determined. When this generator triggers, more hypotheses are generated to get a
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation give
some idea of the flexibility of the basic idea, but also reveal that the method is not
at all cut-and-dried, and is still open to basic investigation. One of the questions
about the method is exactly how to take advantage of parallel computation capabili-
ties. Each constraint and hypothesis can be given its own processor, but how
should they communicate? Also, there seems little reason to suppose that the
optimization problems for this form of relaxation are any easier than they are for
any other multidimensional search, so the method will encounter the usual prob-
lems inherent in such optimization. However, despite all these technical details
and problems of implementation, the linear programming paradigm for the relaxa-
tion computation is a coherent formalization of the process. It provides a relatively
“classical’’ context of results and taxonomy of problems [Hummel and Zucker
1980].

12.5 ACTIVEKNOWLEDGE
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Active knowledge systems [Freuder 1975] are characterized by the use of pro-
cedures as the elementary units of knowledge (as opposed to propositions or data
base items, for instance). We describe how active knowledge might work, because
it is a logical extreme of the procedural implementation of propositions. In fact,
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this reason
active knowledge is more easily applied to belief maintenance than to planning; it
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a “‘chunk’’ of knowledge, and knows how to manage it
with respect to different visual inputs. Control in an active knowledge system is
completely distributed. Active knowledge can also be viewed as an extension of
the constraint relaxation problem; powerful procedures can make arbitrary de-
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so forth.
Thus the choice of “‘what to do next” is contained in the modules and is not made
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il-
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides a
less structured mechanism for construction and exploration of hypotheses than
does LP-relaxation. Using primitive control functions of the system, the user may
write programs for establishing hypotheses and for using the conclusions so
reached. The programs are ‘‘procedurally embedded’’ knowledge about a problem
domain (e.g. how events relate one to another, what may be conjectured or in-
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses are
created, or instantiated, on the basis of low-level input, high-level beliefs, or any

Ch. 12 Inference



reason in between. The process of establishing the initial hypotheses leads to a
propagation of activity (creation, verification, and disconfirmation of hypotheses).
Activation patterns will generally vary with the particular task, in heterarchical
fashion. A priority mechanism can rank hypotheses in importance depending on
the data that contribute to them. Generally, the actions that occur are conditioned
by previous assumptions, the data, the success of methods, and other factors.
HYPER can be used for planning applications and for multistep vision processing
as well as inference (procedures then should generate parallel activity only under
tight control). We shall thus allow HYPER to make use of a context-oriented data
base (Section 13.1.1). It will use the context mechanism to implement ‘‘alternative
worlds” in which to reason.

12.5.1 Hypotheses

A HYPER hypothesis is the attribution of a predicate to some arguments; its name
is always of the form (PREDICATE ARGUMENTS). Sample hypothesis names
could be (HEAD-SHAPED REGION1), (ABOVE A B), (TRIANGLE (X1,Y1)
(X2,Y2) (X3,Y3)). A hypothesis is represented as a data structure with four com-
ponents; the status, contents, context, and links of the hypothesis.

The status represents the state of the HYPER’s knowledge of the truth of the
hypothesis; it may be T (rue), F(alse), (in either case the hypothesis has been esta-
blished) or P(ending). The contents are arbitrary; hypotheses are not just truth-
valued assertions. The hypothesis was asserted in the data-base context given in
context. The links of a hypothesis H are pointers to other hypotheses that have
asked that H be established because they need H’s contents to complete their own
computations.

12.5.2 HOW-TO and SO-WHAT Processes

Two processes are associated with every predicate P which appears as the predicate
of a hypothesis. Their names are (HOW-TO P) and (SO-WHAT P). In them is em-
bedded the procedural knowledge of the system which remains compiled in from
one particular task to another in a problem domain. (HOW-TQ P) expresses how
to establish the hypothesis (P arguments). It knows what other hypotheses must
be established first, the computations needed to establish (P arguments), and so
forth. It has a backward-chaining flavor. Similarly, (SO-WHAT P) expresses the
consequences of knowing P: what hypotheses could possibly now be established
using the contents of (P arguments), what alternative hypotheses should be ex-
plored if the status of (P arguments) is F, and so on. The feeling here is of forward
chaining.

