nondeterministic algorithms; one is that the algorithm makes certain significant
“good guesses’’ from a range of possibilities (such as correctly guessing which sub-
set of nodes from graph B are isomorphic with graph 4 and then only having to
worry about the arcs). Another way is to imagine parallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, each
with a different subset of nodes from the input graph. If any machine discovers a
totally connected subset, it has, of course, discovered a clique. Checking whether
N nodes are all pairwise connected is at most a polynomial-time problem, so all the
machines will terminate in polynomial time, either with success or not. Several in-
teresting processes can be implemented with parallel computations. Ullman’s algo-
rithm uses a refinement procedure which may run in parallel between stages of his
tree search, and which he explains how to implement in parallel hardware [Ullman
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involves guantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its ‘‘goodness.”
This measure of goodness is the matching metric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching they
must take into account a relational, structured form of data [Shapiro and Haralick
1979].

Most of the structural matching metrics may be explained with the physical
analogy of “‘templates and springs’’ [Fischler and Elschlager 1973]. Imagine that
the reference data comprise a structure on a transparent rubber sheet. The match-
ing process moves this sheet over the input data structure, distorting the sheet so
as to get the best match. The final goodness of fit depends on the individual
matches between elements of the input and reference data, and on the amount of
work it takes to distort the sheet. The continuous deformation process is a pretty
abstraction which most matching algorithms do not implement. A computationally
more tractable form of the idea is to consider the model as a set of rigid ‘‘tem-
plates”’ connected by ‘‘springs” (see Fig. 11.5). The templates are connected by
“‘springs’’ whose ‘‘tension’’ is also a function of the relations between elements. A
spring function can be arbitrarily complex and nonlinear; for example the ‘‘ten-
sion” in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in a
picture of a face the two eyes must be essentially in a horizontal line and must be
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of ‘‘energy’’ needed to stretch
the springs to force the input onto the reference data. Costs may be imposed for
missing or extra elements.

The template match functions and spring functions are general procedures,
thus the templates may be more general than pure iconic templates. Further,

Ch. 11 Matching

Hair

Left
edge

Right
edge

Mouth

Fig. 11.5 A templates and springs model of a face.

matches may be defined not only between nodes and other nodes, but between
nodes and image data directly. Thus the template and springs formalism is work-
able for “‘cross-representational’’ matching. The mechanism of minimizing the to-
tal cost of the match can take several forms; more detailed examples follow in Sec-
tion 11.4,

Equation 11.3 a general form of the template-and-springs metric. Tem-
plateCost measures dissimilarity between the input and the templates, and
SpringCost measures the dissimilarity between the matched input elements’ rela-
tions and the reference relations between the templates. MissingCost measures the
penalties for missing elements. F(-) is the mapping from templates of the reference
to elements of the input data. F partitions the reference templates into two classes,
those found {FoundinRefer} and those not found {MissinginRefer} in the input
data. If the input data are symbolic they may be similarly partitioned. The general
metric is

Cost = z TemplateCost(d, F(d))
d € {FoundinRefer)

SpringCost(F(d), F(e)) (11.3)

(d, e) € {FoundinRefer x FoundinInput]

+ T MissingCost (c)
¢ € {MissinginRefer] | {MissinginInput}

Equation 11.3 may be written as one sum of generalized SpringCosts in which
the template properties are included (as 1-ary relations), as are ‘‘springs’’ involv-

ing missing elements.

Sec. 11.3 Implementing Graph-Theoretic Algorithms 361

362

As with correlation metrics, there are normalization issues involved with
structural matching metrics. The number of elements matched may affect the ulti-
mate magnitude of the metric. For instance, if springs always have a finite cost,
then the more elements that are matched, the higher the total spring energy must
be; this should probably not be taken to imply that a match of many elements is
worse than a match of a few. Conversely, suppose that relations which agree are
given positive ‘“‘goodness’ measures, and a match is chosen on the basis of the to-
tal “‘goodness.’” Then unless one is careful, the sheer number of possibly mediocre
relational matches induced by matching many elements may outweigh the “‘good-
ness’’ of an elegant match involving only a few elements. On the other hand, a
small, elegant match of a part of the input structure with one particular reference
object may leave much of the search structure unexplained. This good ‘‘sub-
match’ may be less helpful than a match that explains more of the input. To some
extent the general metric (Eq.11.3) copes with this by acknowledging the ‘‘miss-
ing”’ category of elements.

