Goal Achievement 13

438

Goal Achievement and Vision

Goals and plans are important for visual processing.
Some skilled vision actually is like problem solving.

Vision for information gathering can be part of a planned sequence of actions.

Planning can be a useful and efficient way to guide many visual computations,
even those that are not meant to imply ‘‘conscious’” cognitive activity.

The artificial intelligence activity often called planning traditionally has dealt

with “‘robots” (real or modeled) performing actions in the real world. Planning has
several aspects.

Avoid nasty ‘‘subgoal interactions’’ such as getting painted into a corner.

Find the plan with optimal properties (least risk, least cost, maximized ‘‘good-
ness’’ of some variety). '

Derive a sequence of steps that will achieve the goal from the starting situation.

Remember effective action sequences so that they may be applied in new situa-
tions.

Apply planning techniques to giving advice, presumably by simulating the
advisee’s actions and making the next step from the point they left off.

Recover from errors or changes in conditions that occur in the middle of a plan.

Traditional planning research has not concentrated on plans with information

gathering steps, such as vision. The main interest in planning research has been
the expensive and sometimes irrevocable nature of actions in the world. Our goal is
to give a flavor of the issues that are pursued in much more detail in the planning

literature [Nilsson 1980; Tate 1977; Fahlman 1974; Fikes and Nilsson 1971; Fikes
etal. 1972a; 1972b; Warren 1974; Sacerdoti 1974; 1977; Sussman 1975].

Planning concerns an active agent and its interaction with the world. This
conception does not fit with the idea of vision as a passive activity. However, one
claim of this book is that much of vision is a constructive, active, goal-oriented
process, replete with uncertainty. Then a model of vision as a sequence of deci-
sions punctuated by more or less costly information gathering steps becomes more
compelling. Vision often is a sequential (recursive, cyclical) process of alternating
information gathering and decision making. This paradigm is quite common in
computer vision [Shirai 1975; Ballard 1978; Mackworth 1978; Ambler et al. 1975].
However, the formalization of the process in terms of minimizing cost or maximiz-
ing utility is not so common [Feldman and Sproull 1977; Ballard 1978; Garvey
1976]. This section examines the paradigms of planning, evaluating plans with
costs and utilities, and how plans may be applied to vision processing.

13.1 SYMBOLIC PLANNING

Sec. 713.1

In artificial intelligence, planning is usually a form of problem-solving activity in-
volving a formal ‘‘simulation’ of a physical world. (Planning, theorem proving,
and state-space problem solving are all closely related.) There is an agent (the
““robot’”) who can perform actions that transform the state of the simulated world.
The robot planner is confronted with an initial world state and a set of goals to be
achieved. Planning explores world states resulting from actions, and tries to find a
sequence of actions that achieves the goals. The states can be arranged in a tree
with initial state as the root, and branches resulting from applying different actions
in a state. Planning is a search through this tree, resulting in a path or sequence of
actions, from the root to a state in which the goals are achieved. Usually there is a
metric over action sequences; the simplest is that there be as few actions as possi-
ble. More generally (Section 13.2), actions may be assigned some cost which the
planner should minimize.

13.1.1 Representing the World

This section illustrates planning briefly with a classical example—block stacking. In
one simple form there are three blocks initially stacked as shown on the left in Fig.
13.1, to be stacked as shown.

This task may be “‘formalized’’ [Bundy 1978] using only the symbolic objects
Floor, A4, B, and C. (A formalization suitable for a real automated planner must be
much more careful about details than we shall be). Assume that only a single block
can be picked up at a time. Necessary predicates are CLEAR (X) which is true if a
block may be put directly on X and which must be true before X may be picked up,
and ON(X, ¥), which is true if X is resting directly on Y. Let us stipulate that the
Floor is always CLEAR, but otherwise if ON(X, ¥) is true, Yis not CLEAR. Then
the initial situation in Fig. 13.1 is characterized by the following assertions.

Symbolic Planning 439

440

s

Floor Floor
Initial stacks Goal stack Fig. 13.1 A simple block stacking task.

