This quick précis of symbolic planning does not address many ‘‘classical”
topics, such as learning or remembering useful plans. Also not discussed are: plan-
ning at varying levels of abstraction, plans with uncertain information, or plans
with costs. The interested reader should consult the References for more informa-
tion. The next section addresses plans with costs since they are particularly
relevant to vision; some of the other issues appear in the Exercises.

13.2 PLANNING WITH COSTS

Decision making under uncertainty is an important topic in its own right, being of
interest to policymakers and managers [Raiffa 1968]. Analytic techniques that can
derive the strategy with the ‘‘optimal expected outcome” or ‘‘maximal expected
utility’’ can be based on Bayesian models of probability.

In [Feldman and Sproull 1977] these techniques are explored in the context
of action planning for real-world actions and vision. As an example of the tech-
niques, they are used to model an extended version of the ‘“monkey and bananas”’
problem of the last section, with multiple boxes but without the maddening pulley
arrangement. In the extended problem, there are boxes of different weights which
may or may not support the monkey, and he can apply tests (e.g., vision) at some
cost to determine whether they are usable. Pushing weighted boxes costs some
effort, and the gratification of eating the bananas is ‘‘worth’ only some finite
amount of effort. This extended set of considerations is more like everyday deci-
sion making in the number of factors that need balancing, in the uncertainty in-
herent in the universe, and in the richness of applicable tests. In fact, one might
make the claim that human beings always ‘““maximize their expected utility,”” and
if one knew a person’s utility functions, his behavior would become predictable.
The more intuitive claim that humans beings plan only as far as “‘sufficient ex-
pected utility’” can be cast as a maximization operation with nonzero ‘‘cost of plan-
ning.”

The sequential decision-making model of planning with the goal of maximiz-
ing the goodness of the expected outcome was used in a travel planner [Sproull
1977]. Knowledge of schedules and costs of various modes of transportation and
the attendant risks could be combined with personal prejudices and preferences to
produce an itinerary with the maximum expected utility. If unexpected situations
(canceled flights, say) arose en route, replanning could be initiated; this incremen-
tal plan ramification is a natural extension of sequential decision making.

This section is concerned with measuring the expected performance of plans
using a single number. Although one might expect one number to be inadequate,
the central theorem of decision theory [DeGroot 1970] shows essentially that one
number is enough. Using a numerical measure of goodness allows comparisons
between normally incomparable concepts to be made easily. Quite frequently nu-
merical scores are directly relevant to the issues at stake in planning, so they are
not obnoxiously reductionistic. Decision theory can also help in the process of ap-
plying a plan—the basic plan may be simple, but its application to the world may be
complex, in terms of when to declare a result established or an action unsuccessful.
The decision-theoretic approach has been used in several artificial intelligence and
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vision programs [Feldman and Yakimovsky 1974; Bolles 1977; Garvey 1976; Bal-
lard 1978; Sproull 1977].

13.2.1 Planning, Scoring, and Their Interaction

For didactic purposes, the processes of plan generation and plan scoring are con-
sidered separately. In fact, these processes may cooperate more or less intimately.
The planner produces ‘‘sequences’’ of actions for evaluation by the scorer. Each ac-
tion (computation, information gathering, performing a real-world action) has a
cost, expressing expenditure of resources, or associated unhappiness. An action
has a set of possible outcomes, of which only one will really occur when the action is
performed. A goalis a state of the world with an associated ‘“happiness’” or wutility.
For the purposes of uniformity and formal manipulation, goals are treated as (null)
actions with no outcomes, and negative utilities are used to express costs. Then the
plan has only actions in it; they may be arranged in a strict sequence, or be in loops,
be conditional on outcomes of other actions, and so forth.

The scoring process evalutes the expected utility of a plan. In an uncertain
world, a plan prior to execution has only an expected goodness—something might
go wrong. Such a scoring process typically is not of interest to those who would use
planners to solve puzzles or do proofs; what is interesting is the result, not the
effort. But plans that are “‘optimal’’ in some sense are decidedly of interest in real-
world decision making. In a vision context, plans are usually useful only if they
can be evaluated for efficiency and efficacy.

