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Visual understanding relates input and its implicit structure to explicit structure that
already exists in our internal representations of the world. More specifically, vision
operations must maintain and update beliefs about the world, and achieve specific
goals.

To consider how higher processes can influence and use vision, one must
confront the nonvisual world and powers of reasoning that have more general
applicability. The world models that are capable of supporting advanced
application-dependent calculations about objects in the visual domain are quite
complex..General techniques of knowledge representation developed in other fields
of artificial intelligence can be brought to bear on them. Similarly, much research
has been invested in the basic processes of inference and planning. These tech-
niques may be used in the visual domain to manipulate beliefs and achieve goals,
as well as reasoning for other purposes.

The organization of a complex visual system (Fig. 1.5 or Fig. 10.1), is a loose
hierarchy of models of world phenomena. The relational models that concern us in
this chapter are removed from direct perceptual experience —they are used mainly
for the last, highest-level stages of perception. Also, they are used for knowledge
attained prior to the visual experience currently being processed. The representa-
tions involved may be analogical or propositional. Analogical representations allow
simulations of important physical and geometric properties of objects. Propositions
are assertions that are either true or false with respect to the world (or a world
model). Each form is useful for different purposes, and one is not necessarily
“‘higher”’ than the other. The techniques and representations of Part IV are mainly
propositional in flavor. Sometimes the reasoning they implement (say about
geometrical entities) would seem better suited to analogical calculations; however,
technical difficulties can render that impossible.

Part IV is concerned with techniques for making the ‘‘motivation” and
“world view’’ of a vision system explicit and available. Such explicit models would
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be interesting from a scientific standpoint even if they were not directly useful. But
explicitly available models are decidedly useful. They are useful to the system
designer who desires to reconfigure or extend a system. They are useful to the sys-
tem itself, which can use them to reason about its own actions, flexibly control its
own resources in accordance with higher goals, dynamically change its goals,
recover from mistakes, and so forth.

We organize the major topics of Part IV as follows.

1. Knowledge representation (Chapter 10). Semantic nets are an important tech-
nique for structuring complex knowledge, and can be used as a knowledge
representation formalism in their own right.

2. Matching (Chapter 11). Matching puts a derived representation of an image
into correspondence with an existing representation. This style of processing
representations is more pronounced as domain-dependent knowledge,
idiosyncratic goals, and experience begin to dominate the ultimate use (or
understanding) of the visual input.

3. Inference (Chapter 12). Classical logical inference (a technique for manipulat-
ing purely propositional knowledge represéntations) is a well-understood and
elegant reasoning technique. It has good formal properties, but occasionally
seems restricted in its power to duplicate the range of human processing.
Extended inference techniques such as production systems are those in which the
inference process as well as the propositions may contribute materially to the
derived knowledge. Labeling techniques can ‘‘infer’” consistent or likely
interpretations for an input from given rules about the domain. Inference can
be used for both problem solving and belief-maintenance activity.

4, Planning (Chapter 13). Planning techniques are useful for problem solving,
and are especially tailored to integrating vision with real-world action. Planning
can be used for resource allocation and attentional mechanisms.

5. Control (Chapter 10; Appendix 2). Control strategies and mechanisms are of
vital concern in any complex artificial intelligence system, and are particularly
important when the computation is as expensive as that of vision processing.

Learning is missing from the list above. Disappointing as it is, at this writing
the problem of learning is so difficult that we can say very little about it in the
domain of vision.
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10.1 REPRESENTATIONS

An internal representation of the world can help an intelligent system plan its
actions and foresee their consequences, anticipate dangers, and use knowledge ac-
quired in the past. In Part IV we investigate the creation, maintenance, and use of a
knowledge base, an abstract representation of the world useful for computer vision.
Chapter 1 introduced a layered organization for the knowledge base and divided its
contents into “‘analogical’’ and ‘‘propositional’’ models. In this section we con-
sider this high-level division more deeply.

The outside world is accessible to a computer vision program through the im-
aging process. Otherwise, the program is manipulating its internal representations,
which should correspond to the world in understood ways. In this sense, the
knowledge base of generalized images, segmented images, and geometric entities
contains ‘‘models’’ of the phenomena in the world. Another more abstract sense
of ““model”’ is high-level, prior expectations about how the world fits together.
Such a high-level model is often much more complex than the lower-level
representations, often has a large ‘‘propositional”” component, and is often mani-
pulated by “‘inference-like’” procedures. Explicit knowledge and belief structures
are a relatively new phenomenon in computer vision, but are playing an increas-
ingly important role.

