Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additional
test to stop the recursion in Cligues if the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size of
the largest possible clique. If no cliques of size k are found, decrement & and run
Cliques with the new k.

To find maximal cliques, at each stage of Cligues, compute the set

Y’ = {z € Nodes: z is connected to each node of Y}.

Since any maximal clique must include Y’, searching a branch may be terminated
should Y’'not be contained in Y, since Y can then contain no maximal cliques.

The association graph may be searched not for cliques, but for r-connected
components. An r-connected component is a set of nodes such that each node is
connected to at least r other nodes of the set. A clique of size s is an n—1-
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of cligue. An r-connected
component of N nodes in the association graph indicates a match of N pairs of
nodes from the input and reference structures, as does an N-clique. Fach matching
pair has similar properties, and each pair is compatible with at least r other matches
in the component.

Whether or not the r-connected component definition of a match between
two structures is useful depends on the semantics of ‘‘compatibility.”” For in-
stance, if all relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an r-
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com-
puter vision literature.

(a) (b} (c)

Fig. 11.9 ,-connected components. (a) A 5-clique (which is 4-connected). (b) A
3-connected set of 5 nodes. (c) A 1-connected set of 5 nodes.
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11.4.1 Decision Trees

Hierarchical decision-tree matching with ad hoc metrics is a popular way to identify
input data structures as instances of reference models and thus classify the input
instances [Nevatia 1974; Ambler et al. 1975; Winston 1975]. Decision trees are in-
dicated when it is predictable that certain features are more reliably extracted than
others and that certain relations are either easier to sense or more necessary to the
success of a match.

Winston and Nevatia both compare matches with a ‘“‘weighted sums of
difference’” metric that reflects cumulative differences between the parameters of
corresponding elements and relations in the reference and input data. In addition,
Nevatia does parameter fitting; his reference information includes geometrical in-
formation.

Matching Structural Descriptions

Winston is interested in matching such structures as appear in Fig. 11.10B.
The idea is to recognize instances of structural concepts such as ‘“‘arch™ or
“house,”” which are relational structures of primitive blocks (Fig.11.10A) [Wins-
ton 1975]. An important part of the program learns the concept in the first place—
only the matching aspect of the program is discussed here. His system has the
pleasant property of representational uniqueness: reference and input data struc-
tures that are identical up to the resolution of the descriptors used by the program
have identical representations. Matching is easy in this case. Reflections of block
structures can be recognized because the information available about relations
(such as LEFT-OF and IN-FRONT-OF) includes their OPPOSITE (i.e., RIGHT-
OF and BEHIND). The program thus can recognize various sorts of symmetry by
replacing all input data structure relations by their relevant opposite, then compar-
ing with the reference.

The next most complicated matching task after exact or symmetric matches
is to match structures in isolation. Here the method is sequentially to match the in-
put data against the whole reference data catalog of structures and determine which
match is best (which difference description is most inconsequential). Easily com-
puted scene characteristics can rule out some candidate models immediately.

The models contain arcs such as MUST-BE and MUST-NOT, expressing re-
lations mandatory or forbidden relations. A match is not allowed between a
description and a model if one of the strictures is violated. For instance, the pro-
gram may reject a ‘‘house” immediately as not being a ‘‘pedestal,” ‘““tent,”” or
““arch,” since the pedestal top must be a parallelepiped, both tent components
must be wedges, and the house is missing a component to support the top piece
that is needed in the arch. These outright rejections are in a sense easy cases; it can
also happen that more than one model matches some scene description. To deter-
mine the best match in this case, a weighted sum of differences is made to express
the amount of difference.

The next harder case is to match structures in a complex scene. The issue
here is what to do about evidence that is missing through obscuration. Two heuris-
tics help:
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ORIENTATION

SPATIAL -
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(b)
Fig. 11.10 (a) Several arches and non-arches. (b) The computer-generated arch
description to be used for matching.

1. Objects that seem to have been stacked and could be the same type are of the
same type.

2. Essential model properties may be hidden in the scene, so the match should
not be aborted because of missing essential properties (though the presence of
forbidden properties is enough to abort a match).

This latter rule is equivalent to Nevatia’s rules about connectivity difference and
missing input instance parts (see below). In terms of the general structure metric
introduced earlier, neither Winston or Nevatia penalize the match for missing ele-
ments or relations in the reference data. One result of this is that the best match is
sometimes missed in favor of the first possible match. Winston suggests that com-
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plex scenes be analyzed by identifying subscenes and subtracting out the identified
parts, as was done by Roberts.

Winston’s program can learn shortcuts in matching strategy by itself; it builds
for itself a similarity network relating models whose differences are slight. If a
reference model does not quite fit an input structure, the program can make an in-
telligent choice of the next model to try. A good choice is a model that has only
minor differences with the first. This self-organization and cataloging of the models
according to their mutual differences is a powerful way to use matching work that is
already performed to guide further search for a good match.

