Inference 12

Classical and Extended Inference

This chapter explores inference, the process of deducing facts from other
known facts. Inference is useful for belief maintenance and is a cornerstone of ra-
tional thought. We start with predicate logic, and then explore extended inference
systems—production systems, relaxation labeling, and active knowledge (pro-
cedures).

Predicate logic (Section 12.1) is a system for expressing propositions and for
deriving consequences of facts. It has evolved over centuries, and many clear ac-
counts describe predicate logic in its various forms [Mendelson 1964; Robinson
1965]. It has good formal properties, a nontrivial but automatable inference pro-
cedure, and a history of study in artificial intelligence. There are several ‘‘classical”
extensions (modal logics, higher-order logics) which are studied in well-settled
academic disciplines of metamathematics and philosophy. Extended inference (Sec-
tion 12.2) is possible in automated systems, and is interesting technically and from
an implementational standpoint.

A production system (Section 12.3) is a general rewriting system consisting of
a set of rewriting rules (4 — BC could mean ““rewrite 4 as BC’’) and an executive
program to apply rewrites. More generally, the rules can be considered
““‘situation—action’” pairs (*‘in situation 4, do Band C”’). Thus production systems
can be used to control computational activities. Production systems, like semantic
nets, embody powerful notions that can be used for extended inference.

Labeling schemes (Section 12.4) are unlike most inference mechanisms in
that they often involve mathematical optimization in continuous spaces and can be
implemented with parallel computation. Labeling is like inference because it estab-
lishes consistent *‘probability-like’” values for ‘‘hypotheses’” about the interpreta-
tion of entities.

383

Active knowledge (Section 12.5) is an implementation of inference in which
each chunk of knowledge is a program. This technique goes far in the direction of
“‘proceduralizing’’ the implementation of propositions. The design issues for such
a system include the vocabulary of system primitives and their actions, mechan-
isms for implementing the flow of control, and overall control of the action of the
system.

12.1 FIRST ORDER PREDICATE CALCULUS

384

Predicate logic is in many ways an attractive knowledge representation and infer-
ence system. However, despite its historical stature, important technical results in
automated inference, and much research on inference techniques, logic has not
dominated all aspects of mechanized inference. Some reasons for this are present-
ed in Sections 12.1.6 and 12.2. The logical system that has received the most study
is first order predicate logic. General theorem provers in this calculus are cumber-
some for reasons which we shall explore. Furthermore, there is some controversy
as to whether this logical system is adequate to express the reasoning processes
used by human beings [Hayes 1977; Collins 1978; Winograd 1978; McCarthy and
Hayes 1969]. We briefly describe some aspects of this controversy in Section
12.1.6. Our main purpose is to give the flavor of predicate calculus-based methods
by describing briefly how automated inference can proceed with the formulae of
predicate calculus expressed in the convenient clause form. Clause form is appeal-
ing for two reasons. First, it can be represented usefully in relational n-tuple or se-
mantic network notation (Section 12.1.5). Second, the predicate calculus clause
and inference system may be easily compared to production systems (Section
12.3).

12.1.1 Clause-Form Syntax (Informal)

In this section we describe the syntax of clause-form predicate calculus sentences.
In the next, a more standard nonclausal syntax is described, together with a
method for assigning meaning to grammatical logical expressions. Next, we show
briefly how to convert from nonclausal to clausal syntax.

A sentence is a set of clauses. A clause is an ordered pair of sets of atomic for-
mulae, or atoms. Clauses are written as two (possibly null) sets separated by an ar-
row, pointing from the Aypotheses or conditions of the clause to its conclusion. The
null clause, whose hypotheses and conclusion are both null, is written 0. For exam-
ple, a clause could appear as

‘ A],...,A”_’Bl,...,Bm
where the A’s and B’s are atoms. An atom is an expression
Plsi v s B

where Pis a predicate symbol which ‘“‘expects jarguments,’’ each of which must be
a variable, constant symbol, or a ferm. A term is an expression

Ch. 12 Inference

Sec. 12.1

f(!‘l,...,fk)

where fis a function symbol which ‘‘expects k arguments,’’ each of which may be a
term. It is convenient to treat constant symbols alone as terms.

A careful (formal) treatment of the syntax of logic must deal with technical
issues such as keeping constant and term symbols straight, associating the number
of expected arguments with a predicate or function symbol, and assuring an
infinite supply of symbols.

