likely to be as opaque as any other scheme because of the control-structuring
methods that must be imposed on the pure production system form.

12.4 SCENE LABELING AND CONSTRAINT RELAXATION

408

The general computational problem of assigning labels consistently to objects is
sometimes called the ‘“‘labeling problem,’” and arises in many contexts, such as
graph and automata homomorphism, graph coloring, Latin square generation, and
of course, image understanding [Davis and Rosenfeld 1976; Zucker 1976; Haralick
and Shapiro 1979]. ‘“‘Relaxation labeling,”” ‘‘constraint satisfaction,” and
“‘cooperative algorithms’’ are natural implementations for labeling, and their po-
tential parallelism has been a very influential development in computer vision. As
should any important development, the relaxation paradigm has had an impact on
the conceptualization as well as on the implementation of processes.

Cooperating algorithms to solve the labeling problem are useful in low level
vision (e.g., line finding, stereopsis) and in intermediate-level vision (e.g., line-
labeling, semantics-based region growing). They may also be useful for the
highest-level vision programs, those that maintain a consistent set of beliefs about
the world to guide the vision process.

Section 12.4.1 presents the main concepts in the labeling problem. Section
12.4.2 outlines some basic forms that “‘discrete labeling’’ algorithms can take. Sec-
tion 12.4.3 introduces a continuing example, that of labeling lines in a line draw-
ing, and gives a mathematically well-behaved probabilistic ‘‘linear operator’’ label-
ing method. Section 12.4.4 modifies the linear operator to be more in accord with
our intuitions, and Section 12.4.5 describes relaxation as linear programming and
optimization, thereby gaining additional mathematical rigor.

12.4.1 Consistent and Optimal Labelings

All labeling problems have the following notions.

1. A set of objects. In vision, the objects usually correspond to entities to be la-
beled, or assigned a ‘‘meaning.”’

*2. Afinite set of relations between objects. These are the sorts of relations we saw

in Chapter 10; in vision, they are often geometric or topological relations
between segments in a segmented image. Properties of objects are simply
unary relations. An input scene is thus a relational structure.

3. A finite set of labels, or symbols associated with the ‘‘meanings’’ mentioned
above. In the simplest case, each object is to be assigned a single label. A label-
ing assigns one or more labels to (a subset of) the objects in a relational struc-
ture. Labels may be weighted with ‘‘probabilities’”; a (label, weight) pair can
indicate something like the ‘‘probability of an object having that label.”’

4. Constraints, which determine what labels may be assigned to an object and
what sets of labels may be assigned to objects in a relational structure.

Ch. 12 Inference



Sec. 12.4 Scene Labeling and Constraint Relaxation

A basic labeling problem is then: Given a finite input scene (relational struc-
ture of objects), a set of labels, and a set of constraints, find a “‘consistent label-
ing.”” That is, assign labels to objects without violating the constraints. We saw this
problem in Chapter 11, where it appeared as a matching problem. Here we shall
start with the discrete labeling of Chapter 11 and proceed to more general labeling
schemes.

As a simple example, consider the indoor scene of Fig. 12.6. The segmented
office scene is to have its regions labeled as Door, Wall, Ceiling, Floor, and Bin,
with the obvious interpretation of the labels. Here are some possible constraints,
informally stated. Note that these particular constraints are in terms of the input
relational structure, not the world from which the structure arose. A more com-
plex (but reasonable) situation arises if scene constraints must be derived from
rules about the three dimensional domain of the scene and the imaging process.
Unary constraints use object properties to constrain labels; n-ary constraints force
sets of label assignments to be compatible.

Unary constraints

1. The Ceiling is the single highest region in the image.
2. The Floor must be checkered.

DBFWC é
DBFWC DBW
DBFWC DBW
DB .
%w = i DB
FW
pi w
DBFWC F
(a) (b)
¢
v w
D
8
F

{c)

Fig. 12.6 A stylized *‘segmented office scene.”” The regions are the objects to be
assigned labels D, B, F, W, C (Door, Bin, Floor, Wall, Ceiling). In (a), each ob-
ject is assigned all labels. In (b) unary constraints have been applied (see text). In
(c), relational constraints have been applied, and a unique label for each region
results.

409



410

N-ary constraints

3. A Wallis adjacent to the Floor and Ceiling.
4. A Door is adjacent to the Floor and a Wall.
5. A Binisadjacent to a Floor.

6. A Bin is smaller than a Door.

Obviously, there are many constraints on the appearance of segments in such
a scene; which ones to use depends on the available sensors, the ease of computa-
tion of the relations and their power in constraining the labeling. Here the applica-
tion of the constraints (Fig. 12.6) results in a unique labeling. Although the con-
straints of this example are purely for illustration, a system that actually performs
such labeling on real office scenes is described in [Barrow and Tenenbaum 1976].

Labelings may be characterized as inconsistent or consistent. A weaker notion
is that of an optimal labeling. Each of these adjectives reflects a formalizable pro-
perty of the labeling of a relational structure and the set of constraints. If the con-
straints admit of only completely compatible or absolutely incompatible labels,
then a labeling is consistent if and only if all its labels are mutually compatible, and
inconsistent otherwise. One example is the line labels of Section 9.5; line drawings
that could not be consistently labeled were declared “‘impossible.’”” Such a black-
and-white view of the scene interpretation problem is convenient and neat, but it is
sometimes unrealistic. Recall that one of the problems with the line-labeling ap-
proach of Chapter 9 is that it does not cope gracefully with missing lines; strictly,
missing lines often mean ‘‘impossible’’ line drawings. Such an uncompromising
stance can be modified by introducing constraints that allow more degrees of com-
patibility than two (wholly compatible or strictly incompatible). Once this is done,
both consistent and inconsistent labelings may be ranked on compatibility and
likelihood. It is possible that a formally inconsistent labeling may rank better than a
consistent but unlikely labeling.

