Matching 11

11.1 ASPECTS OF MATCHING

352

11.1.1 Interpretation: Construction, Matching, and Labeling

Figure 10.1 shows a vision system organization in which there are several
representations for visual entities. A complex vision system will at any time have
several coexisting representations for visual inputs and other knowledge. Percep-
tion is the process of integrating the visual input with the preexisting representa-
tions, for whatever purpose. Recognition, belief maintenance, goalseeking, or
building complex descriptions—all involve forming or finding relations between
internal representations. These correspondences match (““model,”” ‘‘re-
represent,”” ‘‘abstract,’” ‘‘label’’) entities at one level with those at another level.

Ultimately, matching ‘‘establishes an interpretation’ of input data, where an
interpretation is the correspondence between models represented in a computer
and the external world of phenomena and objects. To do this, matching associates
different representations, hence establishing a connection between their interpre-
tations in the world. Figure 11.1 illustrates this point. Matching associates TOK-
NODE, a token for a linear geometric structure derived from image segmentation
efforts with a model token NODEI101 for a particular road. The token TOKNODE
has the interpretation of an image entity; NODE101 has the interpretation of a par-
ticular road.

One way to relate representations is to construct one from the other. An ex-
ample is the construction of an intrinsic image from raw visual input. Bottom-up
construction in a complex visual system is for reliably useful, domain-
independent, goal-independent processing steps. Such steps rely only on
“‘compiled-in”’ (*‘hard-wired,” ‘“‘innate’’) knowledge supplied by the designer of
the system. Matching becomes more important as the needed processing becomes
more diverse and idiosyncratic to an individual’s experience, goals, and

A road or class of roads

ﬂ Represents B -~

Sec. 11.1

Represents

o

An image of X / & .
a road \ 7 \‘I\;'Iodeied properties Py /

~ Input b ~ Reference o
~ o

\-‘—__4____-/ \-____-’

Fig. 11.1 Matching and interpretation.

knowledge. Thus as processing moves from ‘“‘early’ to “‘late,”” control shifts from
bottom-up toward top-down, and existing knowledge begins to dominate percep-
tion.

This chapter deals with some aspects of matching, in which two already exist-
ing representations are put into correspondence. When the two representations are
similar (both are images or relational structures, say), ‘‘matching’’ can be used in
its familiar sense. When the representations are different (one image and one
geometric structure, say), we use ‘‘matching’ in an extended sense; perhaps
“fitting”’ would be better. This second sort of matching usually has a top-down or
expectation-driven flavor; a representation is being related to a preexisting one.

As a final extension to the meaning of matching, matching might include the
process of checking a structure with a set of rules describing structural legality,
consistency, or likelihood. In this sense a scene can be matched against rules to see
if it is nonsense or to assign an interpretation. One such interpretation process
(called labeling) assigns consistent or optimally likely interpretations (labels) at
one level to entities of another level. Labeling is like matching a given structure
with a possibly infinite set of acceptable structures to find the best fit. However, we
(fairly arbitrarily) treat labeling in Chapter 12 as extended inference rather than
here as extended matching.

11.1.2 Matching Iconic, Geometric, and Relational Structures

Chapter 3 presented various correlation techniques for matching iconic (image-
like) structures with each other. The bulk of this chapter, starting in Section 11.2,
deals with matching relational (semantic net) structures. Another important sort of
matching between two dissimilar representations fits data to parameterized models
(usually geometric). This kind of matching is an important part of computer vi-

Aspects of Matching 353

354

Ax+ By +C=0

sion. A typical example is shown in Fig. 11.2. A preexisting representation (here a
straight line) is to be used to interpret a set of input data. The line that best “‘ex-
plains” the data is (by definition) the line of ‘‘best fit.”” Notice that the decision to
use a line (rather than a cubic, or a piecewise linear template) is made at a higher
level. Given the model, the fitting or matching means determining the parameters
of the model that tailor it into a useful abstraction of the data.

Sometimes there is no parameterized mathematical model to fit, but rather a
given geometric structure, such as a piecewise linear curve representing a shore-
line in a map which is to be matched to a piece of shoreline in an image, or to
another piecewise linear structure derived from such a shoreline. These geometric
matching problems are not traditional mathematical applications, but they are
similar in that the best match is defined as the one minimizing a measure of
disagreement.

