea and allow the programmer some control over what is re-
stored upon failure-driven backtracking. Typically, a compromise is implemented
in which the programmer may mark certain hypotheses for deletion upon back-
tracking.

A2.2.2 Context Switching

Context switching is a general term that is used to mean switching of general proc-
ess state (a control primitive) or switching a data base context (a data access primi-
tive). The two ideas are not independent, because it could be confusing for a proc-
ess to put itself to sleep and be reawakened in a totally different data context.

Backtracking is one use of general control context switching. The most gen-
eral capability is a ‘“‘general GO TO.”” A regular GO TO allows one to go only to a
particular location defined in a static program. After the GO TO, all bindings and
returnpoints are still determined by the current state of processing. In contrast, a
general GO TO allows a transfer not only across program ‘‘space,” but through
program ‘‘time’’ as well. Just as a regular GO TO can go to a predefined program
label, a general GO TO can go to a “‘tag” which is created to save the entire state of
a process. To GO TO such a tag is to go back in time and recreate the local binding,
access, control, and process state of the process that made the tag.

A good example of the use of such power is given in a problem-solving pro-
gram that constructs complex structures of blocks [Fahlman 1974].

A2.3 SEQUENTIAL OR PARALLEL MECHANISMS

500

Some language constructs explicity designate parallel computing. They may actual-
ly reflect a parallel computing environment, but more often they control a simulat-
ed version in which several control paths are maintained and multi-processed
under system control. Examples here are module and message primitives given
below and statements such as the CO-BEGIN, CO-END pairs which can bracket
notionally parallel blocks of code in some Algol-like language extensions.

A2.3.1 Modules and Messages

Modules and messages form a useful, versatile control paradigm that is relatively
noncommittal. That is, it forces no particular problem decomposition or methodo-
logical style on its user, as does a pure subroutine paradigm, for example. Message
passing is a general and elegant model of control which can be used to subsume
others, such as subroutining, recursion, co-routining, and parallelism [Feldman
1979].

There are many antecedents to the mechanism of modules communicating
by messages described here. They include [Feldman and Sproull 1971; Hewitt and
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Smith 1975; Goldberg and Kay 1976; Birtwhistle et al. 1973]. In the formulation
presented by Hewitt, the message-passing paradigm can be extended down into the
lowest level of machine architecture. The construction outlined here [Feldman
1979] is more moderate, since in it the base programming language may be used
with its full power, and itself is not module and message based.

A program is made up of modules. A module is a piece of code with associated
local data. The crucial point is that the internal state of a module (e.g. its data) is
not accessible to other modules. Within a module, the base programming
language, such as Algol, may be used to its full power (subroutine calls, recursion,
iteration, and so forth are allowed). However, modules may not in any sense ‘“call
upon’’ each other. Modules communicate only by means of messages. A module
may send a message to another module; the message may be a request for service,
an informational message, a signal, or whatever. The module to whom the mes-
sage is sent may, when it is ready, receive the message and process it, and may
then itself send messages either to the original module, or indeed to any combina-
tion of other modules.

The module-message paradigm has several advantages over subroutine (or
co-routine) calls.

1. If subroutines are in different languages, the subroutine call mechanisms must
be made compatible.

2. Any sophisticated lockout mechanism for resource access requires the internal
coding of queues equivalent to that which a message switcher provides.

3. A subroutine that tries to execute a locked subroutine is unable to proceed
with other computation.

4. Having a resource always allocated by a single controlling module greatly
simplifies all the common exclusion problems.

5. For inherently distributed resources, message communication is natural.
Module-valued slots provide a very flexible but safe discipline for control
transfers.

Another view of messages is as a generalization of parameter lists in subrou-
tine or coroutine calls. The idea of explicitly naming parameters is common in as-
sembly languages, where the total number of parameters to a routine may be very
large. More important, the message discipline presents to a module a collection of
suggested parameters rather than automatically filling in the values of parameters.
This leads naturally to the use of semantic checks on the consistency of parameters
and to the use of default values for unspecified ones, which can be a substantial im-
provement on type checking. The use of return messages allows multiple-valued
functions; an answer message may have several slots. Messages solve the so-called
“uniform reference problem’ —one need not be concerned with whether an
answer (say an array element) is computed by a procedure or a table.

There is yet another useful view of messages. One can view a message as a
partially specified relation (or pattern), with some slot values filled in and some
unbound. This is common in relational data bases [Astrahan et al. 1976] and
artificial intelligence languages [Bobrow and Raphael 1974]. In this view, a mes-
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sage is a task specification with some recipient and some complaint departments to
talk to about it. Various modules can attempt to satisfy or contract out parts of the
task of filling in the remaining slots. A module may handle messages containing
slots unknown to it. This allows several modules to work together on a task while
maintaining locality. For example, an executive module could route messages (on
the basis of a few slots that it understands) to modules that deal with special aspects
of a problem using different slots in the message.

There is no apparent conflict between these varying views of messages. It is
too early in their development to be sure, but the combined power of these para-
digms seems to provide a qualitative improvement in our ability to develop vision
programs.

A2.3.2 Priority Job Queue

In any system of independent processes on a serial computer, there must be a
mechanism for scheduling activation. One general mechanism for accomplishing
scheduling is the priority job queue. Priority queues are a well-known abstraction
[Aho et al. 1974]. Informally, a priority job queue is just an ordered list of
processes to be activated. A monitor program is responsible for dequeueing
processes and executing them; processes do not give control directly to other
processes, but only to the monitor. The only way for a process to initiate another is
to enqueue it in the job queue. It is easiest to implement a priority job queue if
processes are definable entities in the programming language being used; in other
words, programs should be manipulable datatypes. This is possible in LISP and
POP-2, for example.