Scoring can take place on ‘“‘complete’ plans, but it can also be used to guide
plan generation. The usual artificial intelligence problem-solving techniques of
progressive deepening search and branch-and-bound pruning may be applied to
planning if scoring happens as the plan is generated [Nilsson 1980]. Scoring can be
used to assess the cost of planning and to monitor planning horizons (how far
ahead to look and how detailed to make the plan). Scoring will penalize plans that
loop without producing results. Plan improvements, such as replanning upon
failure, can be assessed with scores, and the contribution of additional steps (say
for extra information gathering) can be assessed dynamically by scoring. Scoring
can be arbitrarily complex utility functions, thus reflecting such concepts as “‘risk
aversion’’ and nonlinear value of resources [Raiffa 1968].

13.2.2 Scoring Simple Plans

Scoring and an Example

A simple plan is a tree of nodes (there are no loops). The nodes represent ac-
tions (and goals). Outcomes are represented by labeled arcs in the tree. A probabil-
ity of occurrence is associated with each possible outcome; since exactly one out-
come actually occurs per action, the probabilities for the possible outcomes of any
action sum to unity.

The score of a plan is its expected utility. The expected utility of any node is re-
cursively defined as its utility times the probability of reaching that node in the
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plan, plus the expected utilities of the actions at its (possible) outcomes. The pro-
bability of reaching any ‘‘goal state’’ in the plan is the product of probabilities of
outcomes forming a path from the root of the plan to the goal state.

As an example, consider the plan shown in Fig. 13.4. If the plan of Fig. 13.4

Test for table
U: —100

Table located Table not located

Decide
no telephone
present
u:0

Threshold, find
blobs, compute
shapes
U: —300

P13 P14
. Do not
Find telephone find telephone Telephone No telephone
shape shape there there

Correctly
believe

Incorrectly

Decide

Decide

telephone no telephone believe no "
present present telephone there no telephone
U: -200 there

K0 b U: 800

Telephone No telephone Telephone No telephone
there there there there

Incorrectly Correctly
Co;ir:;tly Incc{)_lrr:edctly _miss believe
telephone false telephone finding no telephane
U: 1000 U: —300 telephone there
U: —200 U: 800

Fig. 13.4 This plan to find a telephone in an office scene involves finding a table first
and looking there in more detail. The actions and outcomes are shown. The probabilities
of outcomes are assigned symbols (P10, etc.). Utilities (denoted by U:) are given for the
individual actions. Note that negative utilities may be considered costs. In this example,
decision-making takes no effort, image processing costs vary, and there are various penal-
ties and rewards for correct and incorrect finding of the telephone.
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has probabilities assigned to its outcomes, we may compute its expected utility.
Figure 13.5 shows the calculation. The probability of correctly finding the tele-
phone is 0.34, and the expected utility of the plan is 433.

Although the generation of a plan may not be easy, scoring a plan is a trivial
exercise once the probabilities and utilities are known. In practice, the assignment
of probabilities is usually a source of difficulty. The following is an example using

E(U): 4325
U: —-100

Table located Table not located

E (U): 460
U —300

0.05 0.95
. Do not
Find telephone find telephone Telephone No telephone
shape shape there there

E(U): —200
U: —200

E (U): 870
u:0

E{U): 650
u:0

£ (U): 800
U: 800

0.15
Telephone No telephone Telephone No telephone
there there there there

£ (U): 1000 E(U): —300 E(U): — 200
U: 1000 U: —300 U: —200

E(V): 800
U: 800

Fig. 13.5 As for Fig. 13.4. U: gives the utility of each action. E(U): gives the expected
utillity of the action, which depends on the outcomes below it. Values for outcome proba-
bilities are given on the outcome arcs.
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the telephone-finding plan and some assumptions about the tests. Different as-
sumptions yield different scores.

Computing Qutcome Probabilities: An Example
This example relies heavily on Bayes’ rule:

P(B|A)P(4) = P(4A\B) = P(4|B)P(B). [131)

Let us assume a specific a priori probability that the scene contains a tele-
phone.