12.5.3 Control Primitives

HYPER hypotheses interact through primitive control statements, which affect the
investigation of hypotheses and the ramification of their consequences. The primi-
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tives are used in HOW-TO and SO-WHAT programs together with other general
computations. Most primitives have an argument called priority, which expresses
the reliability, urgency, or importance of the action they produce, and is used to
schedule processes in a nonparallel computing environment (implemented as a
priority job queue [Appendix 2]). The primitives are GET, AFFIRM, DENY, RE-
TRACT, FAIL, WONDERIF, and NUDGE.

GET is to ascertain or establish the status and contents of a hypothesis. It
takes a hypothesis H and priority PRI as arguments and returns the status and con-
tents of the hypothesis. If H’s status is T or F at the time of execution of the state-
ment, the status and contents are returned immediately. If the status is P (pend-
ing), or if H has not been created yet, the current HOW-TO or SO-WHAT program
calling GET (call it CURPROG) is exited, the proper HOW-TO job (i.e., the one
that deals with H’s predicate) is run at priority PRI with argument H, and a link is
planted in H back to CURPROG. When H is established, CURPROG will be reac-
tivated through the link mechanism.

AFFIRM is to assert a hypothesis as true with some contents.
AFFIRM (H,CONT,PRI) sets H’s status to T, its contents to CONT, activates its
linked programs and then executes the proper SO-WHAT program on it. The
newly activated SO-WHAT programs are performed with priority PRI

DENY is to assert that a hypothesis with some contents is false.
DENY (H,CONT,PRI) is like AFFIRM except that no activation though links oc-
curs, and the status of H is of course set to F.

ASSUME is to assert a hypothesis as true hypothetically.
ASSUME(H,CONT,PRI) uses the data base context mechanism to create a new
context in which H is AFFIRMED; the original context in which the ASSUME
command is given is preserved in the context field of H. H itself is stored into a
context-dependent item named LASTASSUMED; this corresponds to remember-
ing a decision point in PLANNER. By using the information in LASTASSUMED
and the primitive FAIL (see below), simple backtracking can take place in a tree of
contexts.

RETRACT(H) establishes as false a hypothesis that was previously AS-
SUMEd. RETRACT is always carried out at highest priority, on the principle that it
is good to leave the context of a mistaken assumption as quickly as possible. Infor-
mation (including the name of the context being exited) is transmitted back to the
original context in which H was ASSUMEGd by passing it back in the fields of H.

FAIL just RETRACTS the hypothesis that is the value of the item LASTAS-
SUMED in the present context.

WONDERIF is to pass suggested contents to HOW-TO processes for
verification. It can be useful if verifying a value is easier than computing it from
scratch, and is the primitive that passes substantive suggestions. WONDERIF(H]1,
CONT, H2, PRI) approximates the notion ‘‘H2 wonders if H1 has contents
CONT.”

NUDGE is to wake up HOW-TO programs. NUDGE(H,PRI) runs the
HOW-TO program on H with priority PRI. It is used to awaken hypotheses that
might be able to use information just computed. Typically it is a SO-WHAT pro-
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gram that NUDGEs others, since the SO-WHAT program is responsible for using
the fact that a hypothesis is known.

12.5.4 Aspects of Active Knowledge

The active knowledge style of computation raises a number of questions or prob-
lems for its users.

A hypothesis whose contents may attain a large range can be established for
some contents and thus express a perfectly good fact (e.g., that a given location of
an x-ray does not contain evidence for a tumor) but such a fact is usually of little
help when we want to reason about the predicate (about the location of tumors).
The SO-WHAT program for a predicate should be written so as to draw conclu-
sions from such negative facts if possible, and from the conclusions endeavor to
establish the hypothesis as true for some contents. Usually, therefore, it would set
the status of the hypothesis back to P and initiate a new line of attack, or at its dis-
cretion abandon the effort and start an entirely new line of reasoning.