Often, the computational solutions to such geometric matching problems ex-
hibit considerable ingenuity. For example, the shore-matching example above
may proceed by finding that position for the segment of shore to be matched that
minimizes some function (perhaps the square) of a distance metric (perhaps Eu-
clidean) between input points on the iconic image shoreline and the nearest point
on the reference geometric map shoreline. To compute the smallest distance
between an arbitrary point and a piecewise linear point set is not a trivial task, and
this calculation may have to be performed often to find the best match. The com-
putation may be reduced to a simple table lookup by precomputing the metric in a
‘“‘chamfer array,”’ that contains the metric of disagreement for any point around
the geometric reference shoreline [Barrow et al. 1978]. The array may be com-
puted efficiently by symmetric axis transform techniques (Chapter 8) that ‘‘grow”
the linear structure outward in contours of equal disagreement (distance) until a
value has been computed for each point of the chamfer array.

Parameter optimization techniques can relate geometrical structures to lower-
level representations and to each other through the use of a merit function measur-
ing how well the relations match. The models are described by a vector of parame-
tersa = (a,,...,a,). The merit function M must rate each set of those parameters
in terms of a real number. For example, M could be a function of both g, the
parameters, and f (x), the image. The problem is to find a such that

M(a, f(x))

Reference Input

Fig. 11.2 Matching or fitting a straight
line model to data.

Ch. 11 Matching

is maximized. Note that if a were some form of template function rather than a
vector of parameters, the problem statement would encompass the iconic correla-
tion techniques just covered. There is a vast literature on optimization techniques
and we cannot do more than provide a cursory discussion of a few cases with exam-
ples. i
Formally, the different techniques have to do with the form of the merit
function M. A fundamental result from calculus is that if M is sufficiently well
behaved (i.e., has continuous derivatives), then a condition for a local maximum
(or minimum) is that

o = OME

= 0 for j=1,..., 11.1
;= Ge, orj=1,..,n (11.1)

This condition can be exploited in many different ways.

« Sometimes Egs. (11.1) are sufficiently simple so that the a can be determined
analytically, as in the least squares fitting, described in Appendix 1.

« An approximate solution a° can be iteratively adjusted by moving in the gra-
dient direction or direction of maximum improvement:
af=af "'+ cM, (11.2)

J

where c is a constant. This is the most elementary of several kinds of gradient
(hill-climbing) techniques. Here the gradient is defined with respect to M and
does not mean edge strength.

« If the partial derivatives are expensive to calculate, the coefficients can be per-
turbed (either randomly or in a structured way) and the perturbations kept if
they improve M:

(1) a’ == a+ Aa
(2)a=a"if M@) > M(a)

A program to fit three-dimensional image data with shapes described by
spherical harmonics used these techniques [Schudy and Ballard 1978]. The details
of the spherical harmonics shape representation appear in Chapter 9. The fitting
proceeded by the third method above. A nominal expected shape was matched to
boundaries in image data. If a subsequent perturbation in one of its parameters
results in an improvement in fit it was kept; otherwise, a different perturbation was
made. Figure 11.3 shows this fitting process for a cross section of the shape.

Though parameter optimization is an important aspect of matching, we shall
not pursue it further here in view of the extensive literature on the subject.

11.2 GRAPH-THEORETIC ALGORITHMS
The remainder of this chapter deals with methods of matching relational struc-

tures. Chapter 10 showed how to represent a relational structure containing n-ary
relations as a graph with labeled arcs. Recall that the labels can have values from a

Sec. 11.2 Graph-Theoretic Algorithms 355

(b)

Tagh’

XA

¥

N A A
s

iy
v,
UL

L)
n“‘

Fig. 11.3 An example of matching as
parameter optimization, (a) Initial
parameter set (displayed at left as three-
dimensional surface (see Fig. 9.8) (b)
Fitting process: iteratively adjust a based
onM (see text). (c) Final parameter set
yields this three-dimensional surface.
(See color inserts.)

Ch. 11 Matching

356

continuum, and that labeled arcs could be replaced by nodes to yvield a directed
graph with labeled nodes.

Depending on the attributes of the relational structure and of the correspon-
dence desired, the definition of a match may be more or less elegant. It is always
possible to translate powerful representations such as labeled graphs or n-ary rela-
tions into computational representations which are amenable to formal treatment
(such as undirected graphs). However, when graph algorithms are to be imple-
mented with computer data structures, the freedom and power of programming
languages often tempts the implementer away from pure graph theory. He can re-
place elegant (but occasionally restrictive and impractical) graph-theoretic con-
cepts and operations with arbitrarily complex data structures and algorithms.