For example, the following are sentences of logic.

— Obscured (Backface (Block1))
Visible (Kidney) —
Road(x), Unpaved(x) — Narrow(x)

12.1.2 Nonclausal Syntax and Logic Semantics (Informal)

Nonclausal Syntax

Clause form is a simplified but logically equivalent form of logic expressions
which are perhaps more familiar. A brief review of non-clausal syntax follows.

The concepts of constant symbols, variables, terms, and atoms are still basic.
A set of logical connectives provides unary and binary operators to combine atoms
to form well-formed formulae (wffs). If 4 and B are atoms, then A4 is a wif, as is "4
(“not 4’) A => B (**A implies B,” or ‘‘if A then B’), A\ B(“Aor B”), AN\ B
(“4and B’), 4 <> B (““Aisequivalent to B, or *‘4 if and only if B”). Thus
an example of a wif is

Back (Face) \/ (Obscured(Face)) ="~ (Visible(Face))

The last concept is that of universal and existential quantifiers, the use of which
is illustrated as follows.

(x) (wff using ““x’” as a variable).
(3 thing) (wff using ‘‘thing’’ as a variable).

A universal quantifier ¥/ is interpreted as a conjunction over all domain ele-
ments, and an existential quantifier 3 as a disjunction over all domain elements.
Hence their usual interpretation as ‘‘for each element . . .”” and ‘‘there exists an
element....”

Since a quantified wif is also a wff, quantifiers may be iterated and nested. A
quantifier quantifies the ‘‘dummy’> variable associated with it (x and thing in the
examples above). The wif within the scope of a quantifier is said to have this
quantified variable bound by the quantifier. Typically only wffs or clauses all of
whose variables are bound are allowed.

Semantics

How does one assign meaning to grammatical clauses and formulae? The se-
mantics of logic formulae (clauses and wffs alike) depends on an interpretation and

First Order Predicate Calculus 385

386

on the meaning of connectives and quantifiers. An interpretation specifies the fol-
lowing.

1. A domainof individuals
2. A particular domain element is associated with each constant symbol

3. A function over the domain (mapping k individuals to individuals) is associ-
ated with each function symbol.

4. A relation over the domain (a set of ordered k-tuples of individuals) is associ-
ated with each predicate symbol.

The interpretation establishes a connection between the symbols in the
representation and a domain of discourse (such as the entities one might see in an
office or chest x-ray). To establish the truth or falsity of a clause or wff, a value of
TRUE or FALSE must be assigned to each atom. This is done by checking in the
world of the domain to see if the terms in the atom satisfy the relation specified by
the predicate of the atom. If so, the atom is TRUE; if not, it is FALSE. (Of course,
the terms, after evaluating their associated functions, ultimately specify individu-
als). For example, the atom

GreaterThan(5,7)

is true under the obvious interpretation and false with domain assignments such
that

GreaterThan means ‘‘Is the author of”’
5 means the book Gone With the Wind
7 means Rin-Tin-Tin.

After determining the truth values of atoms, wffs with connectives are given
truth values by using the fruth tables of Table 12.1, which specify the semantics of
the logical connectives. The relation of this formal semantics of connectives with
the usual connectives used in language (especially ‘‘implies’”) is interesting, and
one must be careful when translating natural language statements into predicate
calculus.

The semantics of clause form expressions is now easy to explain. A sentence
is the conjunction of its clauses. A clause

i o A e By By

with variables x;, ...,x; is to be understood

Table 12.1

"A AANB AV B A=>B A< B

mT o | A
e sl Moy I oy
' o
oA
-
-

L e B s lle o

Ch. 12 Inference

Sec. 12.1

\-fxl, e ol (Al/\/\An) =>(BI\/\/Bm)

The null clause is to be understood as a contradiction. A clause with no conditions
is an assertion that at least one of the conclusions is true. A clause with null conclu-
sion is a denial that the conditions (hypotheses) are true.

12.1.3 Converting Nonclausal Form to Clauses

The conversion of nonclausal to clausal form is done by applying straightforward
rewriting rules, based on logic identities (ultimately the truth tables). There is one
trick necessary, however, to remove existential quantifiers. Skolem functions are
used to replace existentially quantified variables, according to the following rea-
soning.

Consider the wif

(¢ x) (3 y) (Behind (y, x))).