The goals of this chapter are three.

1. Todevelop in more depth some issues of high-level models (Section 10.1).

2. To describe semantic nets—an important and general tool for both organizing
and representing models (Sections 10.2 and 10.3).

3. To address issues of control, at both abstract and implementational levels (Sec-
tion 10.4 augmented by Appendix 2).
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10.1.1 The Knowledge Base —Models and Processes

Figure 10.1 shows the representational layers in the knowledge base as we have
developed it through the book, and shows the place of important processes. This
organization might be compared with that in [Barrow and Tenenbaum 1981].

The knowledge base organization is mirrored in the organization of the book.
Parts I to III dealt with analogical models and their construction; Part IV is con-
cerned with propositional and complex analogical models. In Chapters 11 to 13,
the emphasis moves from the structure of models to the processes (matching,
inference, and planning) needed to manipulate and use them.

The knowledge base should have the following properties.

« Represent analogical, propositional, and procedural structures
« Allow quick access to information

» Be easily and gracefully extensible

« Support inquiries to the analogical structures

« Associate and convert between structures

« Support belief maintenance, inference, and planning

Ima 1
r modq:; | I
Generalized | I .
(i image i ‘ | | Construction
| L Intrinsic L
| image I
: L
{ Er— Boundaries
Analogical | |
models | Regions
— (lconic, I $egmented F
{ geometric, |y g I Texture
i procedural) | I
| I
; | L Motion
|
| |
I I N Two-
| Geometric | dimensional
Eans:wledge { - represen~ | {x
I tations L Three- | i Matching
| dimensional || and
| || prediction
| i
E —~ Semantic nets <;L_K_g—_r E_;;_Q Matching
| |
! Analogical | '
| r ’ Propositions
L-a0d o ‘[ Reiattmnal 1 and ___T_"__> Inference
propositiona structures i
models L i hypotheses
|
L Plans ::__:j___‘Q Planning
Fig. 10.1 The knowledge base and associated processes in a computer vision
system.
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Sec. 10.1

The highest levels of the knowledge base contain both analogical and prop-
ositional models. Analogical tools do not exist for many important activities, and
when they do exist they are often computationally intensive. A three-dimensional
geometric modeling system for automatic manufacturing has very complex data
structures and algorithms compared to their elegant and terse counterparts in a
propositional model that may be used to plan the highest-level actions. In general it
makes sense to do some computation at the analogical level and some at the propo-
sitional. This multiple-representation strategy seems more efficient than translat-
ing all problems into one representation or the other.

The computations in a vision system should be organized so that information
can flow efficiently and unnecessary computation is kept to a minimum. This is the
function of the control disciplines that allocate effort to different processes. Even
the simplest biological vision systems exhibit sophisticated control of processing.

Constructive processes dominate the activity in building lower-level models,
and matching processes become more important as prior expectations and models
are brought into play. Chapter 11 is devoted to the process of matching.

We postulate that an advanced vision system is engaged in two sorts of high-
level activity: belief maintenance and goal achievement. The former is a more or less
passive, data-driven, background activity that keeps beliefs consistent and up-
dated. The latter is an active, knowledge-driven, foreground activity that consists
of planning future activities. Planning is a problem-solving and simulation activity
that anticipates future world states; in computer vision it can determine how the
visual environment is expected to change if certain actions are performed. Plan-
ning can occur with symbolic, propositional representations (Chapter 13) or in a
more analogical vein with such simulations as trajectory planning [Lozano-Perez
and Wesley 1979]. Planning is useful as an implementational mechanism even in
contexts that are not analogous to human “‘conscious’ problem solving [Garvey
1976]. Helmholtz likened the results of perception to ‘‘unconscious conclusions”
[Helmholtz 1925]. Similarly even “‘primitive’ vision processes (computer or bio-
logical) may use planning techniques to accomplish their ends.

Inference and planning are both classical subfields of artificial intelligence.
Neither has seen much application in computer vision. Inference seems useful for
belief maintenance. Extended inference can deal with inconsistent beliefs and
with beliefs that are maintained with various strengths. We treat inference in
Chapter 12. Applications of planning to vision [Garvey 1976; Bolles 1977] show
good promise. Planning is treated in Chapter 13.

10.1.2 Analogical and Propositional Representations

Our division of the internal knowledge base into ‘‘analogical’” and ‘‘propositional”’
reflects a similar division in theories of how human beings represent the world
[Johnson-Laird 1980]. Psychological data are not compelling toward either pure
theory; there are indications that human beings use both forms of representation.
We introduce the division in this book because we find it conceptually useful in the
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following way. Low-level representations and processes tend to be purely analogi-
cal; high-level representations and processes tend to be both analogical and propo-
sitional.