If a process needs another job performed by another process, it enqueues the
sub job on the job queue and suspends itself (it is deactivated, or put to sleep). The
sub job, when it is dequeued and executed by the monitor, must explicitly enqueune
the ““‘calling’ process if a subroutining effect is desired. Thus along with usual ar-
guments telling a job what data to work on, a job queue discipline implies passing
of control information.

Job queues are a general implementational technique useful for simulating
other types of control mechanisms, such as active knowledge (Chapter 12). Also, a
job queue can be used to switch between jobs which are notionally executing in
parallel, as is common in multiprocessing systems. In this case sufficient informa-
tion must be maintained to start the job at arbitrary points in its execution.

An example of a priority job queue is a program [Ballard 1978] that locates
ribs in chest radiographs. The program maintains a relational model of the ribcage
including geometric and procedural knowledge. Uninstantiated model nodes
corresponding to ribs might be called hypotheses that those ribs exist. Associated
with each hypothesis is a set of procedures that may, under various conditions, be
used to verify it (i.e., to find a rib). Procedures carry information about precondi-
tions that must be true in order that they may be executed, and about how to com-
pute estimates of their utility once executed. These descriptive components allow
an executive program to rank the procedures by expected usefulness at a given
time.
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Fig. A2.1 The rib-finding process in action (see text).
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There is an initial action that is likely to succeed (locating a particular rib that
is usually obvious in the x-ray). In heterarchical fashion, further actions use the
results of previous actions. Once the initial rib has been found, its neighbors (both
above and below and directly across the body midline) become eligible for con-
sideration.

Eligible rib-finding procedures correspond to short-term plans; they are all
put on a job queue to be considered by an executive program that must compute the
expected utility of expending computational energy on verifying one of the hy-
potheses by running one of the jobs. The executive computes a priority on the jobs
based on how likely they are to succeed, using the utility functions and parameters
associated with the individual nodes in the rib model (the individual hypotheses)
and the current state of knowledge. The executive not only picks a hypothesis but
also the procedure that should be able to verify it with least effort.

The hypothesis is either “verified,”” ‘‘not-verified,”” or ‘‘some evidence is
found.”” Verifying a hypothesis results in related hypotheses (about the neighbor-
ing ribs) becoming eligible for consideration. The information found during the
verification process is used in several ways that can affect the utility of other pro-
cedures.

The position of the rib with respect to instantiated neighbors is used to adjust
horizontal and vertical scale factors governing the predicted size of the ribcage.
The position of the rib affects the predicted range of locations for other unfound
ribs. The shape of the rib also affects the search region for uninstantiated rib neigh-
bors.

If some evidence is found for the rib, but not enough to warrant an instantia-
tion, the rib hypothesis is left on the active list and the rib model node is not in-
stantiated. Rib hypotheses left on the active list will be reconsidered by the execu-
tive, which may try them again on the basis of new evidence.

The sequence of figures (Fig. A2.1, p. 503) shows a few steps in the finding of
ribs using this program. Figure A2.1a shows the input data. A2.1b shows rectan-
gles enclosing the lung field and the initial area to be searched for a particular rib
which is usually findable. Only one rib-finding procedure is applicable for ribs with
no neighbors found, so it is invoked and the rib shown by dark boxes in Fig. A2.1b
is found. Predicted locations for neighboring ribs are generated and are used in
order by the executive which invokes the rib-finding procedures in order of ex-
pected utility (A2.1c-e). Predicted locations are shown by dots, actual locations by
crosses; in Fig. A2.1f, all modelled ribs are found. The type of procedure that
found the rib is denoted by the symbol used to draw in the rib. Figure A2.1f shows
the final rib borders superimposed on the data.

A2.3.3 Pattern Directed Invocation
Considerable attention has been focused recently on pattern directed systems (see,
e.g., [Waterman and Hayes-Roth 1978]). Another common example of a pattern

directed system is the production system, discussed in Section 12.3. The idea
behind a pattern directed system is that a procedure will be activated not when its
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name is invoked, but when a key situation occurs. These systems have in common
that their activity is guided by the appearance of ‘‘patterns’” of data in either input
or memory. Broadly construed, all data forms patterns, and hence patterns guide
any computation. This section is concerned with a definition of patterns as some-
thing very much smaller than the entire data set, together with the specification of
control mechanisms that make use of them.

Pattern directed systems have three components.

1. A data structure or data base containing modifiable items whose structure may
be defined in terms of patterns

2. Pattern-directed modules that match patterns in the data structure

3. A controlling executive that selects modules that match patterns and activates
them

A popular name for a pattern-directed procedure is a demon. Demons were
named originally by Selfridge [Selfridge 1959]. They are used successfully in many
Al programs, notably in a natural language understanding system [Charniak 1972].
Generally, a demon is a program which is associated with a pattern that describes
part of the knowledge base (usually the pattern is closely related to the form of
“items’’ in a data base). When a part of the knowledge base matching the pattern is
added, modified, or deleted, the demon runs ‘‘automatically.”” It is as if the demon
were constantly watching the data base waiting for information associated with cer-
tain patterns to change. Of course, in most implementations on conventional com-
puters, demons are not always actively watching. Equivalent behavior is simulated
by having the demons register their interests with the system routines that access
the data base. Then upon access, the system can check for demon activation condi-
tions and arrange for the interested demons to be run when the data base changes.