INITIAL STATE: ON(C,A), ON(A, Floor), ON(B, Floor),
CLEAR(C), CLEAR(B), CLEAR (Floor)

The goal state is one in which the following two assertions are true.
GOAL ASSERTIONS: ON(A,B), ON(B,C)

With only these rules, the formalization of the block stacking world yields a very
“loose’” semantics. (The task easily translates to sorting integers with some re-
strictions on operations, or to the “‘seriation’’ task of arranging blocks horizontally
in order of size, or a host of others.)

Actions transform the set of assertions describing the world. For problems of
realistic scale, the representation of the tree of world states is a practical problem.
The issue is one of maintaining several coexisting ‘‘hypothetical worlds’’ and rea-
soning about them. This is another version of the frame problem discussed in sec.
12.1.6. One way to solve this problem is to give each assertion an extra argument,
naming the hypothetical world (usually called a situation [Nilsson 1980; McCarthy
and Hayes 1969]) in which the assertion holds. Then actions map situations to situ-
ations as well as introducing and changing assertions.

An equivalent way to think about (and implement) multiple, dependent, hy-
pothetical worlds is with a tree-structured context-oriented data base. This idea is a
general one that is useful in many artificial intelligence applications, not just sym-
bolic planning. Such data bases are included in many artificial intelligence
languages and appear in other more traditional environments as well. A context-
oriented data base acts like a tree of data bases; at any node of the tree is a set of
assertions that makes up the data base. A new data base (context) may be spawned
from any context (data base)} in the tree. All assertions that are true in the spawn-
ing (ancestor) context are initially true in the spawned (descendant) context.
However, new assertions added in any context or deleted from it do not affect its
ancestor. Thus by going back to the ancestor, all data base changes performed in
the descendent context disappear.

Implementing such a data base is an interesting exercise. Copying all asser-
tions to each new context is possible, but very wasteful if only a few changes are
made in each context. The following mechanism is much more efficient. The root
or initial context has some set of assertions in it, and each descendant context is
merely an add list of assertions to add to the data base and a delete list of assertions
to delete. Then to see if an assertion is true in a context, do the following.

1. Ifthe contextis the root context, look up ‘‘as usual.”

2. Otherwise, if the assertion is on the add list of this context, return true. If the
assertion is on the delete list of this context, return faise.

Ch. 13 Goal Achievement

3. Otherwise, recursively apply this procedure to the ancestor of this context.

In a general programming environment, contexts have names, and there is
the facility of executing procedures ‘‘in”’ particular contexts, moving around the
context tree, and so forth. However, in what follows, only the ability to look up
assertions in contexts is relevant.

13.1.2 Representing Actions

Represent an action as a triple.
ACTION ::= [PATTERN, PRECONDITIONS, POSTCONDITIONS].

Here the pattern gives the name of the action and names for the objects with which
it deals—its “‘formal parameters.’”” Preconditions and postconditions may use the
formal variables of the pattern. In a sense, the preconditions and postconditions
are the ‘““body’” of the action, with subroutine-like ‘‘variable bindings’’ taking
place when the action is to be performed. The preconditions give the world states
in which the action may be applied. Here the preconditions are assumed simply to
be a list of assertions all of which must be true. The postconditions describe the
world state that results from performing the action. The context-oriented data
base of hypothetical worlds can be used to implement the postconditions.

POSTCONDITIONS ::= [ADD-LIST, DELETE-LIST]I.

An action is then performed as follows.

1. Bind the pattern variables to entities in the world, thus binding the associated
variables in the preconditions and postconditions.

2. If the preconditions are met (the bound assertions exist in the data base), do
the next step, else exit reporting failure.

3. Delete the assertions in the delete list, add those in the add list, and exit re-
porting success.

Here is the Move action for our block-stacking example.