Priorities

A major worry with the scheme as described is that priorities are used to
schedule running of HOW-TO and SO-WHAT processes, not to express the im-
portance {or supposition value) of the hypotheses. The hypothesis being investi-
gated has no way to communicate how important it is to the program that operates
on it, so it is impossible to accumulate importance through time. A very significant
fact may lie ignored because it was given to a self-effacing process that had no way
of knowing it had been handed something out of the ordinary.

The obvious answer is to make a supposition value a field of the hypothesis,
like its status or contents—a hypothesis should be given a measure of its impor-
tance. This value may be used to compute execution priorities for jobs involving it.
This solution is used in some successful systems [Turner 1974].

Structuring Knowledge

One has a wide choice in how to structure the ‘‘theory’’ of a complex prob-
lem in terms of HYPER primitives, predicates, arguments, and HOW-TO and SO-
WHAT processes. The set of HOW-TO and SO-WHAT processes specify the com-
plete theory of the tasks to be performed; HYPER encourages one to consider the
interrelations between widely separated and distinct-sounding facts and conjec-
tures about a problem, and the structure it imposes on a problem is minimal.

Since HOW-TO and SO-WHAT processes make explicit references to one
another via the primitives, they are not ‘““modular’’ in the sense that they can easily
be plugged in and unplugged. If HOW-TO and SO-WHAT processes are invoked
by patterns, instead of by names, some of the edge is taken off this criticism. Re-
moving a primitive from a program could modify drastically the avenues of activa-
tion, and the consequences of such a modification are sometimes hard to foresee in
a program that logically could be running in parallel.

Writing a large and effective program for one domain may not help to write a
program for another domain. New problems of segmenting the theory into predi-
cates, and quantifying their interactions via the primitives, setting up a priority
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structure, and so forth will occur in the new domain, and it seems quite likely that
little more than basic utility programs will carry over between domains.

12.1

12.2

12.3

12.4
12.5
12.6

12.7
12.8

12.9
12.10

12.11

12.12

12.13

12.14

EXERCISES

In the production system example, write a production that specifies that blue re-
gions are sky using the opponents color notation. How would you now deal with
blue regions that are lakes (a) in the existing color-only system; (b) in a system
which has surface orientation information?

This theorem was posed as a challenge for a clausal automatic theorem prover
[Henschen et al. 1980]. It is obviously true: what problems does it present?

({3 x)(¥p)(P(x) = P()]
=> [[x)0K)} = [(¥p) (PN =
@) () (QKx) = ()]
= [[(Bx)P)] = () QNI

Prove that the operator of Eq.(12.18) takes probability vectors into probability vec-
tors, thus deriving the reason for Eq.(12.19).

Verify (12.23).

How do the ¢, of (12.18) affect the labeling? What is their semantics?

If events X and Y always co-occur, then p(X, ¥) = p(X) = p(Y). What is the
correlation in this case? If X and Y never co-occur, what values of p(X) and p(Y)
produce a minimum correlation? If X and Y are independent, how is p (X, Y) re-
lated to p (X) and p (Y)? What is the value of the correlation of independent X and
Y?

Complete Table 12.3.

Use only the labels of Fig. 12.9b and ¢ to compute covariances in the manner of
Table 12.3. What do you conclude?

Show that Eq.(12.29) preserves the important properties of the weight vectors.

Think of some rival normalization schemes to Eq.(12.29) and describe their pro-
perties.

Implement the linear and nonlinear operators of Section 12.4.3 and 12.4.4 and in-
vestigate their properties. Include your ideas from Exercise 12.10.

Show a case that the nonlinear operator of Eq.(12.29) assigns nonzero weights to
maximally incompatible labels (those with r; = —1).

How can a linear programming relaxation such as the one outlined in sec. 12.4.5
cope with faces or edges of the feasible solution solid that are normal to the prefer-
ence direction, yielding several solutions of equal preference?

In Fig. 12.11, what (P, Q) solution is optimal if the preference vector is (1,4)?
4, 1?7 =1,D20,-1D?
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