With the proper interpretation, this wif might correspond to saying ‘‘For any object
x we consider, there is another object y which is behind x.”” Since the 3 is within
the scope of the ¥/, the particular y might depend on the choice of x. The Skolem
function trick is to remove the existential quantifier and use a function to make ex-
plicit the dependence on the bound universally quantified variable. The resulting
wif could be

(¢ x) (Behind (SomethingBehind(x), x))

which might be rendered in English: ‘“Any object x has another object behind it;
furthermore, some Skolem function we choose to call SomethingBehind deter-
mines which object is behind its argument.’” This is a notational trick only; the ex-
istence of the new function is guaranteed by the existential quantification; both no-
tations are equally vague as to the entity the function actually produces.

In general, one must replace each occurrence of an existentially quantified
variable in a wif by a (newly created Skolem) function of all the universally
quantified variables whose scope includes the existential quantifier being elim-
inated. If there is no universal quantifier, the result is a new function of no argu-
ments, or a new constant.

3 x)(Red(x)),

which may be interpreted ‘“‘Something is red,’” is rewritten as something like
Red(RedThing)

or
““‘Something is red, and furthermore let’s call it RedThing.”’

The conversion from nonclausal to clausal form proceeds as follows (for
more details, see [Nilsson 19711). Remove all implication signs with the identity
(4=>B) <> ((C AV B). Use DeMorgan’s laws (such as "(4\/ B) <> ((”
A) A (C B)), and the extension to quantifiers, together with cancellation of double
negations, to force negations to refer only to single predicate letters. Rewrite vari-

First Order Predicate Calculus 387

388

ables to give each quantifier its own unique dummy variable. Use Skolem func-
tions to remove existential quantifiers. Variables are all now universally quantified,
so eliminate the quantifier symbols (which remain implicitly), and rearrange the
expression into conjunctive normal form (a conjunction of disjunctions.) The A’s
now connect disjunctive clauses (at last!). Eliminate the A\’s, obtaining from the
original expression possibly several clauses.

At this point, the original expression has yielded multiple disjunctive clauses.
Clauses in this form may be used directly in automatic theorem provers [Nilsson
1971]. The disjunctive clauses are not quite in the clause form as defined earlier,
however; to get clauses into the final form, convert them into implications. Group
negated atoms, reexpanding the scope of negation to include them all and convert-
ing the\/ of ’sinto a~ of A’s. Reintroduce one implication to go from

B\ By...\VB,V C(41 AN 4,... N 4,))
to
A]/\/\A”—’Bl\/Bg\/Bm

To obtain the final form, replace the connectives (which remain implicitly) with
commas.

12.1.4 Theorem Proving

Good accounts of the basic issues of automated theorem proving are given in
[Nilsson 1971; Kowalski 1979; Loveland 1978]. The basic ideas are as follows. A
sentence is inconsistent, or unsatisfiable, if it is false in every interpretation. Some
trivially inconsistent sentences are those containing the null clause, or simple con-
tradictions such as the same clause being both unconditionally asserted and
denied. A sentence that is true in all interpretations is valid. Validity of individual
clauses may be checked by applying the truth tables unless quantifiers are present,
in which case an infinite number of formulae are being specified, and the truth
status of such a clause is not algorithmically decidable. Thus it is said that first
order predicate calculus is undecidable. More accurately, it is semidecidable, because
any valid wff can be established as such in some (generally unpredictable) finite
time. The validation procedure will run forever on invalid formulae; the rub is that
one can never be sure whether it is running uselessly, or about to terminate in the
next instant.

The notion of a proof is bound up with the notion of logical entailment. A
clause C logically follows from a set of clauses S (we take S to prove C) if every in-
terpretation that makes S true also makes C true. A formal proof is a sequence of
inferences which establishes that C logically follows from S. In nonclausal predi-
cate logic, inferences are rewritings of axioms and previously established formulae
in accordance with rules of inference such as

Modus Ponens: From (4) and (4 = B) infer (B)

Modus Tollens: From (" B) and (4 = B) infer (4)

Substitution: e.g. From (¢ x) (Convex(x)) infer (Convex(Region31))
Syllogisms,

and so forth.

Ch. 12 Inference

Sec. 12.1

Automatic clausal theorem provers usually try to establish that a clause C
logically follows from the set of clauses S. This is accomplished by showing the
unsatisfiability of §and (C) taken together. This rather backward approach is a tech-
nical effect of the way that theorem provers usually work, which is to derive a
contradiction.