Advanced languages that support a sophisticated data base often provide
demon facilities, which are variously known as if-added and if-removed pro-
cedures, antecedent theorems, traps, or triggers.

A2.3.4 Blackboard Systems

In artificial intelligence literature, a ““blackboard” is a special kind of globally ac-
cessible data base. The term first became prominent in the context of a large pat-
tern directed system to understand human speech [Erman and Lesser 1975; Erman
et al. 1980]. More recently, blackboards have been used as a vision control system
[Hanson and Riseman 1978]. Blackboards often have mechanisms associated with
them for invoking demons and synchronizing their activities. One can appreciate
that programming with demons can be difficult. Since general patterns are being
used, one can never be sure exactly when a pattern directed procedure will be ac-
tivated; often they can be activated in incorrect or bizarre sequences not antici-
pated by their designer. Blackboards attempt to alleviate this uncertainly by con-
trolling the matching process in two ways:

1. Blackboards represent the current part of the model that is being associated
with image data;
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2. Blackboards incorporate rules that determine which specialized subsystems of
demons are likely to be needed for the current job. This structuring of the data
base of procedures increases efficiency and loosely corresponds to a ““mental
set.”’

These two ideas are illustrated by Figs. A2.2 and A2.3 [Hanson and Riseman
1978]. Figure A2.2 shows the concept of a blackboard as a repository for only
model-image bindings. Figure A2.3 shows transformations between model entities
that are used to select appropriate groups of demons.

Short Term Memory Long Term Memory
image specific model a priori general knowledge

Objects OB-classes

Rectangular
solid
Volumes VL-classes

Rectangular
planar

Surfaces SR-classes

> e

Regions RG-classes

—_— |
l /
Segments SG-classes,

Straight
line
!
; ~
cute r
angle L

Vertices VT-classes

Fig. A2.2 An implementation of the blackboard concept. Here the blackboard
is called Short Term Memory; it holds a partial interpretation of a specific image.
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A Algorithm, 132
A priori probabilities in plan scoring, 449
Abstraction in knowledge representation, 320, 505
Acting and planning cycle, 315, 347
Action:
frame problem, 444
plans, 441, 446
Active:
imaging, 14
knowledge, 384, 430-434
Algorithm:
A, 132
boundary evaluation for-solids, 288-291
correlation by binary search, 108
directed graph isomorphism by backtrack search, 364
discrete labeling, 410-415
edge detection by dynamic programming, 140
edge detection, hierarchical, 109
edge relaxation, 85
ellipse detection with Hough algorithm, 127
fast Fourier transform, 490-492
generalized Hough algorithm, 129
heuristic search, 132
line detection with Hough algorithm, 123
mass properties of solids, 285-286
medial axis transformation, 252
multiframe optical flow calculation, 105
nondeterministic for graphs, 359
optical flow by relaxation, 104
piecewise linear curve segmentation, 234
quad tree generation, 250
region boundary melting, 159
region growing, semantic, 162

region growing by blob coloring, 151
region merging with adjacency graph, 160
region splitting, recursive, 153
region splitting and merging, 157
set membership classification, 284
shape from shading, 100
shape number calculation, 260
solid to surface representation conversion, 290
stereopsis, 91
strip tree curve-region intersection, 247
strip tree generation, 244
strip tree intersection, 245
tumor detection, 345
Aliasing, 41
Ambiguity in grammars, 172
Analog-digital conversion, 50
Analogical models (See Knowledge representation,
analogical and proportional)
And-or trees as plans, 453-459
Aperiodic correlation, 67
Applications of computer vision, 12
Arcs in semantic nets, 324
Area:
chain code, 235-236
cross section of generalized cone, 278
in location networks, 336
polygon, 235
quad trees, 251
region, 254
Array grammar, 178-181
Association graph, 358, 365-369
Associative recall, 334
Asynchronous relaxation, 412



Atomic formula in logic, 384
Attention, control of, 340
Automated inference systems, 396

B-spline, 239-243
Background subtraction:
low-pass filtering, 72
spline surface, 72
Backtrack search, 363-365, 372-375
automatic, 499
variations and improvements, 364-365
Backward chaining, 342, 399
Bandlimited signal, 41
Basis for color space, 33-35
Bayes’ rule, 449 (See also Decision, theory and planning)
Bayesian decisions and region growing, 162
Belief maintenance, 319, 346
Bending energy of curve, 256
Binary search correlation, 108
Binary tree, 244
Binocular imaging, 20-22 (See also Stereo vision)
Binormal of space curve, 276
Blackboard, 505
Blob finding, 143-146, 151
Block stacking, 322, 438-443
Blocks world:
vision, 291
structure matching, 370-372
Bottom-up (See Control; Inference)
Boundary, 75, 265
conditions for B-splines, 241
detection, 119-148
in binary images, 143
divide and conquer, 122
dynamic programming, 137-143
Hough algorithm, 123-131
evaluation, 288-291
as graph, 131
representations, 232-247, 265-274
Branch and bound search:
backtracking improvement, 364
for boundaries, 136
Breakpoints in linear segmentation, 232

