which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, ‘‘con-
tinuous” information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES
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Examples of semantic nets abound throughout Part IV. Two more examples illus-
trate the power of the notions. The first example is described very generally, the
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and con-
troversial idea, and the reader should consult the References for a full treatment.
Implementationally, a frame may be realized by a partition; a frame is a “‘chunk™
of related structure. _

Associating related ‘‘chunks’’ of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, parti-
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977;
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow and
Winograd 1977, 1979; Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972].

Frames systems incorporate a theory of associative recall in which one selects
frames from memory that are relevant to the situation in which one finds oneself.
These frames include several kinds of information. Most important, frames have
slots which contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slots
for a particular type of frame are immutable and specified in advance. Further,
frames represent specific prototype situations; many slots have default values; this
is where expectations and prior knowledge come from. These default values may
be disconfirmed by perceptual evidence; if they are, the frame can contain infor-
mation about what actions to take to fill the slot. Some slots are to be filled in by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirmed
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and actions to pursue in various contingencies. One common action is to *‘bring in
another frame.”’

The theory is that based on a partial match of a frame’s defining slots, a frame
can be ‘‘brought to mind.”” The retrieval is much like jumping to a conclusion
based on partial evidence. Once the frame is proposed, its slots must be matched
up with reality; thus we have the initial major hypothesis that the frame represents,
which itself consists of a number of minor subhypotheses to be verified. A frame
may have other frames in its slots, and so frames may be linked into ‘‘frame sys-
tems’” that are themselves associatively related. (Consider, for example, the
linked perceptual frames for being just outside a theater and for being just inside.)
Transformations between frames correspond to the effects of relevant actions.
Thus the hypotheses can suggest one another. ‘“Thinking always begins with sug-
gestive but imperfect plans and images; these are progressively replaced by
better —but usually still imperfect—ideas’” [Minsky 1975].

Frame theory is controversial and has its share of technical problems [Hinton
1977]. The most important of these are the following.

1. Multiple instances of concepts seem to call for copying frames (since the in-
stances may have different slotfillers). Hence, one loses the economy of a
preexisting structure.

2. Often, objects have variable numbers of components (wheels on a truck, run-
ways in an airport). The natural representation seems to be a rule for con-
structing examples, not some specific example.

3. Default values seem inadequate to express legal ranges of slot-filling values or
dependencies between their properties.

4. Property inheritance is an important capability that semantic nets can imple-
ment with “‘is a”” or ‘“‘element-of”’ hierarchies. However, such hierarchies
raise the question of which frame to copy when a particular individual is being
perceived. Should one copy the generic Mammal frame or the more specific
Camel frame, for instance. Surely, it is redundant for the Camel frame to du-
plicate all the slots in the Mammal frame. Yet our perceptual task may call for
a particular slot to be filled, and it is painful not to be able to tell where any par-
ticular slot resides.

Nevertheless, where these disadvantages can be circumvented or are ir-
relevant, frames are seeing increasing use. They are a natural organizing tool for
complex data.

10.3.2 Location Networks

This section describes a system for associating geometric analogical data with a se-
mantic net structure which is sometimes like a frame with special ‘‘evaluation”
rules. The system is a geometrical inference mechanism that computes (or infers)
two-dimensional search areas in an image [Russell 1979]. Such networks have
found use in both aerial image applications [Brooks and Binford 1980; Nevatia and
Price 1978] and medical image applications [Ballard et al. 1979].
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The Network

A location network is a network representation of geometric point sets related
by set-theoretic and geometric operations such as set intersection and union, dis-
tance calculation, and so forth. The operations correspond to restrictions on the lo-
cation of objects in the world. These restrictions, or rules, are dictated by cultural
or physical facts.

Each internal node of the location network contains a geometric operation, a
list of arguments for the operation, and a resuit of the operation. For instance, a
node might represent the set-theoretic union of two argument point sets, and the
result would be a point set. Inference is performed by evaluating the net; evaluating
all its operations to derive a point set for the top (root) operation.

The network thus has a hierarchy of ancestors and descendents imposed on it
through the argument links. At the bottom of this hierarchy are data nodes which
contain no operation or arguments, only geometric data. Each node is in one of
three states: A node is up-to-date if the data attached to it are currently considered
to be accurate. It is our-of-date if the data in it are known to be incomplete, inaccu-
rate, or missing. It is hypothesized if its contents have been created by net evalua-
tion but not verified in the image.

In a common application, the expected relative locations of features in a
scene are encoded in a network, which thus models the expected structure of the
image. The primitive set of geometric relations between objects is made up of four
different types of operations.

1. Directional operations (left, reflect, north, up, down, and so on) specify a point
set with the obvious locations and orientations to another.

2. Area operations (close-to, in-quadrilateral, in-circle and so on) create a point
set with a non-directional relation to another.

3. Set operations (union, difference and intersection) perform the obvious set
operations.

4, Predicates on areas allow point sets to be filtered out of consideration by
measuring some characteristic of the data. For example, a predicate testing
width, length, or area against some value restricts the size of sets to be those
within a permissible range.

The location of the aeration tank in a sewage treatment plant provides a
specific example. The aeration tank is often a rectangular tank surrounded on ei-
ther end by circular sludge and sedimentation tanks (Fig. 10.16). As a general rule,
sewage flows from the sedimentation tanks to aeration tanks and finally through to
the sludge tanks. This design permits the use of the following types of restrictions
on the location of the aeration tanks.