Some examples are shown in Fig. 12.7. In 12.7b, the “‘inconsistent’” labels
are not nonsensical, but can only arise from (a very unlikely) accidental alignment
of convex edges with three of the six vertices of a hexagonal hole in an occluding
surface. The vertices that arise are not all included in the traditional catalog of legal
vertices, hence the “‘inconsistent’” labeling. The “‘floating cube’ interpretation is
consistent, but the *‘sitting cube’’ interpretation may be more likely if support and
gravity are important concepts in the system. In Fig.12.7¢c, the scene with a missing
line cannot be consistent according to the traditional vertex catalog, but the “‘in-
consistent’’ labels shown are still the most likely ones. Labelings are only “‘con-
sistent,”” “‘inconsistent,”” or “‘optimal’’ with respect to a given relational structure
of objects (an input scene) and a set of constraints. These examples are meant to
be illustrative only.

12.4.2 Discrete Labeling Algorithms
Let us consider the problem of finding a consistent set of labels, taken from a

discrete finite set. This problem may be placed in an abstract algebraic context
[Haralick and Kartus 1978; Haralick 1978; Haralick et al. 1978]. Perhaps the sim-

Ch. 12 Inference



"A[uo 2AnBNSN[[I 9¢ 01 JUB3LW dJe S3|dWEXd aSAY | "SIUIRIISU0D JO 13S & pue (Juads Indur
ue) $102fq0 Jo 2IMIONNS [BUONE[L UIAIT B 0] 10adsal yum  Jewndo,, 10 “ju3jsisuodut,,
. 1u2IsIsU0d,, A[uo 2Je sSul[aqeT "SBuI[AqE| DY) PUB (D ‘g V) $2UIVS UYL L7l "8

(2)

(a)

] &

(e}

MOpeys
533l ]
sseln)
peoy
saal] 1e)
>v_m Ag /%(
Buljage) sfaqe| sjeqe| 8uadg

|lewndQ JU21SISUOD JUB1SIsuoU|

411



412

plest way to find a consistent labeling of a relational structure (we shall often say
“labeling of a scene”) is to apply a depth-first tree search of the labeling possibili-
ties, as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently —in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label for a previously labeled object.

This labeling algorithm can be computationally inefficient. First, it does not
prune the search tree very effectively. Second, if it is used to generate all con-
sistent labelings, it does not recognize important independences in the labels. That
is, it does not notice that conclusions reached (labels assigned) in part of the tree
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After each
such change, the new labeling is used to determine which object to process next.
This technique has proved useful in some applications [Feldman and Yakimovsky
1974].

Assign all possible labels to each object in accordance with
unary constraints.
Iterate until a globally consistent labeling is found:

Somehow pick an object to be processed.

Modify its labels to be consistent with the current
labeling.

A parallel iterative algorithm adjusts all object labels at once; we have seen
this approach in several places, notably in the ‘““Waltz filtering algorithm’” of Sec-
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.

Iterate until a globally consistent labeling is found:

In parallel, eliminate from each object’s label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replaced
with an asynchronous interaction of labeled objects. Such interaction may be imple-
mented with multiple cooperating processes or in a data base with ‘‘demons” (Ap-

Ch. 12 Inference



pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaum
1976]. Here imagine that each object is an active process that knows its own label
set and also knows about the constraints, so that it knows about its relations with
other objects. The program of each object might look like this.

If T have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, then I change my label set to be
consistent, else I suspend myself.

Whenever I change my label set, I activate other objects
whose label set may be affected, then I suspend myself.

To use such a set of active objects, one can give each one all possible labels
consistent with the unary constraints, establish the constraints so that the objects
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a graph
structure [Freuder 1978]. Each object to be labeled initially corresponds to a node
in the graph, which contains all legal labels according to unary constraints. Higher
order constraints involving more and more nodes are incorporated successively as
new nodes in the graph. At each step the new node constraint is propagated, that is,
the graph is checked to see if it is consistent with the new constraint. With the in-
troduction of more constraints, node pairings that were previously consistent may
be found to be inconsistent. As an example consider the following graph coloring
problem: color the graph in Fig. 12.8 so that neighboring nodes have different
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8a,
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node con-
straints are given, order two constraints are synthesized as follows: (1) make a
node for each node pairing; (2) add all labelings that satisfy the constraint. The
result is shown in Fig. 12.8b. The single constraint of order three is synthesized in
the same way, but now the graph is inconsistent: the match ‘¥, Z: Red,Green”’ is
ruled out by the third order legal label set (RGY,GRY). To restore consistency the
constraint is propagated through node (Y, Z) by deleting the inconsistent labelings.
This means that the node constraint for node Z is now inconsistent. To remedy
this, the constraint is propagated again by deleting the inconsistency, in this case
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,Z:
Red,Green) and finally the network is consistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs after
every order greater than one. Of course it may be impossible to find a consistent
graph. This is the case when the labels for node Z in our example are changed from
(G, V) to (G,R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for the

Sec. 12.4  Scene Labeling and Constraint Relaxation 413



414

(c)

Fig. 12.8 Coloring a graph by building constraints of increasingly higher order.

object. However, which of an object’s multiple labels goes with which of another
object’s multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain-
ing after the relaxation.

Convergence properties of relaxation algorithms are important; convergence
means that in some finite time the labeling will ‘‘settle down”’ to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are el-
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable.
In schemes where labels are added, or where labels have complex structure (such
as real number ‘‘weights’ or ‘‘probabilities’’), convergence is often not
guaranteed mathematically, though such schemes may still be quite useful. Some
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.