Backtrack Search

Nevatia addresses a domain of complex articulated biological-like forms
(hands, horses, dolls, snakes) [Nevatia 1974]. His strategy is to segment the ob-
jects into parts with central axes and ‘‘cross section” (not unlike generalized
cylinders, except that they are largely treated in two dimensions). The derived
descriptions of objects contain the connectivity of subparts, and descriptions of the
shape and joint types of the parts. Matching is needed to compare descriptions and
find differences, which can then be explained or used to abort the match. Partial
matches are important (as in most real-world domains) because of occlusions,
noise, and so on.

A priori ideas as to the relative importance of different aspects of structures
are used to impose a hierarchical order on the matching decision tree. Nevatia finds
this heuristic approach more appealing than a uniform, domain-independent one
such as clique finding. His system knows that certain parts of a structure are more
important than others, and uses them to index into the reference data catalog con-
taining known structures. Thus relevant models for matching may be retrieved
efficiently on the basis of easily-computed functions of the input data. The models
are generated by the machine by the same process that later extracts descriptions of
the image for recognition. Several different models are stored for the same view of
the same object, because his program has no idea of model equivalence, and can-
not always extract the same description.

The matching process is basically a depth-first tree search, with initial choices
being constrained by ‘‘distinguished pieces.”” These are important pieces of image
which first dictate the models to be tried in the match, and then constrain the pos-
sible other matches of other parts.

There is a topological and a geometrical component to the match. The topo-
logical part is based on the connectivity of the ‘‘stick figure’® that underlies the
representation. The geometrical part matches the more local characteristics of indi-
vidual pieces. Consider Nevatia’s example of matching a doll with stored reference
descriptions, including those of a doll and a horse.

By a process not concerning us here, the doll image is segmented into pieces
as shown in Fig. 11.11. From this, before any matching is done, a connection graph
of pieces is formed, as shown in Fig. 11.12.

This connection graph is topologically the same as the reference connection
graph for the doll, which looks as one would expect. In both reference and input,
““‘distinguished pieces’’ are identified by their large size. During reference forma-
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Fig. 11.11 A view of a doll, with derived structure.

tion time, the two largest pieces were the head and the trunk, and these are the
distinguished pieces in the reference. There are the same pieces picked
as distinguished in the instance to be matched consistent with the hierarchical
decision-tree style, distinguished pieces are matched first.

Because of noise, connections at joints may be missed; because of the nature
of the objects, extra joints are hardly ever produced. Thus there is a domain-
dependent rule that an input piece with two other pieces connected at a single joint
(a “two-ended piece’’) cannot match a one-ended reference piece, although the
reverse is possible.

On the basis of the distinguished pieces in the input instance, the program
decides that the instance could be a doll or a horse. Both these possibilities are
evaluated carefully; Fig. 11.13 shows a schematic view of the process. Piece-match
evaluation must be performed at the nodes of the tree to determine which pieces at
a joint should be made to correspond.

The final best match between the doll input and the horse reference model is
diagrammed in Fig. 11.14. This match is not as good as the match between the doll
input and the doll reference.

A

Fig. 11.12 Connection graph of the
A L doll.
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The final choice of matches is made with a version of the general relational
structure matching metric (Eq. 11.3). It takes into account the connectivity rela-
tions, which are the same in this case, and the quality of the individual piece
matches. In the doll-horse match, more reference parts are missing, but this can
happen if parts are hidden in a view, and do not count against the match. The
doll-doll match is preferred on the basis of piece matching, but both matches are
considered possible.

In summary, the selection of best match proceeds roughly as follows: unac-
ceptable differences are first sought (not unlike the Winston system). The number
of input pieces not matched by the reference is an important number (not vice
versa, because of the possibility of hidden input parts). Only elongated, large parts
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Fig. 11.13 A pictorial guide to the combinations tried by the matcher establishing the best

correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical; the program deals with symbolic connectivity information and geometric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with structure B, with the numbered sub-
structures of A matching their primed counterparts in B.
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Fig. 11.14 The best match of the doll input with the horse reference model. One
doll arm is unmatched, as is the horse head and two legs.

are considered for this determination, to eliminate small ‘‘noise’’ patches. The
match with fewest unmatched input pieces is chosen.

If no deciding structural differences exist, the quality of piece matches deter-
mines the quality of the match. These correspond to the template cost term in Eq.
(11.3). If a ““significant™ difference in match error exists, the better match is ex-
clusively selected; if the difference is not so great as that, the better match is
merely preferred.

