be this representation of the fact *‘In California, Grass and Trees produce green re-
gions.”

(To-Establish (GreenRegion x)
Establish (AND (InCalifornia())
(OR (Establish (Grass x))
(Establish (Trees x)))))

This might mean: To infer that x is a green region, establish that you are in
California and then try to establish that x arose from grass. Should the grass infer-
ence fail, try to establish that x arose from trees. Since the full power of the pro-
gramming language is available to an Establish statement, it can perform general
computations to establish the inference.

The important point here: Rather than a set of clauses whose application
must be organized by an interpreter, propositions may be represented by an expli-
cit control sequence, including procedure calls to other programs. In the example,
(Grass x) and (Trees x) may be procedures which have their own complicated con-
trol structures.

To say that in a computer ‘‘everything is propositions’’ is a truism; any pro-
gram can be reduced to a Turing machine described by a finite set of ““prop-
ositions’’ with a very simple rule of ‘‘inference.”’ The issue is at what level the pro-
gram should be described. A program may be doing propositional resolution
theorem proving or analogical trajectory planning with three-dimensional models;
it is not helpful to blur this basic functional distinction by appealing to the lowest
implementational level.

10.2 SEMANTIC NETS

10.2.1 Semantic Net Basics

Semantic nets were first introduced under that name as a means of modeling hu-
man associative memory [Quillian 1968]. Since then they have received much at-
tention [Nilsson 1980; Woods 1975; Brachman 1976; Findler 1979]. We are con-
cerned with three aspects of semantic nets.

1. Semantic nets can be used as a data structure for conveniently accessing both
analogical and propositional representations. For the latter their construction
is straightforward and based solely on propositional syntax (Chapter 12).

2. Semantic nets can be used as an analogical structure that mirrors the relevant
relations between world entities.

3. Semantic nets can be used as a propositional representation with special rules
of inference. Both classical and extended inference can be supported, butitisa
challenging enterprise to design net structure that provides the properties of
formal logic [Schubert 1976; Hendrix 1979].
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A semantic network represents objects and relationships between objects as a
graph structure of nodes and (labeled) arcs. The arcs usually represent relations
between nodes and may be ‘‘followed’’ to proceed from node to node. A directed
arc with label L between nodes X and Y can signify that the predicate L (X, Y) is
true. If, in addition, it has a value ¥, the arc can signify that some function or rela-
tionholds: L (X, ¥) = V.

The indexing property of a network is one of its useful aspects. The network
can be constructed so that objects that are often associated in computations, or are
especially relevant or conceptually close to each other, may be represented by
nodes in the network that are near each other in the network (as measured by
number of arcs separating them). Figure 10.3 shows these ideas: (a) nodes can be
associated by searching outward along arcs and (b) nodes near a specified node are
readily available by following arcs. Semantic networks are especially attractive as
analogical representations of spatial states of affairs. If we restrict ourselves to
binary spatial relations (‘‘above,” and ‘‘west of,”” for example), physical objects or
parts of objects may be represented by nodes, and their positions with respect to
each other by arcs.

Let us look at a semantic net and make some basic observations. Figure 10.4
is meant to be an analogical representation of an arrangement of chairs around a
table. The LEFT-OF and RIGHT-OF relations are directed arcs, the ADJACENT
relation is undirected; there can be several such undirected arcs between nodes.
Note here that the LEFT-OF and RIGHT-OF relations do not behave in their nor-
mal way. If they are transitive, as is normal, then every chair is both LEFT-OF and

(a)

Fig. 10.3 Semantic networks as

structures for associative search. (a)

Associating two nodes. (b) Retrieving
(b} nearby nodes.
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- Fig. 10.4 A representation of chairs at

Left of a table.

RIGHT-OF every other chair. Flexible treatment of this sort of phenomenon is
sometimes difficult in propositional representations.

A simple but basic point: The net of Fig. 10.4 seems to say interesting things
about furniture in a scene. But notice that merely by rewriting labels the same net
could be ‘“‘about’ modular arithmetic, a string of pearls, or any number of things.
There are two morals here. First, a sparsely connected representation (analogical
or propositional) may have several equally good interpretations. Second, a net
without any interpretation procedures essentially represents nothing [McDermott
1976].