Ch. 12 Inference



It is possible to use relaxation schemes without really considering their
mathematical convergence properties, their semantics (What is the semantics of
weights attached to labels—are they probabilities?), or a clear definition of what
exactly the relaxation is to achieve (What is a good set of labels?). The fact that
some schemes can be shown to have unpleasant properties (such as assigning
nonzero weights to each of two inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that their
behavior is not formally characterizable or possibly even predictable. As relaxation
computations become more common, the less formalizable, less predictable, and
less conceptually elegant forms of relaxation computations will be replaced by
better behaved, more thoroughly understood schemes.

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuous
weighis or supposition values on labels. In Sections 12.4.3 and 12.4.4 we follow
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum of
label weights for each object be constrained to sum to unity. Then the weights are
reminiscent of probabilities, reflecting the ‘““probability that the label is correct.”
When the labeling algorithm converges, a label emerges with a high weight if it oc-
curs in a probable labeling of the scene. Weights, or supposition values, are in fact
hard to interpret consistently as probabilities, but they are suggestive of likelihoods
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value of a probability density function. Let a relational structure
with n objects be given by a;, i=1, ..., n, each with m discrete labels Ay, ..., A,,.
The shorthand p; (\) denotes the weight, or (with the above caveats) the ‘‘proba-
bility’’ that the label A (actually A , for some k) is correct for the object a;. Then the
probability axioms lead to the following constraints,

0<p N <1 (12.14)
Zp ) =1 (12.15)

The labeling process starts with an initial assignment of weights to all labels
for all objects [consistent with Eqs. (12.14) and (12.15)]. The algorithm is parallel
iterative: It transforms all weights at once into a new set conforming to Egs.
(12.14) and (12.15), and repeats this transformation until the weights converge to
stable values.

Consider the transformation as the application of an operator to a vector of la-
bel weights. This operator is based on the compatibilities of labels, which serve as
constraints in this labeling algorithm. A compatibility p,; looks like a conditional
probability.

%p,-j (AA) =1 forall i j A" (12.16)

Sec. 12.4  Scene Labeling and Constraint Relaxation 415



416

pi AWA) =1 iff A =1A", elseO. (12.17)

The p; (A |A") may be interpreted as the conditional probability that object ; has la-
bel A given that another object a, has label A’. These compatibilities may be gath-
ered from statistics over a domain, or may reflect a priori belief or information.

The operator iteratively adjusts label weights in accordance with other
weights and the compatibilities. A new weight p;(A) is computed from old weights
and compatibilities as follows.

pi(A) =2 ¢ Z py (A]ADp, (W) (12.18)
J

The c;; are coefficients such that
Zc;=1 (12.19)
J

In Eq. (12.18), the inner sum is the expectation that object g, has label A, given the
evidence provided by object a;. p; (A) is thus a weighted sum of these expecta-
tions, and the ¢;; are the weights for the sum.

To run the algorithm, simply pick the p,, and ¢, , and apply Eq. (12.18) re-
peatedly to the p; until they stop changing. Equation (12.18) is in the form of a ma-
trix multiplication on the vector of weights, as shown below; the matrix elements
are weighted compatibilities, the ¢;;p;. The relaxation operator is thus a matrix; if it
is partitioned into several component matrices, one for each set of non-interacting
weights, linear algebra yields proofs of convergence properties [Rosenfeld et al.
1976]. The iteration for the reduced matrix for each component does converge,
and converges to the weight vector that is the eigenvector of the matrix with eigen-
value unity. This final weight vector is independent of the initial assignments of la-
bel weights; we shall say more about this later.

An Example

Let us consider the input line drawing scene of Fig. 12.9a used in [Rosenfeld
et.al. 1976]. The line labels given in Section 9.5 allow several consistent labels as
shown in Fig. 12.9b-e, each with a different physical interpretation.

In the discrete labelling ‘‘filtering’’ algorithm presented in Section 9.5 and
outlined in the preceding section, the relational structure is imposed by the neigh-
bor relation between vertices induced by their sharing a line. Unary constraints are
imposed through a catalog of legal combinations of line labels at vertices, and the
binary constraint is that a line must not change its label between vertices. The algo-
rithm eliminates inconsistent labels.

Let us try to label the sides of the triangle a;, a,, and a; in Fig. 12.9 with the
solid object edge labels {>, <, +,—}. To do this requires some ‘‘conditional prob-
abilities” for compatibilities p;; (A |A"), so let us use those that arise if all eight in-
terpretations of Fig. 12.9 are equally likely. Remembering that

P (X|Y) = ”—;/(Y—Y’)’—) (12.20)

Ch. 12 Inference



a3

(a) (b}

YA

(d}

AT

Fig. 12.9 A triangle and its possible
labels. (a) Edge names. (b) Floating.
(¢) Flap folded up. (d) Triangular hole.
(e) Flap folded down.

and taking p (X, Y) to mean the probability that labels X and Y occur consecutively
in clockwise order around the triangle, one can derive Table 12.2. Of course, we
could choose other compatibilities based on any considerations whatever as long as
Eqgs. (12.16) and (12.17) are preserved.

Table 12.2 shows that there are two noninteracting components, {—,>} and

{+,<}. Consider the first component that consists of the weight vector
[p1(>), p1(=), pa(>), pa(=), p3(>), p3(=)]

(12:21)

The second is treated similarly. This vector describes weights for the subpopula-
tion of labelings given by Fig. 12.9b and c. The matrix M of compatibilities has

columns of weighted p;;.