Move Object X from Yo Z
PATTERN PRECONDITIONS DELETE-LIST ADD-LIST

Move(X,Y,Z) CLEAR(X) ON(X,Y) ON(X,Z)
CLEAR(Z) CLEAR(Z) CLEAR(Y)
ON(X,Y)

Here X, ¥, and Z are all variables bound to world entities. In the initial state
of Fig. 13.1, Move(C,4,Floor) binds X to C, Yto A, Z to Floor, and the precondi-
tions are satisfied; the action may proceed.

However, notice two things.

Sec. 13.1 Symbolic Planning 441

442

1. The action given above deletes the CLEAR(Floor) assertion that always
should be true. One must fix this somehow; putting CLEAR (Floor) in the
add-list does the job, but is a little inelegant.

2. What about an action like Move(C,4,C)? It meets the preconditions, but
causes trouble when the add and delete lists are applied. One fix here is to keep
in the data base (‘‘world model’’) a set of assertions such as Different (4,8),
Different (4,Floor), . . . , and to add assertions such as Different (X,Z) to the
preconditions of Move.

Such housekeeping chores and details of axiomatization are inherent in ap-
plying basically syntactic, formal solution methods to problem solving. For now,
let us assume that CLEAR (Floor) is never deleted, and that Move(X, Y,Z) is ap-
plied only if Z is different from Xand Y.

13.1.3 Stacking Blocks

In the block-stacking example, the goal is two simultaneous assertions, ON (4, B)
and ON(B, (). One solution method proceeds by repeatedly picking a goal te work
on, finding an operator that moves closer to the goal, and applying it. In this case of
only one action the question is how to apply it—what to move where. This is
answered by looking at the postconditions of the action in the light of the goal. The
reasoning might go like this: ON(B,C) can be made true if Xis Band Zis C. That is
possible in this state if Yis A; all preconditions are satisfied, and the goal ON(B,C)
can be achieved with one action.

Part of the world state (or context) tree the planner must search is shown in
Fig. 13.2, where states are shown diagrammatically instead of through sets of asser-
tions. Notice the following things in Fig. 13.2.

1. Trying to achieve ON(B,C) first is a mistake (Branch 1).

2. Trying to achieve ON(4,B) first is also a mistake for less obvious reasons
(Branch 2).

3. Branches 1 and 2 show ‘‘subgoal interaction.”’ The goals as stated are not in-
dependent. Branch 3 must be generated somehow, either through backtrack-
ing or some intelligent way of coping with interaction. It will never be found by
the single-minded approach of (1) and (2). However, if ON(C,Floor) were
one of the goal assertions, Branch 3 could be found.

Clearly, representing world and actions is not the whole story in planning. In-
telligent search of the context is also necessary. This search involves subgoal selec-
tion, action selection, and action argument selection. Bad choices anywhere can
mean inefficient or looping action sequences, or the generation of impossible
subgoals. ‘‘Intelligent’’ search implies a meta-level capability: the ability of a pro-
gram to reason about its own plans. ‘‘Plan critics’’ are often a part of sophisticated
planners; one of their main jobs is to isolate and rectify unwanted subgoal interac-
tion [Sussman 1975].

Ch. 13 Coal Achievement

Move (B, F, C) @

] - [4] [5]

@@ Move (4, F, B) Mave (8, F, C)

[c] [e]

Branch 1
@A, B, F) @A, F, B)

Branch 2

Branch 3

Fig. 13.2 A state tree generated in planning how to stack three blocks.

Intelligent choice of actions is the crux of planning, and is a major research is-
sue. Several avenues have been and are being tried. Perhaps subgoals may be or-
dered by difficulty and achieved in that order. Perhaps planning should proceed at
various levels of detail (like multiresolution image understanding), where the stra-
tegic skeleton of a plan is derived without details, then the details are filled in by
applying the planner in more detail to the subgoals in the low-resolution plan.

Sec. 13.7 Symbolic Planning 443

13.1.4 The Frame Problem

All planning is plagued by aspects of the frame problem (introduced in Section
12.1.6).

1. It is impractical (and boring) to write down in an action all the things that stay
the same when an action is applied.