P, = apriori probability of Telephone (13.2)

Also assume that something is known about the behavior of the various tests in the
presence of what they are looking for. This knowledge may accrue from experi-
ments to see how often the table test found tables when telephones (or tables)
were and were not present. Let us assume that the following are known probabili-

ties.
P; = P(table located|telephone in scene) (13.3)
Ps = P(table located|no telephone in scene) (13.4)
Either there is a telephone or there is not, and a table is located or it is not, so
P, = apriori probability of no telephone = 1 — P, (13.5)
P4 = P(no table located |telephone in scene) = 1 — P; (13.6)
P = P(no table located |no telephone in scene) = 1 — Ps (13.7)

Similarly with the ‘‘shape test’” for telephones: assume probabilities

P; = P(telephone shape located |telephone) (13.8)

Py = P(telephone shape located |no telephone) (13.9)
with

Py 1Py, Py I=15 (13.10)
as above.

There are a few points to make: First, it is not necessary to know exactly these
probabilities in order to score the plan; one could use related probabilities and
Bayes’ rule. Other useful probabilities are of the form

P(telephone |telephone shape located).

In some systems [Garvey 1976] these are assumed to be available directly. This
section shows how to derive them from known conditional probabilities that
describe the behavior of detectors given certain scene phenomena.

Second, notice the assumption that although both the outcome of the table
test and the shape test depend on the presence of telephones, they are taken to be
independent of each other. That is, having found a table tells us nothing about the
likelihood of finding a telephone shape. Independence assumptions such as this are

Sec. 13.2  Planning with Costs 449



450

useful to limit computations and data gathering, but can be somewhat unrealistic.
To account for the dependence, one would have to measure such quantities as

P(telephone shape found |table located).
Now to compute some outcome probabilities: Consider the probability
P, = P(table located) (13.11)
Let us write

TL for Table Located
TNL for Table Not Located.

A table may be located whether or not a telephone is in the scene. In terms of
known probabilities, Bayes’ rule yields

Py =Py P+ Ps Py (13.12)
Then
P,=P(TNL)=1-P, (13.13)
Calculating P,3 shows a neat trick using Bayes’ Rule:
P,; = P(telephone|TNL) (13.14)

That is, P;3 is the probability that there is a telephone in the scene given that
search for a table was unsuccessful. This probability is not known directly, but

Ppy— P (telephone and TNL)
P(TNL)
_ P(TNL and telephone)
Py,
_ [P(TNL |telephone)P (telephone)] 13.15)
Py,
[Py Py]
Py
Then, of course
Piy=1-Py (13.16)

Reasoning in this way using the conditional probabilities and assumptions
about their independence allows the completion of the calculation of outcome pro-
babilities (see the Exercises). One possibly confusing point occurs in calculation of
P;s, whichis

P5s = P(telephone shape found |table located) (13.17)

By assumption, these events are only indirectly related. By the simplifying assump-
tions of independence, the shape operator and the table operator are independent
in their operation. (Such assumptions might be false if they used common image
processing subroutines, for example.) Of course, the probability of success of each
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depends on the presence of a telephone in the scene. Therefore their performance
is linked in the following way (see the Exercises). (Write TSL for Telephone Shape
Located.)

P,s= P(TSL|TL)P(TSL|telephone) P (telephone|TL) (13.18)
+P (TSL|no telephone) P (no telephone|TL)

13.2.3 Scoring Enhanced Plans

The plans of Section 13.2.2 were called ‘‘simple’” because of their tree structure,
complete ordering of actions, and the simple actions of their nodes. With a richer
output from the symbolic planner, the plans may have different structure. For ex-
ample, there may be OR nodes, any one of whose sons will achieve the action at
the node; AND nodes, all of which must be satisfied (in any order) for the action to
be satisfactorily completed; SEQUENCE nodes, which specify a set of actions and a
particular order in which to achieve them. The plan may have loops, shared
subgoal structure, or goals that depend on each other. How enhanced plans are in-
terpreted and executed depends on the scoring algorithms, the possibilities of
parallel execution, whether execution and scoring are interleaved, and so forth.
This treatment ignores parallelism and limits discussion to expanding enhanced
plans into simple ones.