[0111711(>|>)
cnpn(> =)
cip12(>>)
e (>1-)
ciapin(>1>)
cipis(>1-)

Sec. 72.4 Scene Labeling and Constraint Relaxation

cnpn(>[>)
capn(>|-)
capn(>|>)
cpn(>1-)
c23p23(>|>)
cu3pi(>1-)

(12.22)

417



418

Table 12.2

>~
>
o

p(h, A p(yag)

T2

(™

|
IV IV
=S S
Q= -

+A+AT T VV

I'VV+A+A
coococococoo
coococooco

+A+A

[ S
QIR = R

+ + A A

If we let ¢; = /s forall i, j, then

L% Y ik
0 1 1 0 1 0
1 - (PR O T | IO S
y7 g
3(1 0 0 1 1 O
» B % %ol o0
1 01 0 0 1

An analytic eigenvector calculation (Appendix 1) shows that the M of Eq.
(12.23) yields (for any initial weight vector) the final weight vector of

[3%, %, %, Y, %, 4] (12.24)

Thus each line of the population in the component we chose (Fig. 12.9b and c) has
label > with “‘probability”’ %, —with ‘‘probability’’ %. In other words, from an ini-
tial assumption that all labelings in Fig. 12.9b and ¢ were equally likely, the system
of constraints has ‘‘relaxed’’ to the state where the ‘‘most likely”’ labeling is that of
Fig. 12.9b, the floating triangle.

This relaxation method is a crisp mathematical technique, but it has some
drawbacks. It has good convergence properties, but it converges to a solution en-
tirely determined by the compatibilities, leaving no room for preferences or local
scene evidence to be incorporated and affect the final weights. Further, the algo-
rithm perhaps does not exactly mirror the following intuitions about how relaxa-
tion should work.

(12.23)

Ch. 12 Inference



1. Increase p;(\) if high probability labels for other objects are compatible with
assignment of A to a;.

2. Decrease p; () if high probability labels are incompatible with the assignment
of A to a;.

3. Labels with low probability, compatible or incompatible, should have little
influence on p;(A).

However, the operator of this section decreases p;(\) the most when other labels
have both low compatibility and low probability. Thus it accords with (1) above,
but not with (2) or (3). Some of these difficulties are addressed in the next section.

12.4.4 A Nonlinear Operator

The Formulation

If compatibilities are allowed to take on both positive and negative values,
then we can express strong incompatibility better and obtain behavior more like
(1), (2), and (3) just above. Denote the compatibility of the event “‘label A on a@,”’
with the event ““label A on a,;” by r; (A, A"). If the two events occur together often,
r; should be positive. If they occur together rarely, r; should be negative. If they
are independent, r; should be 0. The correlation coefficient behaves like this, and
the compatibilities of this section are based on correlations (hence the the notation
ry for compatibilities). The correlation is defined using the covariance.

cov(X, Y) =p(X, ¥) — p(X)p(Y)

Now define a quantity o which is like the standard deviation

a(X)=[px) - (p(Xx))?* (12.25)
then the correlation is the normalized covariance
¥ y) = covX, ¥)
cor(X, Y) o) (12.26)

This allows the formulation of an expression precisely analogous to Eq.
(12.18), only that r; instead of p; is used to obtain a means of calculating the posi-
tive or negative change in weights.

P W) =T, [T O, ApHRAN] (1227
Y

In Egs. (12.27)-(12.29) the superscripts indicate iteration numbers. The weight
change (Eq. 12.27) could be applied as follows,

250 = p OO + % () (12.28)

but then the resultant label weights might not remain nonnegative. Fixing this in a
straightforward way yields the iteration equation

2L+ g% 0]
YO0 + @0

A

(12.29)

KD\ =

Sec. 12.4 Scene Labeling and Constraint Relaxation 419



420

The convergence properties of this operator seem to be unknown, and like
the linear operator it can assign nonzero weights to maximally incompatible label-
ings. However, its behavior can accord with intuition, as the following example
shows.

An Example

Computing the covariances and correlations for the set of labels of Fig.
12.9b-e yields Table 12.3.

Figure 12.10 shows the nonlinear operator of Eq.(12.29) operating on the ex-
ample of Fig. 12.9. Figure 12.10 shows several cases.
1. Equal initial weights: convergence to apriori probabilities (¥, 7, Js, /).

2. Equal weights in the component {>,—}: convergence to ‘‘most probable”
floating triangle labeling.

3. Slight bias toward a flap labeling is not enough to overcome convergence to the
““most probable’’ labeling, as in (2).

Like (3), but greater bias elicits the ‘‘improbable’’ labeling.

5. Contradicatory biases toward ‘‘improbable’’ labelings: convergence to ‘‘most
probable’’ labeling instead.

6. Like (5), but stronger bias toward one “‘improbable’” labeling elicits it.

7. Bias toward one of the components {>,—}, {<,+] converges to most prob-
able labeling in that component.

8. Like (7), only biased to less probable labelling in a component.

12.4.5 Relaxation as Linear Programming

The Idea

Linear programming (LP) provides some useful metaphors for thinking
about relaxation computations, as well as actual algorithms and a rigorous basis
[Hummel and Zucker 1980]. In this section we follow the development of [Hinton
1979].

Table 12.3

A Az cov(ig, Ay cor(hg, Ag)

SRR Toa hs

> - oa 5/+/105
- > b4 5/-/105
- - — Vs —1h
- Bl —es —¥s

Ch. 12 Inference



SRR

"(1x2) 298) $2SBD JO IOqUINU B SMOUS (D) pue ‘pake[dsip aie sjySiam [aqe[ ay) moy
SMOUS (q) "(®) ul 9[uel)) syl Joj s3uljaqe| seonpotd Jojeiado Jeauljuou Ayl (f°Z] "SId