Now consider three neighboring chairs described by the following relations.

CHAIR (Armchair), CHAIR (Highchair), CHAIR (Stool)
WIDE (Armchair)

HIGH (Highchair)

LOW (Stool)

LEFT-OF (Armchair, Highchair)

LEFT-OF (Highchair, Stool)

BETWEEN (Highchair, Armchair, Stool)

The relations include four properties (relations with ‘‘one argument’), a
two-argument and a three-argument relation. One way to encode this information
in a net is shown in Fig. 10.5a. Nodes represent individuals, and properties are
kept as node contents. The directed arcs represent only binary relations, and
“‘betweenness’’ is left implicit. Properties can equally well be represented as la-
beled arcs (Fig. 10.5b).

Relations are encoded as nodes in Fig. 10.6. Here the BETWEEN relation is

encoded asymmetrically: it is not possible to tell by arcs emanating from the stool
that it is in a “‘between’’ relationship.

R
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Armchair Highchair

+ wide « high
+ chair « chair

(a)

Wide High Low

Chair Chair Chair

Fig. 10,5 (a) A simple semantic net.
(b) (b) An equivalent nel.

The three-place relation is treated more symmetrically in Fig. 10.7. In gen-
eral, n-place relations may be ‘‘binarized’’ this way; create a node for the “‘relation
instance’ and new (relation) nodes for each distinct argument role in the n-ary re-
lation.

An important point: Arcs and nodes had a uniform semantics in Fig. 10.4.
This property was lost in the succeeding nets; nodes are either ‘‘things’ or rela-
tions, and arcs leading into relations are not the same as those leading out. For
such nets to be useful, the net interpreter (a program that manipulates the net)
must keep these things straight. It is possible but not easy to devise a rich and uni-
form network semantics [Brachman 1979].

Between

Fig. 10.6 A net with more explicit information.
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Between
situation

Fig. 10.7 A net with yet more explicit information.

10.2.2 Semantic Nets for Inference

This section explores some further important issues in the semantics of semantic
nets. In Chapter 12 semantic nets are used as an indexing mechanism in predicate
calculus theorem proving. In some applications an inference system with provably
good formal properties may be too restrictive. Some formal properties (such as
maintaining consistency by not deducing contradictions) may be considered vital,
however. How can “‘good behavior’ be obtained from a representation that may
contain ‘‘inconsistent’’ information?

One example of an ‘‘inconsistent”’ representation is the net of Fig. 10.3, with
its LEFT-OF and RIGHT-OF problem. Another example is a net version of the
propositions ‘‘All birds fly,”” ‘“‘Penguins are birds,”” ‘‘Penguins do not fly.”” The
generalization is useful ““commonsense’’ knowledge, but the rare exceptions may
be important, too. Network interpreters can cope with these sorts of problems by a
number of methods, such as only accessing a consistent subnetwork, making
deductions from the particular toward the general (this takes care of penguins),
and so forth. All these techniques depend on the structure imposed by the net.

Some more subtle aspects of net representations appear below.
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Nodes

The basic notation of Fig. 10.4 may tempt us to produce a net such as that
shown in Fig. 10.8. Consider the object node sky in Fig. 10.8. Does it stand for the
generic sky concept or for a particular sky at a particular time and location? Clearly
both meanings cannot be embodied in the same node because they are used in
such different ways in reasoning. The standard solution is to use nodes to
differentiate between a type, or generic concept, and a token, or instance of it. Fig-
ure 10.9 shows this modification using the e (element of) relation to relate the in-
dividual to the generic concept. In this simple case, the node sky stands for the
type, and the empty node stands for a foken, or instance of the sky concept.

The distinction between type and token is related to the distinction between
intensional and extensional concepts. In analyzing an aerial image there is a
difference between

““All bridges span roads or rivers.”’ (10.1)
and
““All bridges (found so far) span roads or rivers.” (10.2)

If “‘bridges™ in (10.1) means any bridge that might be found, ‘*bridges’’ is used in
an intensional sense. If “‘bridges’ means a particular set, it is used it in an exten-
sional sense. Normally relations between type nodes are used in an intensional
sense and relationships between foken nodes have the extensional sense.