One example is the ‘“‘graph isomorphism’’ problem, a very pure version of
relational structure matching. In it, all graph nodes and arcs are unlabeled, and
graphs match if there is a 1:1 and onto correspondence between the arcs and nodes
of the two graphs. The lack of expressive power in these graphs and the require-
ment that a match be ““perfect” limits the usefulness of this pure model of match-
ing in the context of noisy input and imprecise reference structures. In practice,
graph nodes may have properties with continuous ranges of values, and an arbi-
trarily complex algorithm determines whether nodes or arcs match. The algorithm
may even access information outside the graphs themselves, as long as it returns
the answer ““match” or “‘no match.”” Generalizing the graph-theoretic notions in
this way can obscure issues of their efficiency, power, and properties; one must
steer a course between the ‘‘elegant and unusable’” and the ‘‘general and uncon-
trollable.”” This section introduces some ‘‘pure’’ graph-theoretic algorithms that
form the basis for techniques in Sections 11.3 and 11.4,

11.2.1 The Algorithms

The following are several definitions of matching between graphs [Harary 1969;
Berge 1976].

o Graph isomorphism. Given two graphs (V;, E;) and (V,, E,), find a 1:1 and
onto mapping (an isomorphism) f between ¥, and ¥, such that for
Vi, v2 € V1, Vi, f(v1) = v, and for each edge of E; connecting any pair of
nodes v; and v'; € V), there is an edge of £, connecting f (v;) and f(v;").

o Subgraph isomorphism. Find isomorphisms between a graph (¥, E;) and sub-
graphs of another graph (¥ E3). This is computationally harder than isomor-
phism because one does not know in advance which subsets of V; are involved
in isomorphisms.

o “Double” subgraph isomorphisms. Find all isomorphisms between subgraphs of
agraph (V, E 1) and subgraphs of another graph (V,, E). This sounds harder
than the subgraph isomorphism problem, but is equivalent.

¢ A match may not conform to strict rules of correspondence between arcs and
nodes (some nodes and arcs may be ‘‘unimportant’’). Such a matching cri-
terion may well be implemented as a ‘‘computational’’ (impure) version of one
of the pure graph isomorphisms.

Sec. 11.2 Graph-Theoretic Algorithms 357

358

Figure 11.4 shows examples of these kinds of matches.

One algorithm for finding graph isomorphism [Corneil and Gotlieb 1970] is
based on the idea of separately putting each graph into a canonical form, from
which isomorphism may easily be determined. For directed graphs (i.e., nonsym-
metric relations) a backtrack search algorithm [Berztiss 1973] works on both
graphs at once.

Two solutions to the subgraph isomorphism problem appear in [Ullman
1976]: The first is a simple enumerative search of the tree of possible matches
between nodes. The second is more interesting; in it a process of ‘‘parallel-
iterative”’ refinement is applied at each stage of the search. This process is a way of
rejecting node pairs from the isomorphism and of propagating the effects of such
rejections; one rejected match can lead to more matches being rejected. When the
iteration converges (i.e., when no more matches can be rejected at the current
stage), another step in the tree search is performed (one more matching pair is hy-
pothesized). This mixing of parallel-iterative processes with tree search is useful in
a variety of applications (Section 11.4.4, Chapter 12).

“Double’ subgraph isomorphism is easily reduced to subgraph isomorphism
via another well-known graph problem, the “‘clique problem.’” A cligue of size Nis
a totally connected subgraph of size N (each node is connected to every other node
in the clique by an arc). Finding isomorphisms between subgraphs of a graph A
and subgraphs of a graph B is accomplished by forming an association graph G from
the graphs A and B and finding cliques in G (for details, see Section 11.3.3). Clique

ERZE
& I

Fig. 11.4 Isomorphisms and matches. The graph (a) has an isomorphism with
(b), various subgraph isomorphisms with (c), and several ‘‘double’’ subgraph iso-
morphisms with (d). Several partial matches with (e) (and also (b), {c), and (d)),
depending on which missing or extra nodes are ignored.

Ch. 11 Matching

finding may be done with a subgraph isomorphism algorithm; hence the reduction.
Several other clique-finding algorithms exist [Ambler et al. 1975; Knodel 1968;
Bron and Kerbosch 1973; Osteen and Tou 1973].

11.2.2 Complexity

It is of some practical importance to be aware of the computational complexity of
the matching algorithms proposed here; they may take surprising amounts of com-
puter time. There are many accessible treatments of computational complexity of
graph-theoretic algorithms [Reingold et al. 1977; Aho, Hopcroft and Ullman
1974]. Theoretical results usually describe worst-case or average time complexity.
The state of knowledge in graph algorithms is still improving; some interesting
worst-case bounds have not been established.