Piece matching is a subprocess of joint matching. The difference in the
number of pieces attached at the ends of the piece to be matched is the connectivity
difference. If the object piece has more pieces connected to it than the model piece,
the match is a poor one; since pieces may not be visible in a view, the converse is
not true. If one match gives fewer excess input pieces, it is accepted at this point. If
not, the goodness of the match is computed as a weighted sum of width difference,
length-to-width ratio difference, and difference in acuteness of the generalized
cylinders (Chapter 9) forming the pieces. The weighted sum is thresholded to yield
a final “‘yes or no’” match result. Shadowing phenomena are accommodated by al-
lowing the input piece to be narrower than the reference model piece with no
penalty. The error function weights are derived empirically; one would not expect
the viewing angle to affect seriously the width of a piece, for example, but it could
affect its length. Piece axis shapes (what sort of space curve they are) are not used
for domain-dependent reasons, nor are cross section functions (aside from a meas-
ure of “‘acuteness’’ for cone-like generalized cylinders).

11.4.2 Decision Tree and Subgraph Isomorphism

A robotics program for versatile assembly [Ambler et al. 1975] uses matching to
identify individual objects on the basis of their boundaries, and to match several
individual blobs on a screen with a reference model containing the known location
of multiple objects in the field of view. In both cases the best subgraph isomor-
phism between input and reference data structures is found when necessary by the
clique-finding technique (Algorithm 11.2).
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The input data to the part recognizer consist of silhouettes of parts with out-
lines of piecewise linear and circular segments. A typical set of shapes to be recog-
nized might be stored in terms of boundary primitives as shown in Fig. 11.15a,
with matchable and unmatchable scenes shown in Fig. 11.15b.

Generally, the matching process works on hierarchical structures which cap-
ture increasing levels of detail about the objects of interest. The matching works its
way down the hierarchy, from high-level, easily computable properties such as size
down to difficult properties such as the arrangements of linear segments in a part
outline. After this decision tree pre-processing, all possible matches are computed
by the clique-finding approach to subgraph isomorphism. A scene can be assigned
a number of interpretations, including those of different views of the same part.
The hierarchical organization means that complicated properties of the scene are
not computed unless they are needed by the matcher. Once computed they are
never recomputed, since they are stored in accessible places for later retrieval if
needed. Each matching level produces multiple interpretations; ambiguity is
treated with backtracking. The system recognizes rotational and translational in-
variance, but must be taught different views of the same object in its different grav-
itationally stable states. It treats these different states basically as different objects.

11.4.3 Informal Feature Classification

The domain of this work is one of small, curved tabletop objects, such as a teacup
(Fig. 11.16) [Barrow and Popplestone 1971]. The primitives in models and image
descriptions are regions which are found by a process irrelevant here. The regions
have certain properties (such as shape or brightness), and they have certain
parameterized relations with other regions (such as distance, adjacency, ‘‘above-
ness’’). The input and reference data are both relational structures. The properties
and relations are the following:

(al

Fig. 11.15 A small catalog of part
boundaries (a) and some sample
silhouettes (b). The **heap’” will not
match any part very well, while the
square can match the square model in
four different ways, through rotations.
Gross properties such as area may be
used cheaply to reject matches such as
(b) the square with the axle.

Ch. 11 Matching



Fig. 11.16 An object for recognition
by relational matching.

1.  Region Properties

Shape 1-Shape 6: the first six root mean square amplitudes of the Fourier com-
ponents of the ¢ (s) curve [Chapter 8].

2. Relations between Regions A and B
Bigger: Area(A)/Area(B)
Adjacency: Fraction of A’s boundary which also is a boundary of B.

Distance: Distance between centroids divided by the geometric mean of aver-
age radii. The average radius is twice the area over the perimeter. Distance is
scale, rotation, translation, reflection invariant.

Compactness: 4+ area/ perimeter*

Above, Beside: Vertical and horizontal distance between centroids, normal-
ized by average radius. Not rotation invariant.

The model that might be derived for the cup of Fig. 11.16 is shown in Fig. 11.17.

The program works on objects such as spectacles, pen, cup, or ball. During
training, views and their identifications are given to the program, and the program
forms a relational structure with information about the mean and variance of the
values of the relations and properties. After training, the program is presented
with a scene containing one of the learned objects. A relational structure is built
describing the scene; the problem is then to match this input description with a
reference description from the set of models.