Virtual nodes are objects that are not explicitly represented as object nodes.
The need for them arises in expressing complex relations. For example, consider

““The bridge that is at the intersection of road 57
and river 3 is near building 30.” (10.3)

which may be represented as shown in Fig. 10.10. The node labeled x is the result
of intersecting a particular road with a particular river. It is not represented expli-
citly as an instance of any generic concept; it is a virtual node. Virtual nodes can be
eliminated by introducing very complex relations, but this would sacrifice an im-
portant property of networks, the ability to build up a very large number of com-

Fig. 10.8 Type or token nodes?
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Above -

Cavove )
” Fig. 10.9 Distinguishing b.e}ween
types and tokens: (a) Tokenizing an
(b} instance. (b) Tokenizing an assertion.
plex relations from a small set of primitives. Virtual nodes enhance this ability by
referring to portions of complicated relations.

Nodes in the network can also be used as variables. These variables can match
other nodes which represent constants. In Fig. 10.11, x and y are variables and the
rest of the nodes are constants. If node xis matched to the ‘‘telephone’’ node, then
xcan be regarded as a “‘telephone’’ node.

e

Road Road 67
e

Bldg Bldg 30

Result

Near

Result

e @ e = element of

Fig. 10.10 Virtual nodes.

100 00C

Sec. 710.2  Semantic Nets 329



330

Fig. 10.11 Nodes as variables. (a)
Black telephone and pen on desk. (b)
Object denoted by variable x with

(b) variable color y.

Often, it is useful to have numerical values as node properties. This can ex-
tend the discrete representation of nodes and arcs to a continuous one. For exam-
ple, in addition to ““color of x is red37”’ we may also associate the particular value
of red that we mean with node red37. A special kind of value is a default value. If a
value can be found for the node in the course of matching other nodes with values
or by examining image data, then that value is used for the node value. Otherwise,
the default is used.

Relations

Complex relations of many arguments are not uncommeon in the world, but
for the bulk of practical work, relations of only a few arguments seem to suffice. Se-
mantic nets can clearly represent two-argument relations through their nodes and
arcs. More complex relations may be dealt with by various devices. The links to
multiple arguments may be ordered within a relation node, or new nodes may be
introduced to label the roles of multiple arguments (Fig. 10.7).

If inference mechanisms are to manipulate semantic nets, certain important
relations deserve special treatment. One such relation is the ““IS-A”’ relation. The
basic issue addressed by this relation is property inheritance [Moore 1979]. That is,
if Fred IS-A Camel and a Camel IS-A Mammal, then presumably Fred has the pro-
perties associated with mammals. It often seems necessary to differentiate between
various senses of “‘IS-A.”” One basic sense of ““XIS-A Y’ is ““X is an element of
the set ¥ *’; others are ““X denotes Y,”” ““Xis a subset of ¥,”’ and ‘‘ Yis an abstrac-
tion of X.”> Notice that each sense depends on differently ‘“‘typed’ arguments; in
the first three cases X is, respectively, an individual, a name, and a set. Deeper
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treatments of these issues are readily available [Brachman 1979; Hayes* 1977,
Nilsson 1980].

It is particularly helpful to have a denotion link to keep perceptual structures
separate from model structures. Then if mistakes are made by the vision automa-
ton, a correction mechanism can either sever the denotation link completely or
create a new denotation link between the correct model and image structures.

When dealing with many spatial relations, it is economical to recognize that
many relations are ‘‘inverses’ of each other. That is, LEFT-OF(x,y) is the “‘in-
verse” of RIGHT-OF (x,);

LEFT—OF(x,y) <=> RIGHT-OF(y,x)
and also
ADJACENT (x,y) <=> ADJACENT(y,x)

Rather than double the number of these kinds of links, one can normalize
them. That is, only one half of the inverse pair is used, and the interpreter infers
the inverse relation when necessary.

Properties have a different semantics depending on the type of object that has
the property. An ‘‘abstract’’ node can have a property that gives one aspect or
refinement of the represented concept. A property of a ‘‘concrete’ node presum-
ably means an established and quantified property of the individual.