It should be clear how to go about converting many of these enhanced plans
to simple plans. For instance, sequence nodes simply go to a unique path of ac-
tions. Alternatively, depending on assumptions about outcomes of such actions
(say whether they can fail), they may be coalesced into one action, as was the
““threshold, find blobs, and compute shapes’’ action in the telephone-finding plan.

Rather more interesting are the OR and AND nodes, the order of whose
subgoals is unspecified. Each such node yields many simple plans, depending on
the order in which the subgoals are attacked. One way to score such a plan is to
generate all possible simple plans and score each one, but perhaps it is possible to
do better. For example, loops and mutual dependencies in plans can be dealt with
in various ways. A loop can be analyzed to make sure that it contains an exit (such
as a branch of an OR node that can be executed). One can make ad hoc assump-
tions that the cost of execution is always more than the cost of planning [Garvey
1976], and score the loop by its executable branch. Another idea is to plan incre-
mentally with a finite horizon, expanding the plan through some progressive
deepening, heuristic search, or pruning strategy. The accumulated cost of going
around a loop will soon remove it from further consideration.

Recall (Figs. 13.4 and 13.5) that the expected utility of a plan was defined as
the sum of the utility of each leaf node times the probability of reaching that node.
However, the utilities need not combine linearly in scoring. Different monotonic
functions of utility express such different conceptions as ‘‘aversion to risk’’” or
““gambling addiction.”” These considerations are real ones, and nonlinear utilities
are the rule rather than the exception. For instance, the value of money is notori-
ously nonlinear. Many people would pay $5 for an even chance to win $15; not so
many people would pay $5,000 for an even chance to win $15,000.
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One common way to compute scores based on utilities is the ‘‘cost/benefit”
ratio. This, in the form ‘‘cost/confidence’’ ratio, is used by Garvey in his planning
vision system. This measure is examined in Section 13.2.5; roughly, his ‘‘cost”
was the effort in machine cycles to achieve goals, and his “‘confidence” approxi-
mated the probability of a goal achieving the correct outcome. The utility of correct
outcomes was not explicitly encoded in his planner.

Sequential plan elaboration or partial plan elaboration can be interleaved with
execution and scoring. Most practical planning is done in interaction with the
world, and the plan scoring approach lends itself well to assessing such interac-
tions. In Section 13.2.5 considers a planning vision system that uses enhanced
plans and a limited replanning capability.

A thorny problem for decision making is to assess the cost of planning itself.
The planning process is given its own utility (cost), and is carried only out as far as
is indicated. Of course, the problem is in general infinitely recursive, since there is
also the cost of assessing the cost of planning, etc. If, however, there is a known
upper bound on the utility of the best achievable plan, then it is known that infinite
planning could not improve it. This sort of reasoning is weaker than that needed to
give the expected benefits of planning; it measures only the cost and maximum
value of planning.

Another more advanced consideration is that the results of actions can be
continuous and multidimensional, and discrete probabilities can be extended to
probability distribution functions. Such techniques can reflect the precision of
measurements.

An obviously desirable extension to a planner is a ‘‘learner,”’ that can
abstract rules for action applicability and remember successful plans. One approach
would be to derive and remember ranges of planning parameters arising during ex-
ecution; a range could be associated with a rule specifying appropriate action. This
problem is difficult and the subject of current research.

13.2.4 Practical Simplifications

The expected utility calculations allow plans to be evaluated in a more or less
“‘realistic’’ manner. However, in order to complete the calculations certain proba-
bilities are necessary, and many of these reflect detailed knowledge about the in-
teraction of phenomena in the world. It is thus often impractical to go about a full-
blown treatment of scoring in the style of Section 13.2.2. This section presents
some possible simplifications.

Of course, in many planning problems, such as those whose costs are nil or ir-
relevant, or all of whose goals are equally valuable, there is no need to address util-
ity of plans at all. Such plans are typically not concerned with expenditure of real-
world or planning resources.

Independence of various probabilities is one of the most helpful and per-
vasive assumptions in the calculation of probabilities. An example appeared in Sec-
tion 13.2.2 with the table and telephone shape detectors.