The fundamental and surprising result that all true theorems are provable in
finite time, and an algorithmic (but inefficient) way to find the proof, is due to Her-
brand [Herbrand 1930]. The crux of the result is that although the domain of indi-
viduals who might participate in an interpretation may be infinite, only a finite
number of interpretations need be investigated to establish unsatisfiability of a set
of clauses, and in each only a finite number of individuals must be considered. A
computationally efficient way to perform automatic inference was discovered by
Robinson [Robinson 1965]. In it, a single rule of inference called resolution is used.
This single rule preserves the completeness of the system (all true theorems are
provable) and its correctness (no false theorems are provable).

The rule of resolution is very simple. Resolution involves matching a condi-
tion of one clause A4 with a conclusion of another clause B. The derived clause,
called the resolvent, consists of the unmatched conditions and conclusions of 4 and
B instantiated by the matching substitution. Maiching two atoms amounts to
finding a substitution of terms for variables which if applied to the atoms would
make them identical.

Theorem proving now means resolving clauses with the hope of producing
the empty clause, a contradiction.

As an example, a simple resolution proof goes as follows. Say it is desired to
prove that a particular wastebasket is invisible. We know that the wastebasket is
behind Brian’s desk and that anything behind something else is invisible (we have
a simpleminded view of the world in this little example). The givens are the
wastebasket location and our naive belief about visibility:

— Behind (WasteBasket, DeskOf(Brian)) (12.1)
Behind (object,obscurer) — Invisible (object) (12.2)

Here Behind and Invisible are predicates, DeskOf is a function, Brian and
WasteBasket are constants (denote particular specific objects), and object and ob-
scurer are (universally quantified) variables. The negation of the conclusion we
wish to prove is

Invisible (WasteBasket) — (12.3)

or, ‘‘Asserting the wastebasket is invisible is contradictory.” Our task is to show
this set of clauses is inconsistent, so that the invisibility of the wastebasket is
proved. The resolution rule consists of matching clauses on opposite sides of the
arrow which can be unified by a substitution of terms for variables. A substitution
that works is:

Substitute WasteBasket for object and DeskOf(Brian) for obscurer in (12.2).

Then a cancellation can occur between the right side of (12.1) and the left side of
(12.2). Another cancellation can then occur between the right side of (12.2) and

First Order Predicate Calculus 389

390

the left side of (12.3), deriving the empty clause (a contradiction), Quod Erat
Demonstrandum.

Anyone who has ever tried to do a nontrivial logic proof knows that there is
searching involved in finding which inference to apply to make the proof ter-
minate. Usually human beings have an idea of ‘‘what they are trying to prove,”
and can occasionally call upon some domain semantics to guide which inferences
make sense. Notice that at no time in a resolution proof or other formal proof of
logic is a specific interpretation singled out; the proof is about all possible interpre-
tations. If deductions are made by appealing to intuitive, domain-dependent,
semantic considerations (instead of purely syntactic rewritings), the deduction
system is informal. Almost all of mathematics is informal by this definition, since
normal proofs are not pure rewritings.

Many nonsemantic heuristics are also possible to guide search, such as trying
to reduce the differences between the current formulae and the goal formula to be
proved. People use such heuristics, as does the Logic Theorist, an early non-
clausal, nonresolution theorem prover [Newell et al. 1963].

A. basic resolution theorem prover is guaranteed to terminate with a proof if
one exists, but usually resource limitations such as time or memory place an upper
limit on the amount of effort one can afford to let the prover spend. As all the
resolvents are added to the set of clauses from which further conclusions may be
derived, the question of selecting which clauses to resolve becomes quite a vital
one. Much research in automatic theorem proving has been devoted to reducing
the search space of derivations for proofs [Nilsson 1980; Loveland 1970]. This has
usually been done through heuristics based on formal aspects of the deductions
(such as: make deductions that will not increase drastically the number of active
clauses). Guidance from domain-dependent knowledge is not only hard to imple-
ment, it is directly against the spirit of resolution theorem proving, which attempts
to do all the work with a uniform inference mechanism working on uninterpreted
symbol strings. A moderation of this view allows the “‘intent”’ of a clause to guide
its application in the proof. This can result in substantial savings of effort; an exam-
ple is the treatment of ‘‘frame axioms” recommended by Kowalski (Section
13.1.4). Ad hoc, nonformalizable, domain-dependent methods are not usually
welcome in automatic theorem-proving circles; however, such heuristics only
guide the activity of a formal system; they do not render it informal.