A “‘hard’’ combinatorial problem is one that takes time (in a usual model of
computation based on a serial computer) proportional to an exponential function
of the length of the input. “‘Polynomial-time’’ solutions are desirable because they
do not grow as fast with the size of the problem. The time to find all the cliques of a
graph is in the worst case inherently exponential in the size of the input graphs, be-
cause the output is an exponential number of graphs. Both the single subgraph iso-
morphism problem and the “‘clique problem’” (does there exist a clique of size £?)
are NP-complete; all known deterministic algorithms run (in the worst case) in time
exponential in the length of the description of the graphs involved (which must
specify the nodes and arcs). Not only this, but if either of these problems (or a host
of other NP complete problems) could be solved deterministically in time polyno-
mially related to the length of the input, it could be used to solve all the other NP
problems in polynomial time.

Graph isomorphism, both directed and undirected, is at this writing in a
netherworld (along with many other combinatorial problems). No polynomial-
time deterministic algorithms are known to exist, but the relation of these prob-
lems to each other is not as clear-cut as it is between the NP-complete problem. In
particular, finding a polynomial-time deterministic solution to one of them would
not necessarily indicate anything about how to solve the other problems determin-
istically in polynomial time. These problems are not mutually reducible. Certain
restrictions on the graphs, for instance that they are planar (can be arranged with
their nodes in a plane and with no arcs crossing), can make graph isomorphism an
“easy”’ (polynomial-time) problem.

The average-case complexity is often of more practical interest than the worst
case. Typically, such a measure is impossible to determine analytically and must be
approximated through simulation. For instance, one algorithm to find isomor-
phisms of randomly generated graphs yields an average time that seems not ex-
ponential, but proportional to N3 , with N the number of nodes in the graph [Ull-
man 1976]. Another algorithm seems to run in average time proportional to N?
[Corneil and Gotlieb 1970].

All the graph problems of this section are in NP. That is, a nondeterministic
algorithm can solve them in polynomial time. There are various ways of visualizing

Sec. 11.2 Graph-Th@tic Algorithms 359

nondeterministic algorithms; one is that the algorithm makes certain significant
“good guesses’’ from a range of possibilities (such as correctly guessing which sub-
set of nodes from graph B are isomorphic with graph 4 and then only having to
worry about the arcs). Another way is to imagine parallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, each
with a different subset of nodes from the input graph. If any machine discovers a
totally connected subset, it has, of course, discovered a clique. Checking whether
N nodes are all pairwise connected is at most a polynomial-time problem, so all the
machines will terminate in polynomial time, either with success or not. Several in-
teresting processes can be implemented with parallel computations. Ullman’s algo-
rithm uses a refinement procedure which may run in parallel between stages of his
tree search, and which he explains how to implement in parallel hardware [Ullman
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involves guantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its ‘‘goodness.”
This measure of goodness is the matching metric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching they
must take into account a relational, structured form of data [Shapiro and Haralick
1979].

Most of the structural matching metrics may be explained with the physical
analogy of “‘templates and springs’’ [Fischler and Elschlager 1973]. Imagine that
the reference data comprise a structure on a transparent rubber sheet. The match-
ing process moves this sheet over the input data structure, distorting the sheet so
as to get the best match. The final goodness of fit depends on the individual
matches between elements of the input and reference data, and on the amount of
work it takes to distort the sheet. The continuous deformation process is a pretty
abstraction which most matching algorithms do not implement. A computationally
more tractable form of the idea is to consider the model as a set of rigid ‘‘tem-
plates”’ connected by ‘‘springs” (see Fig. 11.5). The templates are connected by
“‘springs’’ whose ‘‘tension’’ is also a function of the relations between elements. A
spring function can be arbitrarily complex and nonlinear; for example the ‘‘ten-
sion” in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in a
picture of a face the two eyes must be essentially in a horizontal line and must be
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of ‘‘energy’’ needed to stretch
the springs to force the input onto the reference data. Costs may be imposed for
missing or extra elements.

The template match functions and spring functions are general procedures,
thus the templates may be more general than pure iconic templates. Further,

Ch. 11 Matching

	Chapter 11 Matching, p.352
	11.1 Aspects of Matching, p.352
	11.1.1 Interpretation: Construction, Matching, and Labelling, p.352
	11.1.2 Matching Iconic, Geometric, and Relational Structures, p.353
	11.2 Graph-Theoretic Algorithms, p.355
	11.2.1 The Algorithms, p.357
	11.2.2 Complexity, p.359