(@

o L 0 o 0 80 0 20 91D S¥0 9L0 €20 Z0 0 Z0 20
0o 0 0 1 0o 0o 0 1 020 520 020 SEO SZ0 SZ0 SZ0 SZ0 (8)
c 0 o0 1 0o 0 0 1 91’0 620 LL'0 BED zZ0 €0 ¢0 €0
o 0 0 1 0 200 0 860 vL'0 ZEO €10 1¥'0 Z0 €0 Z0 €0
0o 0 0 1 0 0 0 860 vL'0 ZED EL'O L0 o €0 T0 €0 ()
0 0 0 L 0 ¢0 0 860 PL'O ZE0 EL'O 1¥O ¢0 €0 20 €0
0 0 (] l 0 0 0 L 0 Ll0 0 €80 0 S0 0 S0
0 0 0 l 0 0 0 L 0 6v0 0 190 0 (0 O €0 {9)
c L o0 o 0 ¥60 0 900 0 (0 0 €0 0 80 0 20
o 0 0 I o 0 0 | 0 910 O 80 0 G0 0 S0
c 0 0 I 0D S0 0 G560 0 S0 0 S0 0 £0 0 €0 (s
o 0 0 I 0 S00 0 G60 0 S0 0 &0 0 (0 0 €0
o o0 0 | 0 0 0 | 0 90 0 %90 0 S0 0 &0
0 L 0 © 0 €0 0 £00 0 ¥90 0 9€0 0 £0 0 €0 i)
o 0 0 0o 0o 0 I 0 90 0 90 0 S0 0 S0
0 0 0 i 0 0 0 i 0 L[£0 0 €90 0 S0 O S0
o 0 0 | 0 €00 0 60 0 150 0 6r0 0 90 0 ¥0 (€
0o 0 0o | o 0o 0 0 (£0 0 290 C S0 0 S0
o 0 0 | 0 Z0 0 860 0 20 0 80 0 S0 0 SO
o 0 0 I 0 ZO0 0 860 0 0 0 80 0 S0 0 SO {2
o 0 0 0 TO0 0 860 0 0 0 80 0 S0 0 S0
€0 EL'0 LEO LEO £1°0 £1'0 €E0 EEO Z0 TO0 €0 €0 SZ'0 SZ'0 SE0 SZO
EL'0 EL'0 LEO LEO £1°0 L1°0 EE0 EEO Z0 Z0 €0 €0 SZ'0 SZ'0 SC0 SZO (L)
€L'0 EL'0 LE0 LEO L1'0 L1'0 EEO EEO Z0 T0 €0 €O SZ'0 G20 G20 ST'0
nwiq suollelall suoilelal s)yBiam [eiliu| ased
0 01 0T JauY £ 01Z Jeyy
(a) (e)
(- | e e
: . Ze
. Z, 1
« e (<)M te = &

421



422

To put relaxation in terms of linear programming, we use the following trans-

lations.

LABEL WEIGHT VECTORS = POINTS IN EUCLIDEAN N-SPACE. Each
possible assignment of a label to an object is a Aypothesis, to which a weight
(supposition value) is to be attached. With N hypotheses, an N-vector of
weights describes a labeling. We shall call this vector a (hypothesis or label)
weight vector. For mlabels and n objects, we need at most Euclidean nm-space.

CONSTRAINTS == INEQUALITIES. Constraints are mapped into linear ine-
qualities in hypothesis weights, by way of various identities like those of ‘‘fuzzy
logic”” [Zadeh 1965]. Each inequality determines an infinite half-space. The
weight vectors within this half-space satisfy the constraint. Those outside do
not. The convex solid that is the set intersection of all the half-spaces includes
those weight vectors that satisfy all the constraints: each represents a ‘‘con-
sistent’’ labeling. In linear programming terms, each such weight vector is a
Seasible solution. We thus have the usual geometric interpretation of the linear
programming problem, which is to find the best (optimal) consistent (feasible)

labeling (solution, or weight vector). Solutions should have integer-valued (1-
or 0-valued) weights indicating convergence to actual labelings, not probabilis-
tic ones such as those of Section 12.4.3, or the one shown in Fig. 12.10c, case 1.

HYPOTHESIS PREFERENCES = PREFERENCE VECTOR. Often some
hypotheses (label assignments) are preferred to others, on the basis of a priori
knowledge, image evidence, and so on. To express this preference, make an
N-dimensional preference vector, which expresses the relative importance
(preference) of the hypotheses. Then

« The preference of a labeling is the dot product of the preference vector
and the weight vector (it is the sum for all hypotheses of the weight of
each hypothesis times its preference).

« The preference vector defines a preference direction in N-space. The op-
timal feasible solution is that one ‘‘farthest’’ in the preference direc-
tion. Let x and y be feasible solutions; they are N-dimensional weight
vectors satisfying all constraints. If z = x — y has a component in the
positive preference direction, then x is a better solution than y, by the
definition of the preference of a labeling.

It is helpful for our intuition to let the preference direction define a “‘down-
ward’’ direction in N-space as gravity does in our three-space. Then we wish to
pick the lowest (most preferred) feasible solution vector.

LABELING => OPTIMAL SOLUTION. The relaxation algorithm must solve
the linear programming problem—find the best consistent labeling. Under the
conditions we have outlined, the best solution vector occurs generally at a ver-
tex of the N-space solid. This is so because usually a vertex will be the ““lowest”’
part of the convex solid in the preference direction. It is a rare coincidence that
the solid “‘rests on a face or edge,”” but when it does a whole edge or face of the
solid contains equally preferred solutions (the preference direction is normal to

Ch. 12 Inference



the edge or face). For integer solutions, the solid should be the convex hull of
integer solutions and not have any vertices at noninteger supposition values.

The “‘simplex algorithm’’ is the best known solution method in linear pro-
gramming. It proceeds from vertex to vertex, seeking the one that gives the op-
timal solution. The simplex algorithm is not suited to parallel computation, how-
ever, so here we describe another approach with the flavor of hill-climbing optimi-
zation. Basically, any such algorithm moves the weight vector around in N-space,
iteratively adjusting weights. If they are adjusted one at a time, serial relaxation is
taking place; if they are all adjusted at once, the relaxation is parallel iterative. The
feasible solution solid and the preference vector define a “‘cost function’ over all
N-space, which acts like a potential function in physics. The algorithm tries to
reach an optimum (minimum) value for this cost function. As with many optimi-
zation algorithms, we can think of the algorithm as trying to simulate (in N-space)
a ball bearing (the weight vector) rolling along some path down to a point of
minimum gravitational (cost) potential. Physics helps the ball bearing find the
minimum; computer optimization techniques are sometimes less reliable.