Analogical representations have the following characteristics [Kosslyn and
Pomerantz 1977; Shepard 1978; Sloman 1971; Kosslyn and Schwartz 1977, 1978;
Waltz and Boggess 1979].

1. Coherence. Each element of a represented situation appears once, with all its
relations to other elements accessible.

2. Continuity. Analogous with continuity of motion and time in the physical
world; these representations permit continuous change.

3. Analogy. The structure of the representation mirrors (and may be isomorphic
to) the relational structure of the represented situation. The representation is a
description of the situation.

4. Simulation. Analogical models are interrogated and manipulated by arbitrarily
complex computational procedures that often have the flavor of (physical or
geometric) simulation.

Propositional representations have the following characteristics [Anderson
and Bower 1973; Palmer 1975; Pylyshyn 1973].

1. Dispersion. An element of a represented situation can appear in several prop-
ositions. However, the propositions can be represented in a coherent manner
by using semantic nets.

2. Discreteness. Propositions are not usually used to represent continuous change.
However, they may be made to approximate continuous values arbitrarily
closely. Small changes in the representation can thus be made to correspond
to small changes in the represented situation.

3. Abstraction. Propositions are true or false. They do not have a geometric
resemblance to the situation; their structure is not analogous to that of the si-
tuation.

4. Inference. Propositional models are manipulated by more or less uniform com-
putations that implement ‘‘rules of inference’’ allowing new propositions to be
developed from old ones.

Each sort of model derives its ‘““meaning’’ differently; the distinctions are in-
teresting, because they can point out weaknesses in each theory [Johnson-Laird
1980; Schank 1975; Fodor, et al. 1975]. Especially in computer implementations,
the two representations only differ essentially in the last two points. It is often pos-
sible to transform one representation to another without loss of information.

Some examples are in order. A generalized image (Part I) is an analogical
model: to find an object above a given object, a procedure can ‘‘search upward’ in
the image. An unambiguous three-dimensional model of a solid (Chapter 9) is
analogical. It may be used to calculate many geometric properties of the solid,
even those unimagined by the designer of the representation. A set of predicate
calculus clauses (Chapter 12) is a propositional model. Closely related models can
be used to solve problems and make plans [Nilsson 1971, 1980; Chapter 13].
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Sec. 10.7

A short digression: It is interesting that people do not seem to perform syl-
logistic inference (formal propositional deduction) in a ‘““mechanical’” way. Given
two clauses such as ‘““Some appliances are telephones’ and ‘‘All telephones are
black,”” we are much more likely to conclude ““Some appliances are black’ than
the equally valid ““Some black things are appliances.”” There is not a satisfying
theory of the mental processes underlying syllogistic inference. An interesting
speculation [Johnson-Laird 1980] is that inference is primarily done through ana-
logical mental models (in which, for example, a population of individuals is con-
jured up and manipulated). Then syllogistic inference techniques may have arisen
as a bookkeeping mechanism to assure that analogical reasoning does not ‘‘miss
any cases.”’

10.1.3 Procedural Knowledge

Procedures as explicit elements in a model pose problems because they are not
readily ‘‘understood’’ by other knowledge base components. It is very hard to tell
what a procedure does by looking at its code.

In our taxonomy we think of ‘“‘procedural’’ knowledge as being analogical.
The sequential nature of a program’s steps is analogous to an ordering of actions in
time that can only be clumsily expressed in current propositional representations.
Knowledge about ‘‘how-to’” perform a complex activity is most propitiously
represented in the form of explicit process descriptions. Descriptions not involving
the element of time may be naturally represented as passive (analogical or proposi-
tional) structures.

There have been several attempts to organize chunks of procedural
knowledge by associating with the procedure a description of what it is to accom-
plish. For example, procedural knowledge can be stored in the internal model
structure (knowledge base) indexed under patterns that correspond to the argu-
ments of the procedure. Pattern-directed invocation involves going to the knowledge
base for a procedure that matches the given pattern, matching pattern elements to
bind arguments, and invoking the procedure. Several advantages accrue in
pattern-directed invocation, such as not having to know the ‘‘proper names’’ of
procedures, only their descriptions (what they claim to do). Also, when several
procedures match a pattern, one either gets nondeterminism or a chance to choose
the best. Often system facilities include a procedure to run to choose the best pro-
cedure dynamically. Similar pattern matching is involved in resolution theorem
provers and production systems (Chapter 12).