Calculus, predicate (See Predicate logic)
Camera model and calibration, 481-484
Cartesian coordinate system, 465
CAT imagery, 1, 56-59
Cell decomposition volume representation, 281
Centroid of volume, 285
Chain code, 235-237, 256, 258

area calculation, 236

derivative, 236

merging, 236
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normalized, 236
Chamfer matching, 354
Charge transfer devices, 49
Chessboard metric, 39
Chest radiograph understanding, 321, 344-346
Chromaticity diagram, 37
Chunks of knowledge, 334
Circular arcs, 237
City block metric, 38
Classification:

in pattern recognition, 181-184

set membership, 284

tree for regions, 163
Clause form of predicate logic, 384
Cligue, and use in matching, 358, 366-369, 375
Closed curves, 246
Closure operator for sets, 282
Clustering:

motion detection, 217

parametric and non-parametric for pattern

recognition, 181-183

Co-routining, 498 (See also Control)
Coherence:;

of knowledge representation, 320

rule for line-drawing interpretation, 297
Collision detection with optic flow, 201
Color, 31-35

bases, 33-34

-space histograms, 153-155
Comb, dirag, 19, 40
Combining operators for volumes, 282
Compactness of region, 256
Completeness of inference system, 389
Complexity of graph algorithms, 359
Component, r-connected, 369, 380
Computer as research tool, 9
Concave line label, 296
Concavity tree of region, 258
Cone, generalized (See Generalized, cone)
Confidence:

planning, 415 (See also Supposition valuein relaxation)

region growing, 164
Conic, 239, 488-489
Conjunctive normal form for logic, 388
Connect line label, 303
Connected:

component of graph, 369, 380

region, 150, 255
Connectives of logic, 385
Connectivity:

difference, 375

image, 36

matching, 372-375
CONNIVER, 322
Consolidation 102, (See also Pyramid)
Constraint (See also Relaxation)
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inconsistency, 427
as inequality in linear programming, 423
labeling, 408-410
n-ary, 410
propagation, 299, 413415
relaxation, 408-430
satisfaction for belief maintenance, 347
semantic, on region-growing, 160-164
Constructive solid geometry volume
representation, 282
Context:
data base, 440
switching, 500
Continuity of knowledge representation, 320
Contour:
following, 143-146
occluding, 101
Contrast enhancement, 71
Control, 315, 340-350, 497-502
bottom-up or data-driven, 341, 344-346
hierarchical and heterarchical, 341-346
in knowledge representations, 317
message passing, 501
mixed top-down and bottom-up, 344-346
structures, standard and nonstandard, 497-500
top-down, 342, 343-346
Convergence of relaxation algorithms, 414, 418
Conversions, logic to semantic nets, 332
Convex:
decomposition of region, 253
line label, 296
region, 258
Convolution, 25, 68
theorem, 30
Cooperative algorithms, 408-430
Coordinate systems, definitions and conversions,
465-468
Correctness of inference system, 389
Correlation, 25, 30, 66-70
binary search, 108
coeflicient, 419
metrics, 362
non-linear for edge linking, 121
normalized, 68-70
periodic and aperiodic, 67
texture, 187
Correspondence problem, 89
Cost:
of planning, 452
in plans, 445-459
Crack edges, 78
Curvature:
boundary, 256
in evaluation function, 133
space curve, 276
Curve 231:
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detection, Hough algorithm, 126

fitting, 487

intersection, 247

segmentation techniques, 233-234
Cutting planes in linear programming, 428
Cylinder, generalized, 274-280
Cylindrical coordinate system, 466

Data:
base, 398, 431, 440
-driven control, 341-346
fitting, 239, 484-488
nodes in location networks, 336, 338
structure for boundaries, 158
Decision:
theory and planning, 446-453
trees for matching, 370-377
Decomposition;
region, 253
solid, 287
Default values in knowledge representations, 330,
334-335
Delete list, 440
Delta function, 18-19, 40
Demon, 412, 429, 505
DeMorgan’s laws, 387
Densitometer, 46
Density of image, 44, 74
Dependence, gray-level, 186-188
Depth:
-first search and variations, 136, 363-365, 372, 412
from optic flow, 201
Determinant, 473
Difference measurement in motion, 221
Digital images, 35-42
Digitizers, image, 45
Dirac Comb, 19, 40
Direction-magnitude sets, 270
Discrete:
images, 35-42
knowledge representation, 320
labeling algorithms, 410-415
Disparity, 21, 89, 208
Dispersion of knowledge representation, 320
Distance:
on discrete raster, 36
image (See Image, range)
Distortion, perspective (See Projection, perspective)
Divergence theorem for mass properties, 288
Divide and conquer:
algorithms for CSG, 285
method for boundary detection, 122
Domain-dependent and -independent motion
understanding, 196-199, 214-219
Drum scanner, 46
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Dual graph, 159
Dynamic programming and search, 137-143

Early processing, 63-65
Eccentricity of region, 255
Edge, 75
detection
in binary images, 143-146
from optic flow, 202-206
in pyramids, 109
following, 131-146
as blob finding, 143-146
as dynamic programming, 137-143
as graph search, 131143
labels, 296-297
linking, 119-131
known approximate location, 121-122
problems with, 119-120
Hough algorithm, 123-131
operator, 64, 75-88
gradient, 76-80
Kirsch, 79
Laplacian, 76-79
performance, 77, 83-84
relaxation, 85-88
templates, 79
3-D performance, 81-83
profiles, 75
representation for surfaces, 266
strength in evaluation function, 133
thresholding, 80
Eigenvalues and eigenvectors, 473, 486-487
Element, texture, 166
Elongation of region, 255
Enclosing surface, 265
Energy, texture, 187
Engineering:
drawings, 291
knowledge, 407
Entropy, texture, 187
ERTS imagery, 46
Euclidean metric, 38
Euler number of region, 255, 266
Evaluation:
function for heuristic search, 133
mechanism in semantic networks, 337
Existential quantifiers, 385
Extended inference, 315, 319, 322, 383, 395-396