If the reference templates actually contain iconic representations of what the
input elements should look like in the image, a TemplateCost can be associated
with a template and a location in the image by

TemplateCost(Template, Location)

= (1 — normalized correlation metric between
template shape and input image at the location).

If the match is, for instance, to match reference descriptions of a chair with
an input data structure, a typical “‘spring’’ might be that the chair seat must be sup-
ported by its legs. Thus if Fis the association function mapping reference elements
such as LEG or TABLETOP to input elements,

SpringCost; (F(LEG),F (TABLETOP)

0 if F(LEG) appears to support F(TABLETOP),
1 if F(LEG) does not appear to support F(TABLETOP).

For quantified relations, one might have
SpringCost, = number of standard deviations from the
canonical mean value for this relation.

Another version of SpringCost, is the following [Barrow and Popplestone
1971].

SpringCosts of properties (unary) and binary relations (11.4)
total number of unary and binary springs '

: Empirical Constant

" Total number of reference elements matched

Cost of Match =

The first term measures the average badness of matches between properties
(unary relations) and relations between regions. The second term is inversely pro-
portional to the number of regions that are matched, effectively increasing the cost
of matches that explain less of the input.

Ch. 11 Matching

11.3.2 Backtrack Search

Backtrack search is a generic name for a type of potentially exhaustive search or-
ganized in stages; each processing stage attempts to extend a partial solution
derived in the previous stage. Should the attempt fail, the search ‘‘backtracks’’ to
the most recent partial solution, from which a new extension is attempted. The
technique is basic, amounting to a depth-first search through a tree of partial solu-
tions (Fig. 11.6). Backtracking is a pervasive control structure in artificial intelli-

(a}

(b)

Choices for A

Choices for 8
given A

Choices for C
given A and B

Fig. 11.6 The graph of (a) is to be matched in (b) with arcs all being unlabeled
but nodes having properties indicated by their shapes, (c) is the tree of solutions
built by a backtrack algorithm.

Sec. 11.3 Implementing Graph-Theoretic Algorithms 363

364

gence, and through the years several general classes of techniques have evolved to
make the basic, brute-force backtrack search more efficient.

Example: Graph Isomorphisms
Given two graphs,

X = (Vx, E,y)
Y= (Vy, Ey),

without loss of generality, let ¥y = ¥y = {1, 2, ..., n}, and let X be the reference
graph, Y the input graph. The isomorphism is given by: If i € Vy, the correspond-
ing node under the isomorphism is F (i) € Vy.

In the algorithm, §is the set of nodes accounted for in Y by a partial solution.
k gives the current level of the search in the tree of partial solutions, the number of
nodes in the current partial solution, and the node of X whose match in Y is
currently being sought. v is a node of Y currently being considered to extend the
current partial solution. As written, the algorithm finds all isomorphisms. It is
easily modified to quit after finding the first.

Algorithm 11.1 Backtrack Search for Directed Graph Isomorphism

Recursive Procedure DirectedGraphlsomorphisms(S,k);
begin
if S=Vy then ReportAslsomorphism (F)
else
Sorallv € (Vy—S8)
do
if Match(k,v)
then
begin
Flk):=v,
DirectedGraphIsomorphisms (S € {y}, k+1);
end,
end,

ReportAsIsomorphism could print or save the current value of F, the global
structure recording the current solution. Match(k,v) is a procedure that tests
whether v € Vy can correspond to k € Vy under the isomorphism so far defined by
F. Let X, be the subgraph of X with vertices {1, 2,. . .,k}. The procedure ‘“‘Match”’
must check for i < k, whether (i, k) is an edge of X, iff (F(i), v) is an edge of ¥
and whether (k, i) is an edge of X, iff (v, F(i)) is an edge of Y.

Improving Backtrack Search

Several techniques are useful in improving the efficiency of backtrack search
[Bittner and Reingold 1975]:

Ch. 11 Matching

Sec. 11.3

1. Branch pruning. All techniques of this variety examine the current partial solu-
tion and prune away descendents that are not viable continuations of the solu-
tion. Should none exist, backtracking can take place immediately.

2. Branch merging. Do not search branches of the solution tree isomorphic with
those already searched.

3. Tree rearrangement and reordering. Given pruning capabilities, more nodes are
likely to be eliminated by pruning if there are fewer choices to make early in
the search (partial solution nodes of low degree should be high in the search
tree). Similarly, search first those extensions to the current solution that have
the fewest alternatives.