2. Similarly, it is impractical to reassert in the data base all the things that remain
true when an action is implied.

3. Often an action has effects that cannot be represented with simple add and
delete lists.

The add and delete list mechanism and the context-oriented data base
mechanism addressed the first two problems. The last problem is more trouble-
some.

Add and delete lists are simple ideas, whereas the world is a complex place. In
many interesting cases, the add and delete lists depend on the current state of the
world when the action is applied. Think of actions TURNBY (X) and MOVEBY (2)
in a world where orientation and location are important. The orientation and loca-
tion after an action depend not just on the action but on the state of the world just
before the action.

Again, the action may have very complex effects if there are complex depen-
dencies between world objects. Consider the problem of the ‘“‘“monkey and bana-
nas,”” where the monkey plans to push the box under the bananas and climb on it
to reach them (Fig. 13.3). Implementation of realistically powerful add and delete
lists may in fact require arbitrary amounts of deduction and computation.

R\ 7

Fig. 13.3 Actions may have complex
effects.

444

Ch. 13 Goal Achievement

This quick précis of symbolic planning does not address many ‘‘classical”
topics, such as learning or remembering useful plans. Also not discussed are: plan-
ning at varying levels of abstraction, plans with uncertain information, or plans
with costs. The interested reader should consult the References for more informa-
tion. The next section addresses plans with costs since they are particularly
relevant to vision; some of the other issues appear in the Exercises.

13.2 PLANNING WITH COSTS

Decision making under uncertainty is an important topic in its own right, being of
interest to policymakers and managers [Raiffa 1968]. Analytic techniques that can
derive the strategy with the ‘‘optimal expected outcome” or ‘‘maximal expected
utility’’ can be based on Bayesian models of probability.

In [Feldman and Sproull 1977] these techniques are explored in the context
of action planning for real-world actions and vision. As an example of the tech-
niques, they are used to model an extended version of the ‘“monkey and bananas”’
problem of the last section, with multiple boxes but without the maddening pulley
arrangement. In the extended problem, there are boxes of different weights which
may or may not support the monkey, and he can apply tests (e.g., vision) at some
cost to determine whether they are usable. Pushing weighted boxes costs some
effort, and the gratification of eating the bananas is ‘‘worth’ only some finite
amount of effort. This extended set of considerations is more like everyday deci-
sion making in the number of factors that need balancing, in the uncertainty in-
herent in the universe, and in the richness of applicable tests. In fact, one might
make the claim that human beings always ‘““maximize their expected utility,”” and
if one knew a person’s utility functions, his behavior would become predictable.
The more intuitive claim that humans beings plan only as far as “‘sufficient ex-
pected utility’” can be cast as a maximization operation with nonzero ‘‘cost of plan-
ning.”

The sequential decision-making model of planning with the goal of maximiz-
ing the goodness of the expected outcome was used in a travel planner [Sproull
1977]. Knowledge of schedules and costs of various modes of transportation and
the attendant risks could be combined with personal prejudices and preferences to
produce an itinerary with the maximum expected utility. If unexpected situations
(canceled flights, say) arose en route, replanning could be initiated; this incremen-
tal plan ramification is a natural extension of sequential decision making.

This section is concerned with measuring the expected performance of plans
using a single number. Although one might expect one number to be inadequate,
the central theorem of decision theory [DeGroot 1970] shows essentially that one
number is enough. Using a numerical measure of goodness allows comparisons
between normally incomparable concepts to be made easily. Quite frequently nu-
merical scores are directly relevant to the issues at stake in planning, so they are
not obnoxiously reductionistic. Decision theory can also help in the process of ap-
plying a plan—the basic plan may be simple, but its application to the world may be
complex, in terms of when to declare a result established or an action unsuccessful.
The decision-theoretic approach has been used in several artificial intelligence and

Sec. 13.2 Planning with Costs 445

	Chapter 13 Goal Achievement, p.438
	13.1 Symbolic Planning, p.439
	13.1.1 Representing the World, p.439
	13.1.2 Representing Actions, p.441
	13.1.3 Stacking Blocks, p.442
	13.1.4 The Frame Problem, p.444