Extensional concepts in knowledge representation, 328

Faces, 271

for surface representation, 265, 271
Feature

classification and matching, 376-378
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texture, 184-186

vectors and space, 181
Field, television, 46
Figure-ground distinction, 4
Filtering, 25, 64-75
First order predicate logic (See Predicate logic)
Fitting data (See Data, fitting)
Flat-bed scanner, 46
Flying spot scanner, 45
Focal length, 19, 479
Focus of expansion in optical flow, 199
Formal inference system, 390
Forward chaining, 342, 399
Fourier

descriptors, 238

filtering, 65

transform, 24-30, 490-492
Frame:

problem, 395, 444

system theory, 334-335
Frenet frame and formulae, 276
Function:

image, 18-19

logic, 385

Skolem, 387

G-Hough algorithm, 128
Gamma, film, 45
Gaussian sphere, 101, 270
Generalized:
clipping, 284
cone, 274-280
matching to data, 278, 372-375
cylinder (See Generalized, cone)

image, 6, 14, 320
Geodesic tesselation, 271, 493
Geometric:

matching, 354
operations in location networks, 336
relations and propositions, 332
representations, 8, 227-311
structures and matching, 354
transformations, 477-481
Geometry theorem prover, 322
Gestalt psychology, 116
Goal achievement, 319, 346-347, 438-439
Goodness of fit, 273
Gradient:
edge operator, 76-80
space, 95, 301
techniques, 355
texture, 168, 189-193
use in Hough algorithm, 124
Grammar:
ambiguous, 172
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array, 178-181

on pyramid, 179

shape, 173-174

stochastic, 172

texture, 172-181

tree, 175-178
Graph 131;

adjacency for regions, 159

algorithms, complexity, 359

association, 358, 365-369

dual, 159

isomorphism, 357-359, 364

matching, 355

r-connected component, 369, 380
Gray level, 18, 23, 35

dependence matrices for texture, 186-188
Grazing incidence, 111

H&D curve, 44
Heart volume, 273
Heterarchical control, 341-346, 499
Heuristic search:
boundaries, 131-133
dynamicprogramming, 143
region growing, 157
Hierarchical (See aiso Pyramid)
abstractions, 505
control, 341-346
textures, 170
High-level:
models, 317
motion detection, 196-199
vision, 2-6
Hill-climbing and matching, 355
Histogram, 70
equalization and transformation, 70
splitting for thresholds, 152
colorspace, 153-155
Homogeneous:
coordinate system, 467
regions, 150
texture, 188
Hough algorithm, 123-131
generalized, [28-131
refinements, 124
vanishing points, 191
Human body for motion understanding,
214-219
Hungry monkey planning problem, 445
Hypotheses, 343, 384, 422
active knowledge, 431
Hypothetical worlds, 432, 440

Iconic structures and matching, 353
Icosahedron, 492
THS color basis, 33
Image (See also Imaging)
aerial, 1,335
CAT, 1, 56-59
connectivity, 36

Subject Index

digital, 35-42

digitizers, 45

distance onraster, 36

edges, 75-88

ERTSor LANDSAT, 46

formation, 17

function, 18-19

generalized, 6, 14, 320

histogram, 70

intrinsic, 7, 14, 63

irradiance, 23,73

orthicon, 47

plane, 19

processing,2,17,25

range, 52-56, 64,88

sampling, 18,35

segmented, 7

sequence understanding, 207-222

ultrasound, 54

variance, 69
Imaging:

active, 14

devices, 42-59

geometry, 19-21

light stripe, 22

model, 17-42

monocularand binocular, 19-22

stereo, 20-22, 52-54, 88-93, 98
Inconsistent labeling, 410 (See also Labeling)
Indexing property of semantic nets, 324
Inequalities in linear programming, 422, 427
Inference, 314, 319-321, 383

bottom-up and top-down, 392

extended, 315,319, 322,383,395

rules of, 388

in semantic nets, 327

systems, formal and informal, 390

syllogistic, 321
Infinity, point at, 20
Informal inference system, 390
Inheritance of properties in knowledge

representation, 330, 335
Inhibitory local evidence in line drawings, 295
Intensional concepts in knowledge
representation, 328

Interaction graph for dynamic programming, 143
Interest operator, 69, 208
Interior operator, 282
Interpolation, 489-490
Interpretation:

matching, 352

region-growing, 160-164
Interpreter

production system, 398-399

semantic net, 326, 339
Intersection of strip trees, 244
Interval, sampling, 35
Intrinsic:

image, 7, 14,63

parameters, 63
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Inverse:
perspective (See Projection)
relations, 331
Irradiance, image, 23, 73
Isomorphism, graph and subgraph, 357-359,
364
[terative region merging with semantics, 163

Job queue, 502-504

Kd-tree, 281, 287
Knowledge:
base, 317,318-323
chunking, 334
engineering, 407
Knowledge representation, analogical and
propositional, 9, 314, 319-322 (See also
Active knowledge, Predicate logic,
Procedural embedding, Production
systems, Representation, Semantic nets)