4. Branch and bound. If a cost may be assigned to solutions, standard techniques
such as heuristic search and the A* search algorithm [Nilsson 1980] (Section
4.4) may be employed to allow the search to proceed on a “‘best-first”” rather
than a *‘depth-first’’ basis.

For extensions of these techniques, see [Haralick and Elliott 1979].

11.3.3 Association Graph Techniques

Generalized Structure Matching

A general relational structure ‘‘best match’’ is less restricted than graph iso-
morphism, because nodes or arcs may be missing from one or the other graph.
Also, it is more general than subgraph isomorphism because one structure may not
be exactly isomorphic to a substructure of the other. A more general match con-
sists of a set of nodes from one structure and a set of nodes from the other and a 1:1
mapping between them which preserves the compatibilities of properties and rela-
tions. In other words, corresponding nodes (under the node mapping) have
sufficiently similar properties, and corresponding sets under the mapping have
compatible relations.

The two relational structures may have a complex makeup that falls outside
the normal purview of graph theory. For instance, they may have parameterized
properties attached to their nodes and edges. The definition of whether a node
matches another node and whether two such node matches are mutually compati-
ble can be determined by arbitrary procedures, unlike the much simpler criteria
used in pure graph isomorphism or subgraph isomorphism, for example. Recall
that the various graph and subgraph isomorphisms rely heavily on a 1:1 match, at
least locally, between arcs and nodes of the structures to be matched. However, the
idea of a “‘best match’ may make sense even in the absence of such perfect
correspondences.

The association graph defined in this section is an auxiliary data structure pro-
duced from two relational structures to be matched. The beauty of the association
graph is that it is a simple, pure graph-theoretic structure which is amenable to
pure graph-theoretic algorithms such as clique finding. This is useful for several
reasons.

Implementing Graph-Theoretic Algorithms 365

366

« It takes relational structure matching from the ad hoc to the classical domain.

« It broadens the base of people who are producing useful algorithms for struc-
ture matching. If the rather specialized relational structure matching enterprise
is reducible to a classical graph-theoretical problem, then everyone working on
the classical problem is also working indirectly on structure matching.

« Knowledge about the computational complexity of classical graph algorithms il-
luminates the difficulty of structure matching.

Cligue Finding for Generalized Matching

Let a relational structure be a set of elements ¥, a set of properties (or more
simply unary predicates) P defined over the elements, and a set of binary relations
(or binary predicates) R defined over pairs of the elements. An example of a graph
representation of such a structure is given in Fig. 11.7.

Given two structures defined by (¥, P, R) and (V,, P, R), say that ‘‘simi-
lar’’ and ‘‘compatible”” actually mean ‘‘the same.”” Then we construct an associa-
tion graph G as follows [Ambler et al. 1975]. For each v, in ¥, and v, in V3, con-
struct a node of G labeled (v, v,) if v and v, have the same properties [p (v;) iff
p (vy) for each pin Pl. Thus the nodes of G denote assignments, or pairs of nodes,
one each from V) and V,, which have similar properties. Now connect two nodes
(vy, vo) and (v}, v4) of Gif they represent compatible assignments according to R,
that is, if the pairs satisfy the same binary predicates [r (v, v)) iff r(v,, v5) for
each rin R].

A match between (¥} P, R) and (V;, P, R), the two relational structures, is
just a set of assignments that are all mutually compatible. The ‘“best match” could
well be taken to be the largest set of assignments (node correspondences) that
were all mutually compatible under the relations. But this in the association graph
G is just the largest totally connected (completely mutually compatible) —set of
nodes. It is a cligue. A clique to which no new nodes may be added without destroy-
ing the clique properties is a maximalclique. In this formulation of matching, larger
cliques are taken to indicate better matches, since they account for more nodes.

Fig. 11.7 A graph representation of a
relational structure. Elements (nodes) v,
and v3 have property pl, vy and v4 have
property p2, and the arcs between nodes
indicate that the relation rl holds
between v, and v, and between v, and
v3, and r2 holds between v; and v4 and
between vgand v;.