12.1.5 Predicate Calculus and Semantic Networks

Predicate calculus theorem proving may be assisted by the addition of more rela-
tional structure to the set of clauses. The structure in a semantic net comes from
links which connect nodes, nodes are accessed by following links, so the availability
of information in nodes is determined by the link structure. Links can thus help by
providing quick access to relevant information, given that one is ‘‘at’ a particular
node.

Although there are several ways of representing predicate calculus formulae
in networks, we adopt here that of [Kowalski 1979; Deliyanni and Kowalski 1979].
The steps are simple:

Ch. 12 Inference

Sec. 12.1

1. Use a partition to represent the clause.
2. Convert all atoms to binary predicate atoms.
3. Distinguish between conditions and conclusions.

Recall that in Chapter 10, a partition is defined as a set of nodes and arcs in a graph.
The internal structure of the partition cannot be determined from outside it. Parti-
tioning extends the structure of a semantic net enough to allow unambiguous
representations of all of first order predicate calculus.

The first step in developing the network representation for clauses is to con-
vert each relation to a binary one. We distinguish between conditions and conclu-
sions by using an additional bit of information for each arc. Diagrammatically, an
arc is drawn with a double line if it is a condition and a single line if it is a conclu-
sion. Thus the earlier example S = {(12.1), (12.2), (12.3)} can be transformed
into the network shown in Fig. 12.1.

This figure hints at the advantages of the network embedding for clauses: It is
an indexing scheme. This scheme does not indicate which clauses to resolve next
but can help reduce the possibilities enormously. If the most recent resolution in-
volved a given clause with a given set of terms, other clauses which also have those
terms will be represented by explicit arcs nearby in the network (this would not be
true if the clauses were represented as a set). Similarly, other clauses involving the
same predicate symbols are also nearby being indexed by those symbols. Again,
this would not be true in the set representation. Thus the embedded network

Behind

/,-é——Desk (Brian)

Wastebasket

Invisible

(123) (12.1)

Behind

C;’é:::] QObscurer

Object
Invisible

(12.2)

Fig. 12.1 Converting clauses to networks.

First Order Predicate Calculus 391

392

representation contains argument indices and predicate indices which can be ex-
tremely helpful in the inference process.

A very simple example illustrates the foregoing points. Suppose that S con-
sists of the set of clauses

SouthOf(river2,x), NorthOf (riverl,x) — Between(riverl, river2, x) (12.4)
— SouthOf (u, silo30) (12.5)
— NorthOf (riverl, silo30) (12.6)

Clause (12.5) might arise when it is determined that *“‘silo30” is south of some
feature in the image whose identity is not known. Bottom up inference derives new
assertions from old ones. Thus in the example above the variable substitutions

u = river2 x = silo30

match assertion (12.5) with the general clause (12.4) and allow the inference

NorthOf(riverl, silo30)
— Between (riverl, river2, silo30) (12.7)

Consequently, use (12.6) and (12.7) to assert

— Between (riverl, river2, silo 30) (12.8)
Suppose that this was not the case: that is, that

Between (riverl, river2, silo30) — (12.9)

and that § = {(12.4), (12.9)}. One could then use top-down inference, which infers
new denials from old ones. In this case

NorthOf(riverl,silo30), SouthOf (river2,silo30) — (12.10)

follows with the variable substitution x = silo30. This can be interpreted as fol-
lows: ““If x is really silo30, then it is neither north of river] or south of river2.”” Fig-
ure 12.2 shows two examples using the network notation.

Now suppose the goal is to prove that (12.8) logically follows from (12.4)
through (12.6) and the substitutions. The strategy would be to negate (12.8), add
it to the data base, and show that the empty clause can be derived. Negating an
assertion produces a denial, in this case (12.9), and now the set of axioms (includ-
ing the denial) consists of {(12.4), (12.5), (12.6), (12.9)}. It is easy to repeat the
earlier steps to the point where the set of clauses includes (12.8) and (12.9), which
resolve to produce the empty clause. Hence the theorem is proved.