Labeling, 296-301, 408-420
compatibilities, 415
consistent, inconsistent, optimal, 408, 410
discrete, 410-415
interpretation, 315, 353, 383, 408
lines, 296-301
scene, 408-430
tree search, 412
Lambertian surfaces, 94
LANDSAT imagery, 46
Laplacian operator, 76-79
Laser rangefinders, 54 (See also Image, range)
Learning, 315
Least-squared error fitting, 484488
Legendre polynomial, 272
Light:
flux, 22
stripe imaging, 22
structured, 52-54
Line:
detection, Hough algorithm, 123
drawing understanding, 265, 291-307
drawings for motion understanding, 220-222
equation, 475
fitting, 484-487
labeling, 296-301
labeling by relaxation, 416-421, 428
representations, 474-476
segment, 232
transformation, 480
Linear:
structure matching, 378~380
transformation, 473
Linear programming for relaxation, 420-430
Linking edges (See Edge, linking)
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Local evidence in line drawings, 294
Location networks, 335-340
Logarithmic filtering, 73
Logic (See Predicate logic)
Long-term memory, 400
Low-level:

motion detection, 196

vision, 3-6

Manhattan metrie, 36
Mass properties, 285
Matched filtering and Hough algorithm, 124
Matching, 315, 352, 398
blocks world structures, 370-372
clique-finding, 366-369, 375
complexity, 359
examples, 369-380
expectation-driven, 353
generalized cylinders, 372-375
geomeltric structures, 354
graphs, 355
iconic structures, 353
knowledge representation, 319
line drawings to primitives, 293
linear structures, 378-380
metrics, 360-362, 375, 378
metrical in line drawing understanding, 294
nondeterministic algorithm, 359
optic flow, 208
optimization, 354
pattern (See Pattern, matching in production systems)
relational structures, 353, 355, 365-372
rules in production system, 399-400
templates and springs, 360-362
topological, for line drawings, 293
Matrix algebra, 471474
Matte reflectivity, 23
Maximal clique, 366
Medial axis transform, 252-253
Membership array for region, 248
Memory, long-term and short-term, 400
Merging:
branches for backtracking improvement, 364
curve segmentation, 233
regions, 155-160
Message-passing (See Modules and messages)
Metric:
distance on raster, 36
matching, 360-362, 375, 378
Minimum:
cost search for boundaries, 132
spanning tree for clustering, 217
Model:
analogical and propositional, 319
-driven control, 342
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human body for motion, 217-219

in knowledge representation, 9, 317
Modules and messages, 500-502
Modus Ponens and Modus Tollens, 388
Moment of inertia, 255, 286, 473, 486
Monocular imaging (See Imaging)
Motion, 195 (See also Optic flow)

adjacency and collision detection, 201

body model, 214-219

common in sequence, 199, 208

consistent match, 199

continuity, 197

depth, 201

human body, 214-219

image sequences, 207-222

maximum velocity, 198

moving light displays, 214-217

observer, 206

rigid bodies, 197, 210-214

surface orientation and edge detection, 202
Multi-

dimensional histograms, 153-155

modal sensor, 453-459

resolution images, 100-110 (See also Pyramid)

Nearest-neighbor clustering, 183
Network:
interpreter, 326
representation, 391 (See also Semantic nets)
Newton-Raphson, 493
Node types in semantic nets, 324-329
Noise, 65
Nonclausal form, 385-387 (See also Predicate logic)
Nondeterministic algorithms, 359
Nonrigid:
body motion understanding, 214-217
solids, 264
Nonstandard:
control structures, 499-507 (See also Control)
inference (See Extended inference)
Normalized correlation, 68-70
NP-completeness, 359
NTSC, 34

Object identification in line drawings, 294
Occluding:
contour, 101
line label, 296
Oct-tree, 281, 287
Office scene understanding, 453-459
Operator (See Edge, Interest operator, Interior operator,
Closure operator for sets, Planning Relaxation,
etc.)
Opponent processes, 33
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Optic flow, 63, 102-105, 196, 199-206

Optical system analysis, 23

Optimal labeling, 410

Optimization:
linear programming, 424-425
matching, 354

Orientation of surface (See Surface, orientation

calculation)

Origami world, 300

Orthicon, image, 47

Orthographic projection (See Projection)