Ch. 11 Matching

A

Sec. 11.3

Thus the best matches are determined by the largest maximal cliques in the associ-
ation graph. Figure 11.8 shows an example: Certain subfeatures of the objects have
been selected as ‘‘primitive elements” of the objects, and appear as nodes (ele-
ments) in the relational structures. To these nodes are attached properties, and
between them can exist relations. The choice of primitives, properties, and rela-
tions is up to the designer of the representation. Here the primitives of the
representation correspond to edges and corners of the shape.

The association graph is shown in 11.8e. Its nodes correspond to pairs of
nodes, one each from A and B, whose properties are similar. [Notice that there is
no node in the association graph for (6,6)]. The arcs of the association graph indi-
cate that the endpoints of the arc represent compatible associations. Maximal
cliques in the association graph (shown as sets of nodes with the same shape) indi-
cate sets of consistent associations. The largest maximal clique provides the node
pairings of the “‘best match.”

In the example construction, the association graph is formed by associating
nodes with exactly the same properties (actually unary predicates), and by allowing
as compatible associations only those with exactly the same relations (actually
binary predicates). These conditions are easy to state, but they may not be exactly
what is needed. In particular, if the properties and relations may take on ranges of
values greater than the binary *‘exists’ and ‘‘does not exist,”” then a measure of
similarity must be introduced to define when node properties are similar enough
for association, almmmwmm_ﬂw- Arbitrarily
complex functions can decide whether properties and relations are similar. As long
as the function answers ‘‘yes’’ or ‘‘no,’’ the complexity of its computations is ir-
relevant to the matching algorithm.

The following recursive clique-finding algorithm builds up cliques a node at a
time [Ambler et al. 1975]. The search tree it generates has states that are ordered
pairs (set of nodes chosen for a clique, set of nodes available for inclusion in the
cliqgue). The root of the tree is the state (@, all graph nodes), and at each branch a
choice is made whether to include or not to include an eligible node in the clique.
(If a node is eligible for inclusion in clique X, then each clique including X must ei-
ther include the node or exclude it).

Algorithm 11.2: Clique-Finding Algorithm
Comment Nodes is the set of nodes in the input graph.

Comment
Cliques (X,Y) takes as arguments a clique X, and Y, a set of nodes that includes
X. Itreturns all cliques that include X and are includedin Y.
Cliques (@ ,Nodes) finds all cliques in the graph.
Cliques(X,Y) :=
if nonode in Y—Xis connected to all elements of X
then { X)
else
Cliques(X |J {y},1) |J Cliques (X, Y—{y})
where y is connected to all elements of X.

Implementing Graph-Theoretic Algorithms 367

(c)
14

12/ 31

e

23’ \ 34’

43 63’

51
54’

52'

(e

O Property ““corner” Property “’short” = Relation *'next”’

Fig. 11.8 Clique-finding example. Entities to be matched are given in (a) (refer-
ence) and (b) (input). The relational structures corresponding to them are shown
in (c) and (d). The resulting association graph is shown in (e) with its largest
cliques indicated by node shapes.

368 Ch. 11 Matching

Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additional
test to stop the recursion in Cligues if the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size of
the largest possible clique. If no cliques of size k are found, decrement & and run
Cliques with the new k.

To find maximal cliques, at each stage of Cligues, compute the set

Y’ = {z € Nodes: z is connected to each node of Y}.

Since any maximal clique must include Y’, searching a branch may be terminated
should Y’'not be contained in Y, since Y can then contain no maximal cliques.

The association graph may be searched not for cliques, but for r-connected
components. An r-connected component is a set of nodes such that each node is
connected to at least r other nodes of the set. A clique of size s is an n—1-
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of cligue. An r-connected
component of N nodes in the association graph indicates a match of N pairs of
nodes from the input and reference structures, as does an N-clique. Fach matching
pair has similar properties, and each pair is compatible with at least r other matches
in the component.

Whether or not the r-connected component definition of a match between
two structures is useful depends on the semantics of ‘‘compatibility.”” For in-
stance, if all relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an r-
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com-
puter vision literature.

(a) (b} (c)

Fig. 11.9 ,-connected components. (a) A 5-clique (which is 4-connected). (b) A
3-connected set of 5 nodes. (c) A 1-connected set of 5 nodes.

Sec. 11.4 Matching in Practice 369

	11.3 Implementing Graph-Theoretic Algorithms, p.360
	11.3.1 Matching Metrics, p.360
	11.3.2 Backtrack Search, p.363
	11.3.3 Association Graph Techniques, p.365