12.1.6 Predicate Calculus And Knowledge Representation

Pure predicate calculus has strengths and weaknesses as a knowledge representa-
tion system. Some of the seeming weaknesses can be overcome by technical
““tricks.”” Some are not inherent in the representation but are a property of the
common interpreters used on it (i.e., on state-of-the-art theorem provers). Some
problems are relatively basic, and the majority opinion seems to be that first order

Ch. 72 Inference

Isa

w —é—p. Between

(12.6)
(12.4)

North of

)/h/ River 1
‘——/)
Silo 30 w

Isa

North of South of é
wre Between
South of Side Side
u Middle
{12.5)
River 1 i
ver Silo 30 River 2
(a)
W ——- Between

(12.8)

River 1 River 2

North of South of
Silo 30 E
v
River 1 Silo 30 River 2

7 =~

(b)

Fig. 12.2 Resolution using networks. (a) Bottom-up inference as a result of substitu-

tions u = river2, x = silo30. (b) Top-down inference as a result of substitutions w = », x
= silo30.

predicate logic must be extended in order to become a representation scheme that
is satisfactorily matched to the power of the deductive methods applied by human
beings. Opinion is divided on the technical aspects of such enhancements. Predi-
cate calculus has several strengths, some of which we list below.

1. Predicate logic is a well-polished gem, having been refined and studied for
several generations. It was designed to represent knowledge and inference.

One knows what it means. Its model theory and proof theory are explicit and
lucid [Hayes 1977; 19801.

Sec. 12,1 First Order Predicate Calculus 393

394

Predicate logic can be considered a language with a machine-independent se-
mantics; the meaning of the language is determined by the laws of logic, not
the actual programming system upon which the fogic is “‘executed.”

Predicate calculus clauses with only one conclusion atom (Horn clauses) may
be considered as ‘‘procedures,’” with the single conclusion being the name of
the procedure and the conditions being the procedure body, which itself is
made up of procedure calls. This view of logic leads to the development of
predicate logic-based programming languages (such as PROLOG [Warren et
al. 1977; McDermott 1980]). These programs exhibit nondeterminism in
several interesting ways; the order of computations is not specified by the
proof procedure (and is not restricted by it, either). Several resolutions are in
general possible for any clause; the combinations determine many computa-
tions and several distinguishable forms of nondeterminism [Kowalski 1974].

Predicate logic may be interpreted as a problem-reduction system. Then a
(Horn) clause of the form

— B

represents a solved problem. One of the form

P T P]
with variables x;, . .. ,x, is a goal statement, or command, which is to find the
x’s that solve the problems 44, . . . ,4,. Finding the x’s solves the goal. A
clause

Al,] A" — B

is a solution method, which reduces the solution of B to a combination of solu-
tions of A4’s. This interpretation of Horn clauses maps cleanly into a standard
and-or goal tree formulation of problem solving.

Resolutions may be performed on the left or right of clauses, and the resulting
derivation trees correspond, in the problem-solving interpretation of predicate
calculus, to top-down and bottom-up versions of problem solving. This duality
is very important in conceptualizing aspects of problem solving.

There is a uniform proof procedure for logic which is guaranteed to prove in
finite time any true theorem (logic is semidecidable and complete). No false
theorems are provable (logic is correct). These and other good formal proper-
ties are important when establishing formally the properties of a knowledge
representation system.

Predicate calculus is not a favorite of everyone, however; some of the (per-

ceived) disadvantages are given below, together with ways they might be coun-
tered.

1. Sometimes the axioms necessary to implement relatively common con-

cepts are not immediately obvious. A standard example is ‘‘equality.”” These
largely technical problems are annoying but not basic.

2. The “‘first order’” in first order predicate calculus means that the system

Ch. 12 Inference

does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., “All unary functions are boring”” cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(block1, surface, situationl), write Holds (On(block1,sur-
face), situationl). This notation allows inferences about many situations with only
one added axiom. The *‘situational calculus™ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit ‘‘add lists” and ‘‘delete lists’” ([Fikes 19771,
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13,

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘‘quotation’’), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of *‘truth” which may be inferred.

Sec. 12.2 Computer Reasoning 395

	Chapter 12 Inference, p.383
	12.1 First Order Predicate Calculus, p.384
	12.1.1 Clause-Form Syntax (Informal), p.384
	12.1.2 Nonclausal Syntax and Logic Semantics (Informal), p.385
	12.1.3 Converting Nonclausal Form to Clauses, p.387
	12.1.4 Theorem Proving, p.388
	12.1.5 Predicate Calculus and Semantic Networks, p.390
	12.1.6 Predicate Calculus and Knowledge Representation, p.392