Translating Constraints to Inequalities

The supposition values, or hypothesis weights, may be encoded into the in-
terval [0, 1], with 0 meaning ‘“false,”” 1 meaning ‘“‘true.”” The extension of weights
to the whole interval is reminiscent of ‘‘fuzzy logic,”” in which truth values may be
continuous over some range [Zadeh 1965]. Asin Section 12.4.3, we denote suppo-
sition values by p(-); H, A, B, and C are label assignment events, which may be
considered as hypotheses that the labels are correctly assigned. =, \/, A, ==> and
<= are the usual logical connectives relating hypotheses. The connectives allow
the expression of complex constraints. For instance, a constraint might be “‘Label
x as ‘y’ if and only if z is labeled ‘w’ or g is labelled ‘v’.”” This constraint relates
three hypotheses: h;: (xis ““y”), hy: (zis “w”), hs: (gis *“v’). The constraint is
then h; <> (h,\/ h3).

Inequalities may be derived from constraints this way.

Negation. p(H) = 1 — p("(H)).

2. Disjunction. The sums of weights of the disjunct are greater than or equal to
one. p(4\/ B\ ...\/ O) gives the inequality p(4) + p(B) + ...+ p(C) =
1.

3. Conjunction. These are simply separate inequalities, one per conjunct. In par-
ticular, a conjunction of disjunctions may be dealt with conjunct by conjunct,
producing one disjunctive inequality per conjunct.

4.  Arbitrary expressions. These must be put into conjunctive normal form
(Chapter 10) by rewriting all connectives as /\’sand \/’s. Then (3) applies.

As an example, consider the simple case of two hypotheses A4 and B, with the
single constraint that 4 ==> B. Applying rules 1 through 4 results in the following
five inequalities in p (4) and p (B); the first four assure weights in [0, 1]. The fifth
arises from the logical constraint, since 4 ==> Bis the same as BY ~(4).

Sec. 12.4 Scene Labeling and Constraint Relaxation 423



424

0<p(4)
p(4) <1
0< p(B)
p(B) <1
pBY+ 0 —-—p)) =21 or p(B) 2 p(4)

These inequalities are shown in Fig. 12.11. As expected from the => con-
straint, optimal feasible solutions exist at: (1,1) or (4,8); (0,1) or ("(4),R); (0,0)
or C(4), “(B)). Which of these is preferred depends on the preference vector. If
both its components are positive, (4,B) is preferred. If both are negative, ("(4),
“(B)) is preferred, and so on.

A Solution Method

Here we describe (in prose) a search algorithm that can find the optimal feasi-
ble solution to the linear programming problem as described above. The descrip-
tion makes use of the mechanical analogy of an N-dimensional solid of feasible
solutions, oriented in N-space so that the preference vector induces a ‘“‘downward”’
direction in space. The algorithm attempts to move the vector of hypothesis
weights to the point in space representing the feasible solution of maximum prefer-
ence. It should be clear that this is a point on the surface of the solid, and unless the
preference vector is normal to a face or edge of the solid, the point is a unique
“lowest”’ vertex.

To establish a potential that leads to feasible solutions, one needs a measure
of the infeasibility of a weight vector for each constraint. Define the amount a vec-
tor violates a constraint to be zero if it is on the feasible side of the constraint hy-
perplane. Otherwise the violation is the normal distance of the vector to the hyper-
plane. If h; is the coefficient vector of the i'" hyperplane (Appendix 1) and w the
weight vector, this distance is

d,i = W hf (1230)

E
(1,0 (LHE
AN \;\\3\&\\;\\&\&\&&\;\\@; ——pla)<

p(Q) X
— . .
= Fig. 12,11 The feasible region for two
hypotheses A and B and the constraint A
(0,0) \\\\ B. Optimal solutions may occur at the
<A plQ) =0
\ R 3

QP @) =p(P)

©s

B three vertices. The preferred vertex will

& p(P) — E be that one farthest in the direction of
L = the preference vector, or lowest if the
piPI=0 plPI =1 preference vector defines “*down.”

Ch. 12 Inference



If we then define the infeasibility as

2
1= Ed—' (12.31)
i 2
then 8//0d; = d; is the rate the infeasibility changes for changes in the violation.
The force exerted by each constraint is proportional to the normal distance from
the weight vector to the feasible region defined by that constraint, and tends to pull
the weight vector onto the surface of the solid.

Now add a weak “‘gravity-like’’ force in the preference direction to make the
weight vector drift to the optimal vertex. At this point an optimization program
might perform as shown in Fig. 12.12.

Figure 12.12 illustrates a problem: The forces of preference and constraints
will usually dictate a minimum potential outside the solid (in the preference direc-
tion). Fixes must be applied to force the weight vector back to the closest (presum-
ably the optimum) vertex. One might round high weights to 1 and low ones to 0, or
add another local force to draw vectors toward vertices.

Examples

An algorithm based on the principles outlined in the preceeding section was
successfully used to label scenes of ‘“‘puppets’ such as Fig. 12.13 with body parts
[Hinton 1979].

The discrete, consistency-oriented version of line labeling may be extended
to incorporate the notion of optimal labelings. Such a system can cope with the ex-
plosive increase in consistent labelings that occurs if vertex labels are included for
cases of missing lines, accidental alignment, or ‘“‘two-dimensional’” objects such as
folded paper. It allows modeling of the fact that human beings do not ‘‘see” all
possible interpretations of scenes with accidental alignments. If labelings are given

T

Best vertex

Best vertex

Feasible
region

Feasible
region

T

Preference
vector

!