PANDEMONIUM, 345
Parallel:
computation, 64, 341, 360
-iterative refinement in graph matching, 358, 378
-iterative relaxation, 64, 412
Parameter:
cptimization as matching, 354
space, 123
Parametric:
clustering, 183
edge models, 80-81
line representation, 476
Parseval’s theorem, 256
Partial:
knowledge in location networks, 339
matches, 360-362
Partition:
feature space in pattern recognition, 181
Fourier space, 185
semantic nets, 331, 391
space, 150
Pattern:
-directed invocation, 321, 504
matching data base (See Data, base)
matching in production systems, 399-400
recognition, 2, 181-184
texture, 166
Performance, edge operators, 77, 83-84
Periodic:
correlation, 67
function, 237
Perspective (See Projection)
Photography, 4445
Photometric stereo vision, 98
Picture element (pixel), 36
Piecewise polynomial, 240
Plane:
curves and regions, 231
cutting in linear programming, 428
representation, 476
transformation, 480
PLANNER, 322
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Planning, 314-319, 347, 438445
cost of, 452
costs, 445-459
edge linking, 121-122
example, 453-459
extended and-or graphs, 451
problem reduction, 394
symbolic, 439-445
Point:
at infinity, 20
membership, 246
projection (See Projection, perspective)
spread function, 28
Polar and polar space coordinate systems, 465
Polygon:
area calculation, 235
images for motion, 220-222
regions, 294
Polyhedra, 291
Polylines, 232-235
Pre- and postconditions in plans, 441
Predicate logic, 383-395
clauses and semantic nets, 390-392
decidability, 388
extensions (See Extended inference)
inference, 315
knowledge representation, 392-395
proof, 388
strengths and weaknesses, 393-394
syntax and semantics, 384-387
truth table, 386
Predicates in location networks, 336
Primitive:
solids in volume representation, 280, 282
volumes for line drawing understanding, 293
Principal axes:
for fitting data, 473, 486
of inertia of region, 255
Procedural embedding of knowledge, 321, 322, 406,
430-434 (See also Active, knowledge)
Processing, image, 17
Product of inertia of solid, 286
Production systems, 315, 383, 396-408
example, 401406
rule matching, 399
strengths and weaknesses, 406408
Projection:
inverse perspective, 481484
orthographic, 20, 212
perspective, 19-20, 214, 479
Proof of logic, 388-390
Propagation of constraints (See Constraint)
Property inheritance (See Inheritance of properties in
knowledge representation)
Propositional model (See Representation)
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Prototype situations, 334
Pruning for backtracking improvement, 364
Pseudo-inverse for fitting, 485, 487
Psi-s curve, 237, 238, 256
Pyramid, 15 (See also Quad tree; Strip trees)
edge detection, 109
grammars, 179
multi-resolution, 65, 106, 249, 281
thresholding, 155

Quad tree, 249-252
area, 251
generation, 250

Quantifier, logical, 385

Radiance and gray levels, 22-23
Radiograph understanding, 321, 344-346, 502-504
Range image (see Image)
Ray casting, 280
Reciprocity failure of film, 44
Reconstruction, two-dimensional image, 56-59
Recursive procedure, 244, 498
Reflectance, 93-95
calculation, 73-75
functions, common, 23, 94
map, 96-98
models, 22-24
Region, 149-150, 231
data structures for, 158
finding, by thresholding, 152-155
finding, local techniques, 151
growing and heuristic search, 157
growing and semantics, 160-164
homogeneous, 150
partition, 150
properties, 254-261, 376-377
representation, 232-254
by boundary, 232-247
decompositions, 253
medial axis transform, 252
non-boundary, 247-254
quad trees, 249
spatial occupancy array, 247
y-axis, 248
splitting and merging, 155-160
Regular:
sets and set operators, 231, 282-283
tesselation, 170
Relational;
functions and dynamic programming, 142
models, 9, 314, 317
semantic nets, 325, 330, 408
structures and matching, 353, 355, 365-372

Relaxation, 64 (See also Constraint)

Subject Index



algorithms, convergence properties, 414
asynchronous, 412
convergence, 414
edge operators, 85-88
for optic flow, 208
labelling, 408-430
line labeling, 416421, 428
linear and non-linear operator example, 415-420
as linear programming, 420-430
optical flow, 103
serial and parallel iterative, 412
shape from shading, 99-102
stereo, 89
Representation:
actions in symbolic planning, 441
analogical and propositional, 9, 314, 319-322
conversion, 289
knowledge, 317-347 (See Knowledge)
matching, 352-355
predicate logic, 392-395
range of, 6-9
solids, 264
world in symbolic planning, 439
Resolution '
gray levels, 35
pyramids, 15, 106-110
multiple in thresholding, 155
rule of inference, 389
spatial, 36-37
texture, 169
theorem proving, 388-390
Response, human spectral, 31
Rewriting rule (See Rule, Grammar, Production system)
Rib-finding, 321, 502-504
Rigidity assumption in motion understanding, 210
Root finding, 493
Rotation rigid transformation, 477
Rotational sweep, 274
Rule:
-based systems, 397 (See also Production systems)
inference, 388
production system, 398
rewriting, 172, 383, 398
for texture generation, 172-181

Sampling:
image, 18, 35
tesselation, 35
theorem, 39
Scaling matrix, 478
Scanner, digitizing, 45
Scene:
irradiance, 73
labeling, 408430

Subject Index

Scope of quantifier, 385

Scoring plans, 445-459

Search:
backtrack, 363-365, 372-375
depth-first, 412
graph, and region growing, 157
heuristic and variations, 132-136
tree, for labeling, 412

Segmentation, 7, 116 (See also Edge; Line; Region)