Rule I ““Aeration tanks are located somewhere close to both the sludge tanks
and the sedimentation tanks.”
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Fig. 10.16 Aerial image of a sewage plant.
The various tanks cannot occupy the same space, so:

Rule 2: ““ Aeration tanks must not be too close to either the sludge or sedimen-
tation tanks."

Rule 1 is translated to the following network relations.
CLOSE-TO(Union (LocSludgeTanks, LocSedTanks), Distance X)

Rule 2 is translated to
NOT-IN(Union (LocSludgeTanks,LocSedTanks), Distance Y)

The network describing the probable location of the aeration tanks embodies
both of these rules. Rule 1 determines an area that is close to both groupings of
tanks and Rule 2 eliminates a portion of that area. Thinking of the image as a point
set, a set difference operation can remove the area given by Rule 2 from that
specified by Rule 1. Figure 10.17 shows the final network that incorporates both
rules.

Of course, there could be places where the aeration tanks might be located
very far away or perhaps violate some other rule. It is important to note that, like
the frames of Section 10.3.1, location networks give prototypical, likely locations
for an object. They can work very well for stereotyped scenes, and might fail to per-
form in novel situations.

The Evaluation Mechanism

The network is interpreted (evaluated) by a program that works top-down in
a recursive fashion, storing the partial results of each rule at the topmost node as-
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Fig. 10.17 Constraint network for aeration tank.

sociated with that rule (with a few exceptions). Evaluation starts with the root
node. In most networks, this node is an operation node. An operation node is
evaluated by first evaluating all its arguments, and then applying its operation to
those results. Its own result is then available to the node of the network that called
for its evaluation.

Data nodes may already contain results which might come from a map or
from the previous application of vision operators. At some point in the course of
the evaluation, the evaluator may reach a node that has already been evaluated and
is marked up-to-date or hypothesized (such a node contains the results of evalua-
tion below that point). The results of this node are returned and used exactly as if it
were a data node. Out-of-date nodes cause the evaluation mechanism to execute a
low-level procedure to establish the location of the feature. If the procedure is un-
able to establish the status of the object firmly within its resource limits, the status
will remain out-of-date. At any time, out-of-date nodes may be processed without
having to recompute any up-to-date nodes. A node marked hypothesized has a
value, usually supplied by an inference process, and not verified by low-level im-
age analysis. Hypothesized data may be used in inferences: the results of all infer-
ences based on hypothesized data are marked hypothesized as well.
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If a data node ever has its value changed (say, by an independent process that
adds new information), all its ancestors are marked out-of-date. Thus the root
node will indicate an out-of-date status, but only those nodes on the out-of-date
path must be reevaluated to bring the network up to date. Figure 10.18 shows the
operation of the aeration tank network of Fig. 10.17 on the input of Fig. 10.16. In
this case the initial feature data were a single sludge tank and a single sedimenta-
tion tank. Suppose additional work is done to find the location of the remaining
sludge and sediment tanks in the image. This causes a reevaluation of the network,
and the new result more accurately reflects the actual location of the aeration
tanks.

Properties of Location Networks

The location network provides a very general example of use of semantic nets
in computer vision.

1. It serves as a data base of point sets and geometric information. The truth
status of items in the network is explicitly maintained and depends on incom-
ing information and operations performed on the net.

2. Itis an expansion of a geometric expression into a tree, which makes the order
of evaluation explicit and in which the partial results are kept for each
geometric calculation. Thus it provides efficient updating when some but not
all the partial results change in a reevaluation.

3. It provides a way to make geometrical inferences without losing track of the
hypothetical nature of assumptions. The tree structure records dependencies
among hypotheses and geometrical results, and so upon invalidation of a
geometric hypothesis the consequences (here, what other nodes have their
values affected) are explicit. The record of dependencies solves a major prob-
lem in automated inference systems.

4. It reflects implicit universal quantification. The network claims to represent
true relations whose explicit arguments must be filled in as the network is “‘in-
stantiated’” with real data.

5. Ithasa ““flat” semantics. There are no element-of hierarchies or partitions.

6. The concept of “individual’ is flexible. A point set can contain multiple
disconnected components corresponding to different world objects. In set
operations, such an assemblage acts like an explicit set union of the com-
ponents. An “‘individual’’ in the network may thus correspond to multiple in-
dividual point (sub)sets in the world.

7. The network allows use of partial knowledge. A set-theoretic semantics of ex-
istence and location allows modeling of an unknown location by the set-
theoretic universe (the possible location is totally unconstrained). If some-
thing is known not to exist in a particular image, its “‘location’” is the null set.
Generally, a location is a point set.

8. The set-theoretic semantics allows useful punning on set union and the OR
operation, and set intersection and the AND operation. If a dock is on the
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shoreline AND near a town, the search for docks need only be carried out in
the intersection of the locations.

10.4 CONTROL ISSUES IN COMPLEX VISION SYSTEMS

340

Computer vision involves the control of large, complex information-processing
tasks. Intelligent biological systems solve this control problem. They seem to have
complicated control strategies, allowing dynamic allocation of computational
resources, parallelism, interrupt-driven shifts of attention, and incremental
behavior modification. This section explores different strategies for controlling the
complex information processing involved in vision. Appendix 2 contains specific

Fig. 10.18 (a) Initial data to be refined
by location network inference. (b)
Results of evaluating network of (a). (c)
Results of evaluating network after
additional information is added.
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