Preference
s vector

(a) {b)

Fig. 12.12 1In (a), the weight vector moves from S to rest at T, under the com-
bined influence of the preferences and the violated constraints. In (b), conver-
gence is speeded by making stronger preferences, but the equilibrium is farther
away from the optimal vertex.

Sec. 12.4 Scene Labeling and Constraint Relaxation 425



426

!.bestset;

Bl BOT NECK HEAD C1 TRUNK Al

Gl BOT HEAD NECK Bl

D2 TOP UPPERARM TRUNK Al LOWERARM E4
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM G2
G2 TOP LOWERARM UPPERARM F2 HAND H2
H2 TOP HAND LOWERARM G2

I3 TOP THIGH TRUNK Al CALF J4

J4 BOT CALF THIGH I3 FOOT -

K2 BOT THIGH TRUNK Al CALF L4

L4 BOT CALF THIGH K2 FOOT -

Itrytointerpret [trunk as upright importance=1];
Itrytointerpret [thigh as upright importance=1];

. bestset;
A2 TOP TRUNK NECK - UPPERARM I2 K1 THIGH D3 F3
Bl BOT NECK HEAD C1 TRUNK -

Cl BOT HEAD NECK Bl

D3 TOP THIGH TRUNK A2 CALF E3

E3 TOP CALF THIGH D3 FOOT -

F3 TOP THIGH TRUNK A2 CALF E3

G3 TOP CALF THIGH F3 FOOT H1

H1 TOP FOQT CALF G3

[2 TOP UPPERARM TRUNK A2 LOWERARM J3
J3 BOT LOWERARM UPPERARM I2 HAND -
KI BOT UPPERARM TRUNK A2 LOWERARM L3
L3 BOT LOWERARM UPPERARM K1 HAND -

(b)

! bestset;
Al TOP HEAD NECK Bl
Bl TOP NECK HEAD Al TRUNK C2

D3 TOP THIGH TRUNK C2 CALF E3

E3 TOP CALF- THIGH D3 FOOT -

F3 TOP THIGH TRUNK C2 CALF G3

G3 TOP CALF THIGH F3 FOOT-

H1 TOP UPPERARM TRUNK C2 LOWERARM I1
I1 TOP LOWERARM UPPERARM H1 HAND -
J1  TOP LOWERARM TRUNK C2 LOWERARM K4
K4 BOT LOWERARM UPPERARM J1 HAND L6
L6 BOT HAND LOWERARM K4

(c)

Fig. 12.13 Puppet scenes interpreted by linear programming relaxation. (a)
shows an upside down puppet. (b) is the same input along with preferences to in-
terpret the trunk and thighs as upright; these result in an interpretation with trunk
and neck not connected. In (c), the program finds only the *“best’” puppet, since it
was only expecting one.

Ch. 12

Al BOT TRUNK NECK Bl UPPERARM D2 F2 THIGH 13 K2

C2 TOP TRUNK NECK B1 UPPERARM H1 J1 THIGH D3 F3

Inference



costs, then one can include labels for missing lines and accidental alignment as
high-cost labels, rendering them usable but undesirable. Also, in a scene-analysis
system using real data, local evidence for edge appearance can enhance the a priori
likelihood that a line should bear a particular label. If such preferences can be ex-
tracted along with the lines in a scene, the evidence can be used by the line
labeling algorithm.

The inconsistency constraints for line labels may be formalized as follows.
Each line and vertex has one label in a consistent labeling; thus for each line L and
vertex J,

p(L haslabel LLABEL) = 1 (12.32)

all line labels

p(J haslabel VLABEL) = 1 (12.33)

all vertex labels

Of course, the VLABELS and LLABELS in the above constraints must be
forced to be compatible (if L has LLABEL, JLABEL must agree with it). For a line
L and a vertex Jat its end,

p(L hasLLABEL) = X  p(J haslabel VLABEL) (12.34)

all VLABELS
giving LLABEL 1oL

This constraint also enforces the coherence rule (a line may not change its label
betwen vertices).

Using these constraints, linear programming relaxation labeled the triangle
example of Fig. 12.7 as shown in Fig. 12.14, which shows three cases.

1. Preference 0.5 for each of the three junction label assignments (hypotheses)
corresponding to the floating triangle, 0 preference for all other junction and
line label hypotheses: converges to floating triangle.

2. Like (1), but with equal preferences given to the junction labels for the tri-
angular hole interpretation, 0 to all other preferences.

3. Preference 3 to the convex edge label for a 2 overrides the three preferences of
1/2 for the floating triangle of case (1). All preferences but these four were 0.

Some Extensions

The translation of constraints to inequalities described above does not
guarantee that they produce a set of half-spaces whose intersection is the convex
hull of the feasible integer solutions. They can produce ‘‘noninteger optima,”’ for
which supposition values are not forced to 1 or 0. This is reminiscent of the
behavior of the linear relaxation operator of Section 12.4.3, and may not be objec-
tionable. If it is, some effort must be expended to cope with it. Here is an example

Sec. 12.4  Scene Labeling and Constraint Relaxation 427



428

Pl g St

pla,=>)+ +
ay a, .
e play = +)
a3
(a) {b)
After 10 After 20 After 30 to 40
Case iterations iterations iterations
(1) 065 0.22 0.01 0.14 090 007 0 0.04 0.99 0 0o o0
065 0.22 0.01 0.14 0.90 007 0 004 0.99 0 0o 0
065 022 0.01 0.14 0.90 007 0 004 0.99 0 0 0
(2) 0.39 0.89 0 0 0.14 095 O© 0 0 099 0 0
039 08 0 0 0.14 095 O 0 0 099 0 0
0.39 0.89 0 0 0.14 095 O 0 0 099 0 O
(3) 056 048 O 0.05 081 023 0 0 0.99 0 0 0 I
0 034 O 0.99 0 015 0 0.99 0 0 0 0.99
056 0.48 0 0.05 081 023 0 0 099 O 0 o0