Partitions

Partitions are a powerful notion in networks. ‘‘Partition”’ is not used in the
sense of a mathematical partition, but in the sense of a barrier. Since the network is
a graph, it contains no intrinsic method of delimiting subgraphs of nodes and arcs.
Such subgraphs are useful for two reasons:

1. Syntactic. It is useful to delimit that part of the network which represents the
results of specific inferences.

2. Semantic. It is useful to delimit that part of the network which represents
knowledge about specific objects. Partitions may then be used to impose a
hierarchy upon an otherwise ‘flat”” structure of nodes.

The simple way of representing partitions in a net is to create an additional node to
represent the partition and introduce additional arcs from that node to every node
or arc in the partition. Partitions allow the nodes and relations in them to be mani-
pulated as a unit.

Notationally, it is cleaner to draw a labeled boundary enclosing the relevant
nodes (or arcs). An example is shown by Fig. 10.12 where we consider two objects
each made up of several parts with one object entirely left of the other. Rather than
use a separate LEFT-OF relation for each of the parts, a single relation can be used
between the two partitions. Any pair of parts (one from each object) should inherit
the LEFT-OF relation. Partitions may be used to implement quantification in se-
mantic net representations of predicate calculus [Hendrix 1975, 1979]. They may
be used to implement frames (Section 10.3.1).
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Fig. 10.12 The use of partitions. (a) Construction of a partition. (b) Two objects described
by partitions.

Conversions

It is important to be able to transform from geometric (and logical) represen-
tations to propositional abstract representations and vice versa. For example, in
Fig. 10.13 the problem is to find the exact location of a telephone on a previously
located desk. In this case, propositional knowledge that telephones are usually on
desktops, together with the desk top location and knowledge about the size of tele-
phones, define a search area in the image.

Converting image data about a particular group of objects into relational form
involves the inverse problem. The problem is to perform a level of abstraction to
remove the specificity of the geometric knowledge and derive a relation that is ap-
propriate in a larger context. For example, the following program fragment creates
the relations ABOVE (A4, B), where 4 and B are world objects.

Comment: assume a world coordinate system where Z is the positive vertical.

Find ZA ,;, for Zin 4 and ZB,, for Zin B.
If ZA in > ZBmay, then make ABOVE (4, B) true.

Many other definitions of ABOVE, one of which compares centers of gravity, are
possible. In most cases, the conversion from continuous geometric relations to
discrete propositional relations involves more or less arbitrary conventions. To ap-
preciate this further, consult Fig. 10.14 and try to determine in which of the cases
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Fig. 10.13 Search area defined by relational bindings.

block A is LEFT-OF block B. Figure 10.14d shows a case where different answers
are obtained depending on whether a two-dimensional or three-dimensional in-
terpretation is used. Also, when relations are used to encode what is usually true of
the world, it is often easy to construct a counterexample. Winston [Winston 1975]
used

SUPPORTS (B,A) ABOVE (A,B)

7
e

G o

(a) (d)

(L L]
— e

(b) (c)

Fig. 10.14 Examples to demonstrate difficulties in encoding spatial relation
LEFT-OF (see text).
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which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, ‘‘con-
tinuous” information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES

334

Examples of semantic nets abound throughout Part IV. Two more examples illus-
trate the power of the notions. The first example is described very generally, the
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and con-
troversial idea, and the reader should consult the References for a full treatment.
Implementationally, a frame may be realized by a partition; a frame is a “‘chunk™
of related structure. _

Associating related ‘‘chunks’’ of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, parti-
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977;
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow and
Winograd 1977, 1979; Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972].

Frames systems incorporate a theory of associative recall in which one selects
frames from memory that are relevant to the situation in which one finds oneself.
These frames include several kinds of information. Most important, frames have
slots which contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slots
for a particular type of frame are immutable and specified in advance. Further,
frames represent specific prototype situations; many slots have default values; this
is where expectations and prior knowledge come from. These default values may
be disconfirmed by perceptual evidence; if they are, the frame can contain infor-
mation about what actions to take to fill the slot. Some slots are to be filled in by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirmed

| S 2]
W 000 Serroras (s, t) s ABOVEU, B

Ch. 10 Knowledge Representation and Use



	10.2 Semantic Nets, p.323
	10.2.1 Semantic Net Basics, p.323
	10.2.2 Semantic Nets for Inference, p.327