Semantic nets, 315-317, 323-340, 390, 396
arcs, 324
conversion with other representations, 332
examples, 334
indexing property, 324
inference, 327
nodes, 324, 328
partitions, 331
predicate logic, 390-392
relations in, 325, 330
semantics and partitions, 331
Semantics:
of images and region growing, 160-164
of logic, 385
Semi-
decidability of logic, 388
regular tesselation, 171
Sentence of logic, 384
Serial:
computation, 341
relaxation, 412
Set
membership classification, 284
operations in location networks, 336
operations in three dimensions, 284
Shadow line label, 296
Shape, 228 (See also Three dimensional)
detection, Hough algorithm, 128-131
grammar, 173-174
properties of region, 254-261, 376-377
recognition, 228-229
from shading, 65, 93, 99-102
from texture, 189-193
Shift theorem, 30
Short-term memory, 400
Signature of region, 257
Silhouette detection, Hough algorithm, 128-131
Similarity:
analysis in motion, 221
tree for regions, 261
Simplex algorithm, 423
Simulation with knowledge representation, 320
Skeleton (See Medial axis transform)
Skew:
symmetry, 306
transformation, 479
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Skilled vision, 347
Skolem function, 387
Slope density function of boundary, 256
Slots in frames, 334
Smoothing image (See Consolidation)
Solid (See Three dimensional)
Spaces, color (See Color)
Spatial:
representations (See Three dimensional)
resolution, 36, 37
Spectral response, human eye, 31
Specular reflectivity, 23 (See also Reflectance, functions,
common)
Spherical:
coordinate system, 270, 466
function, 270
harmonic surfaces, 271-274, 355
trigonometry, 469
volume representation, 279
Splines (See B-spline)
Splitting:
curve segmentation, 233-234
regions, 155-160
Statistical:
pattern recognition, 2, 181-184
texture model, 168
Stereo vision, 20-22, 52-54, 88-93, 98
Stochastic grammars, 172 (See also Grammar)
Streaks and strokes, 134
Strip trees, 244-247
STRIPS, 396
Structural:
matching, 355, 365-372
models of texture, 170-181
Structured light, 52-54
Subgoals, 343,438 (See also Goal achievement; Planning)
Subgraph isomorphism, 357-359, 375 (See also Graph)
Supposition value in relaxation, 415, 419
Surface:
direction-magnitude set, 270
functions on Gaussian sphere, 270
geometry and line-drawings, 301-307
orientation calculation, 64, 93-102, 189-193, 202-206
patches, 269
representations, 265-274
set of faces, 265
spherical harmonic, 271-274
from volume calculation, 288-291
Sweep representations of solids, 274-280 (See also Three
dimensional)
Syllogistic inference, 321
Symbolic planning, (See Planning)
Symmetry, skew, 306
Synchronization, 341
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T vertices, 294
Tables, dynamic programming, 137-139
Tangent to space curve, 276
Television cameras, 46-52
Template:
matching, 65
and Springs for matching, 360-362
Term in logic, 384
Tesselation:
geodesic, 492
regular and semiregular for texture, 170-172
sampling, 35
Texture, 166-168, 404
correlation, 187
element (texel), 166, 169, 188
element placement tesselations, 170-172
energy, frequency and spatial domain, 184-185
features, 187-188
gradient and surface orientation, 168, 189-193
grammars, 172-181
homogeneity, 188
pattern recognition, 181-184
resolution issues, 169
shape and vanishing point from, 189-193
statistical and structural models, 168, 170-181
Theorem:
convolution, 25
divergence, 288
Parseval’s, 26, 256
sampling, 39
shift, 30
Theorem proving by resolution, 388-390 (See also
Predicate logic)
Thinning algorithms, 253 (See alse Medial axis
transform)
Three dimensional:
contour following in, 146
decomposition, 287
edge operators, 81-83
image, 88-93
model, 320
objects, several representation, 264, 274-283
primitives for line drawing understanding, 293
shapes, 228
structure from image sequence, 210-214
volume algorithms, 284
Threshold:
determination from histogram, 152
multi-dimensional space, 153
multiple resolution, 155
for region finding, 152-155
Token-type distinction, 328
Top-down (See Control and Inference)
Topological connectivity and matching, 293, 372-375

Subject Index



Torsion of space curve, 276
Transformation:

geometric, 477-481

lines and planes, 480
Translation rigid transformation, 479
Translational sweep, 274
Tree:

grammars, 175-178

quad, 249-252

rearrangement for backtracking improvement, 364

search for labeling, 412

strip, 244-247
Triangulation (See Stereo vision)
Trigonometry, plane and spherical, 468-469
Truth table, 386
Tumor detection, 344-346
Turtle algorithm for blob finding, 144
TV (See Television cameras)
Two-dimensional shape (See Shape)
Type-token distinction, 328

Ultrasound, 54, 273

Unambiguous representation, 231
Undecidability of logic, 388

Units, meaningful, 116 (See Segmentation)
Universal quantifiers, 385

Unsatisfiability in logic, 388-389

Utility theory and planning, 446, 453

Subject Index

Vanishing point from texture, 191
Variable nodes in semantic nets, 329
Variance, image, 69, 208
Vector algebra, 469-471
Velocity (See Motion, Optic flow)
Vergeance, 21
Vertex:

catalogues, 298, 300

types, 295
Vidicon, 48
Viewpoint, (see Projection)
Virtual nodes in semantic nets, 328
Vision:

high- and low-level, 2-6

as planning, 6-9

system organization, 352
Volume (See Three dimensional)

Waltz filtering, 299 (See alse Constraint; Labeling)
Well-formed formulae of logic, 385
Winged edge for surface representation, 266-267
Wire frame objects, 291

from projections, 211
World states in planning, 439

Y-axis region representation, 248
Y1Q color basis, 34
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FIG. 2-7a

FIG. 2-8a

A painting by Louis Condax; courtesy of Eastman Kodak Company and the
Optical Society of America.

Courtesy of D. Greenberg and G. Joblove, Cornell Program of
Computer Graphics.

FIG. 2-8b

Courtesy of Tom Check.




FIG. 5-4a

Courtesy of Sam Kapilivsky. &

FIG. 5-4b

Courtesy of Sam Kapilivsky.
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FIG. 9-10

Courtesy of Robert Schudy.



FIG. 11-3a
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Courtesy of Robert Schudy.

FIG. 11-3b
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Courtesy of Robert Schudy.
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