One approximation to the goodness of a match is the number of successes
provided by a region correspondence. A one-region object description has 7 rela-
tions to check, a two-region object has 28, a three-region one has 63. Therefore,
the ‘“‘successes’ criterion could imply the choice of a terrible three-region in-
terpretation over a perfect one-region match. The solution adapted in the matching
evaluation is first to grade failures. A failure weight is assigned to a trial match ac-
cording to how many standard deviations o from the model mean the relevant
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Big 0.9
Big 0.1
Adj 0
Adj 1 =
Dist 3.7

Comp 0.9

Fig. 11.17 Relational model for cups such as that of Fig. 11.16.

parameter is. From zero to three o imply a success, or a failure weight of 0; from
three to six o, a failure weight of 1; from six to nine o, failure weight of 2, and so
on. Then the measure ‘“‘trials—cumulative failure weight’’ is an improvement on
just “‘successes.” On the other hand, simple objects are often found as subparts of
complex ones, and one does not want to reject a good interpretation as a complex
object in favor of a less explanatory one as a simple object. The final evaluation
function adapted is

1 — (tries-failure weight)
number of relations
y K
" number of regions in view description

Cost of Match =

(11.5)

As in Eq. (11.4), the first term measures the average badness of matches
between properties (unary relations) and relations between regions. The second
term is inversely proportional to the number of regions that are matched,
effectively increasing the cost of matches that explain less of the input.

11.4.4 A Complex Matcher

A program to match linear structures like those of Fig. 11.18 is described in [Davis
1976]. This matcher presents quite a diversity of matching techniques incorporated
into one domain-dependent program.
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The matching metric is very close to the general metric of Eg. (11.3). The
match is characterized by a structural match of reference and input elements and a
geometrical transformation (found by parameter fitting) which accounts for the
spatial relations between reference and input. Davis forms an association graph
between reference and input data. This graph is reduced by parallel-iterative relax-
ation (see Section 12.4) using the ‘‘spring functions’’ to determine which node as-
sociations are too costly. Eliminating one node-node match may render others

Cape Breton Baffin Island

Cuba

(Fig. 11.18 continues on p. 380.)
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Baffin Island Baffin Island

Cape Breton Cape Breton

Fig. 11.18 (a) Reference and (b) input
data for a complex shape matching
it Cuba program.

(b)

more unlikely, so the node-pruning process iterates until no more nodes are elim-
inated. What remains is something like an r-connected component of the graph,
which specifies an approximate match supported by some amount of consistent re-
lations between nodes.

After the process of constraint relaxation, there are still in general several lo-
cally consistent interpretations for each component of the input structure. Next,
therefore, a tree search is used to establish global consistency and therefore the
best match. The tree search is the familiar ““best first’” heuristic search through the
partial match space, with pruning taking place between each stage of search again
by using the parallel-iterative relaxation technique.

EXERCISES

11.1 Relational structures A and B are to be matched by the association-graph, clique-
finding method.
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Exercises

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

Relational structure A: entities u, v, w, x, y, z
relations P(u), P(w), P(y), R(v), R(x), R(z),
Flu, v), F(v, w), F(w, x), F(x, y), F(y, 2), F(z, u)

Relational structure B: entities a, b, ¢, d, e, f.
relations P(a), P(b), P(d), Q(e), Q(f), R (c)
F(b,c),F(c,d),F(d e), Fle f), F(f, a).

(a) Construct graph structures corresponding to the structures 4 and B. Label
the nodes and arcs.

(b) Construct the association graph of structures 4 and B.

(c) Visually find the largest maximal cliques in the association graph and thus
the best matches between A and B. (There are three.)

Suppose in a geometric match that two input points on the xy plane are identified
with two others taken to correspond with two reference points. It is known that the
input data comes about only through rotation and translation of the reference data.
Given the two input points (x|, y;) and (x,, y,) and the two reference points
(x1, y'1) and (x', y’5), one way to find the transformation from reference to input is
to solve the equation

2
}_31 Ix; — (axi + by + )2+ [y, — (bx) + ay + d)]* =0

The resulting values of a, b, ¢, and drepresent the desired transformation. Solve the
equation analytically to get expressions for a, 4, ¢, and d in terms of the reference
and input coordinates. What happens if the reference and input data are not related
by simple rotation and translation?

What are the advantages and disadvantages of a uniform method (such as subgraph
isomorphism algorithm approach) to matching as compared to an ad hoc (such as a
decision-tree approach with various empirically derived metrics) one?

In the worst case, for graphs of » nodes, how many partial solutions total will Algo-
rithm 11.1 have to proceed through? Construct “‘worst case’” graphs X and ¥ (label
their nodes 1, . . ., n, of course), assuming that nodes of Y are selected in ascending
order at any stage.

Find out something about the state of associative memories in computers. How do
they work? How are they used? Would anything like this technology be useful for
computer vision? Introspect about familiar phenomena of visual recall, recognition,
and memory. Do you have a theory about how human visual memory could possi-
bly work?

What graph of N nodes has the maximum number of maximal cliques? How many
does it have?

Think about reasoning by analogy and find out something about programs that do
analogical reasoning. In what sense can analogical process be used for computer vi-
sion, and technically do the matching techniques necessary provide any insight?

Compare Nevatia’s structure matching with Hinton’s relaxation-based puppet
recognition (Chapter 12).

Verify the observation made in Section 11.4.3 about the number of relations that
must be checked between regions (one region, 7; two regions, 28; three regions, 63;
etc.).
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