As an example, in a program to locate ribs in a chest radiograph [Ballard
1978], procedures to find ribs under different circumstances are attached to nodes
in a mixed analogic and propositional model of the ribcage as shown in Fig. 10.2.
Each procedure has an associated description which determines whether it can be
run. For example, some programs require instances of neighboring ribs to be lo-
cated before they can run, whereas others can run given only rudimentary scaling
information. When invoked, each procedure tries to find a geometric structure
corresponding to the associated rib in a radiograph. Instead of searching for ribs in
a mechanical order, descriptors allow a choice of order and procedures and hence a
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ZL:‘.L.,:‘*Oﬁ Fig. 10.2 A portion of a ribcage model
(see text). Procedural attachment to a
model is denoted by jagged lines.

more flexible, efficient and robust program (Appendix 2).

The representation and use of procedural knowledge is an important topic
[Schank and Abelson 1977; Winograd 1975; Freuder 1975]. We expect it to be in-
creasingly important for computer vision.

10.1.4 Computer Implementations

A computer implementation can (and often does) obscure the sharp divisions im-
posed by pure philosophical differences between analogical and propositional
models. A propositional representation need not be an unordered set of clauses,
but may have a coherent structure; the coherent versus dispersed distinction is
thus blurred. A geometry theorem prover or a block-stacking program may mani-
pulate diagrams or simulate physical phenomena such as gravitational stability and
wobble in the manipulator [Gelernter 1963; Fahlman 1974; Funt 1977]. *‘Non-
standard inference’’ is an important tool that extends classical inference tech-
niques. Although techniques such as production systems and relaxation labeling
algorithms (Chapter 11) bear little superficial resemblance to predicate logic, both
may be naturally used to manipulate propositional models.

Propositions may be implemented as procedures. If a proposition ‘‘evalu-
ates’ to true or false, it is perhaps most naturally considered a function from a
world (or world model) to a truth value. This is not to say that all such functions
exist or are evaluated when the proposition is ‘“brought to mind’’; perhaps
“‘understanding a proposition’’ is like compiling a function and *‘verifying a propo-
sition” is like evaluating it. The function may be implicit in an evaluation (infer-
ence) mechanism or more explicit, as in a ‘‘procedural’’ semantics such as that of
the programming languages PLANNER and CONNIVER [Hewitt 1972; Sussman
and McDermott 1972; Winograd 1978]. A proposition may thus be encoded as an
(analogical!) procedural recipe for establishing the proposition. An example might
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be this representation of the fact *‘In California, Grass and Trees produce green re-
gions.”

(To-Establish (GreenRegion x)
Establish (AND (InCalifornia())
(OR (Establish (Grass x))
(Establish (Trees x)))))

This might mean: To infer that x is a green region, establish that you are in
California and then try to establish that x arose from grass. Should the grass infer-
ence fail, try to establish that x arose from trees. Since the full power of the pro-
gramming language is available to an Establish statement, it can perform general
computations to establish the inference.

The important point here: Rather than a set of clauses whose application
must be organized by an interpreter, propositions may be represented by an expli-
cit control sequence, including procedure calls to other programs. In the example,
(Grass x) and (Trees x) may be procedures which have their own complicated con-
trol structures.

To say that in a computer ‘‘everything is propositions’’ is a truism; any pro-
gram can be reduced to a Turing machine described by a finite set of ““prop-
ositions’’ with a very simple rule of ‘‘inference.”’ The issue is at what level the pro-
gram should be described. A program may be doing propositional resolution
theorem proving or analogical trajectory planning with three-dimensional models;
it is not helpful to blur this basic functional distinction by appealing to the lowest
implementational level.

10.2 SEMANTIC NETS

10.2.1 Semantic Net Basics

Semantic nets were first introduced under that name as a means of modeling hu-
man associative memory [Quillian 1968]. Since then they have received much at-
tention [Nilsson 1980; Woods 1975; Brachman 1976; Findler 1979]. We are con-
cerned with three aspects of semantic nets.

1. Semantic nets can be used as a data structure for conveniently accessing both
analogical and propositional representations. For the latter their construction
is straightforward and based solely on propositional syntax (Chapter 12).

2. Semantic nets can be used as an analogical structure that mirrors the relevant
relations between world entities.

3. Semantic nets can be used as a propositional representation with special rules
of inference. Both classical and extended inference can be supported, butitisa
challenging enterprise to design net structure that provides the properties of
formal logic [Schubert 1976; Hendrix 1979].
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