(c}

Fig. 12.14 As in Fig. 12.10, the triangle of (a) is to be assigned labels, and the changing
label weights are shown for three cases in (c) using the format of (b). Supposition values
for junction labels were used as well, but are not shown. All initial supposition values
were 0.

of the problem. Assume three logical constraints, (4 A B), "(BA ©), and "(CA
A). Suppose A4, B, and C have equal preferences of unity (the preference vector is
(1,1, 1)). Translating the constraints yields

p(4) + p(B)
p(B) + p(C)
)

1
1 (12.35)
p(C) +pl4 1

<

The best feasible solution has a total preference of 1'%, and is
p(4) =p(B)=p(C)=14 (12.36)

Here the ““best” solution is outside the convex hull of the integer solutions (Fig.
12.15).

The basic way to ensure integer solutions is to use stronger constraints than
those arising from the simple rules given above. These may be introduced at first,
or when some noninteger optimum has been reached. These stronger constraints
are called cutting planes, since they cut off the noninteger optima vertices. In the
example above, the obvious stronger constraint is

p(A4) +pB)+p(C) L1 (12.37)

Ch. 12 Inference



piB)=0

A
e pia)
plA) +plB) <1
plA) +p(B) < 1
. 5] plA) +p(B) +p(C) <1
plC)
plA)=0
.33
p(B) +p(C) <1
p(B) p(B)
(@ (b)

Fig. 12.15 (a) shows part of the surface of the feasible solid with constraints = (4 & B),
- (B & C), ~(C & A), and the non-integer vertex where the three halfspaces intersect.
(b) shows a cutting plane corresponding to the constraint “‘at most one of 4, B, or ¢’ that
removes the non-integer vertex.

which says that at most one of 4, B, and Cis true (this is a logical consequence of
the logical constraints). Such cutting planes can be derived as needed, and can be
guaranteed to eliminate all noninteger optimal vertices in a finite number of cuts
[Gomory 1968; Garfinkel and Nemhauser 1972]. Equality constraints may be
introduced as two inequality constraints in the obvious way: This will constrain the
feasible region to a plane.

Suppose that one desires ‘‘weak rules,’” which are usually true but which can
be broken if evidence demands it? For each constraint arising from such a rule,
add a hypothesis to represent the situation where the rule is broken. This
hypothesis is given a negative preference depending on the strength of the rule,
and the constraint enhanced to include the possibility of the broken rule. For
example, if a weak rule gives the constraint P \/ Q, create a hypothesis H
equivalent to "(P\/ Q) = (“(P) A “(Q)), and replace the constraint with P\/ Q\/
H. Then by “‘paying the cost’’ of the negative preference for H, we can have nei-
ther Pnor Qtrue.

Hypotheses can be created as the algorithm proceeds by having demon-like
“‘generator hypotheses.”” The demon watches the supposition value of the genera-
tor, and when it becomes high enough, runs a program that generates explicit
hypotheses. This is clearly useful; it means that all possible hypotheses do not need
to be generated in advance of any scene investigation. The generator can be given a
preference equal to that of the best hypotheses that it can generate.

Relaxation sometimes should determine a real number (such as the slope of
aline) instead of a truth value. A generator-like technique can allow the method to
refine the value of real-valued hypotheses. Basically, the idea is to assign a
(Boolean-valued) generator hypothesis to a range of values for the real value to be

Sec. 12.4  Scene Labeling and Constraint Relaxation 429



determined. When this generator triggers, more hypotheses are generated to get a
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation give
some idea of the flexibility of the basic idea, but also reveal that the method is not
at all cut-and-dried, and is still open to basic investigation. One of the questions
about the method is exactly how to take advantage of parallel computation capabili-
ties. Each constraint and hypothesis can be given its own processor, but how
should they communicate? Also, there seems little reason to suppose that the
optimization problems for this form of relaxation are any easier than they are for
any other multidimensional search, so the method will encounter the usual prob-
lems inherent in such optimization. However, despite all these technical details
and problems of implementation, the linear programming paradigm for the relaxa-
tion computation is a coherent formalization of the process. It provides a relatively
“classical’’ context of results and taxonomy of problems [Hummel and Zucker
1980].

12.5 ACTIVEKNOWLEDGE

430

Active knowledge systems [Freuder 1975] are characterized by the use of pro-
cedures as the elementary units of knowledge (as opposed to propositions or data
base items, for instance). We describe how active knowledge might work, because
it is a logical extreme of the procedural implementation of propositions. In fact,
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this reason
active knowledge is more easily applied to belief maintenance than to planning; it
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a “‘chunk’’ of knowledge, and knows how to manage it
with respect to different visual inputs. Control in an active knowledge system is
completely distributed. Active knowledge can also be viewed as an extension of
the constraint relaxation problem; powerful procedures can make arbitrary de-
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so forth.
Thus the choice of “‘what to do next” is contained in the modules and is not made
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il-
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides a
less structured mechanism for construction and exploration of hypotheses than
does LP-relaxation. Using primitive control functions of the system, the user may
write programs for establishing hypotheses and for using the conclusions so
reached. The programs are ‘‘procedurally embedded’’ knowledge about a problem
domain (e.g. how events relate one to another, what may be conjectured or in-
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses are
created, or instantiated, on the basis of low-level input, high-level beliefs, or any

Ch. 12 Inference



	12.4 Scene Labeling and Constraint Relaxation, p.408
	12.4.1 Consistent and Optimal Labelings, p.408
	12.4.2 Discrete Labeling Algorithms, p.410
	12.4.3 A Linear Relaxation Operator and a Line Labeling Example, p.415
	12.4.4 A Nonlinear Operator, p.419
	12.4.5 Relaxation as Linear Programming, p.420