Certain information can be ignored. Garvey [Garvey 1976] ignores failure in-
formation. His planning parameters include the ‘‘cost’ of an action (strictly nega-
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tive utilities reflecting effort), the probability of the action ‘‘succeeding,”” and the
conditional probability that the state of the world is correctly indicated, given suc-
cess. Related to ignoring some information is the assumption that certain out-
comes are more reliable than others. For instance, the decision not to plan past
“failure’’ reports means that they are assumed reliable.

Non-Bayesian rules of inference abound in planners [Shortliffe 1976]; the
idea of assigning a single numerical utility score to plans is by no means the only
way to make decisions.

13.2.5 A Vision System Based on Planning

Overview

This section outlines some features of a working vision system whose actions
are controlled by the planning paradigm [Garvey 1976]. As with all large vision
systems, more issues are addressed in this work than with the planning paradigm as
a control mechanism. For one thing, the system uses multisensory input, including
range and color information. An interactive facility aids in developing and testing
low-level operators and ‘‘strategies’” for object location. The machine-usable
representation of knowledge about the objects in the scene domains and how they
could be located is of course a central component.

The domain is office scenes (Fig. 13.6). For the task of locating different ob-
jects in such scenes, a “‘uniform strategy’’ is adopted. That is, the vision task is al-
ways broken down into a sequence of major goals to be performed in order. Such
uniform strategies, if they are imposed on a system at all, tend to vary with
different tasks, with different sensors or domain, or with different research goals.

Garvey’s uniform strategy consists of the following steps.

1.  Acquire some pixels thought to be in the desired region (the area of scene mak-
ing up the image of the desired object).

5=
e

Akad

i

Fig. 13.6 The planning vision system
uses input scenes such as these, imaged
in different wavelengths and with a
rangefinder.
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2.  Verify to some confidence that indeed the region was the desired one.
3. Boundthe region accurately.

The outline the plan generation, scoring, and execution used in the system
are described in the following paragraphs. The plans generated by the system are
typically enhanced versions of plans like the telephone finder. Plan scoring
proceeds as expected for such plans; allowances are made for the enhanced seman-
tics of plan nodes. A “‘cost/confidence’’ scoring function is used, and various prac-
tical simplifications are made that do not affect the planning paradigm itself.

An Example Plan and Its Execution

The system’s plans are enhanced plans, in the sense of Section 13.2.3. Ac-
tions can be AND, OR or SEQUENCE actions, and shared plan structure and loops
are permitted. Loops that contain only internal, planning actions would never ter-
minate. However, a loop with an OR node can terminate (has an exit) if one of the
subactions of the OR is executable. A plan for locating a chair in an office scene is
shown in Fig. 13.7. In Fig. 13.7, the acquire—validate—bound strategy is evident in
the two SEQUENCE subgoals of the Find Chair main goal, which is an AND goal.
The loop in the plan is evident, and makes sense here because often planning is
done for information gathering, not for real world actions.

As noted in Section 13.2.3, an enhanced plan may not be completely
specified. If it is to be executed one subgoal at a time (no parallelism is allowed),
sequences of subactions must be determined for its AND and OR actions. In
Garvey’s planner, these sequences are determined initially on the basis of apriori
information, but the partial results of actions are ‘‘fed back,’” so that dynamic
rescoring and hence dynamic reordering of goal sequences is possible. For exam-
ple, if one subgoal of an AND action fails, the AND action is abandoned. Thus this
planner is to some degree incremental.

In execution, Fig. 13.7 might result in the sequence of actions depicted in
Fig. 13.8. The acquisition phase of object location has the most alternatives, so
plan generation effort is mainly spent there. Acquisition proceeds either directly or
indirectly. Direct acquisition is the classification of input data gathered from a ran-
dom sampling of a window in the image; the input data are rich enough to allow
basic pattern recognition techniques to identify the source of individual pixels.

Indirect acquisition is the use of the location of other “‘objects’ (really
identified regions) in the scene to locate the desired region. The desired region
might be found by “‘scanning’’ vertically or horizontally from the already identified
region, for instance. The idea is a planning version of a common one (e.g., the
geometric location networks of Section 10.3.2): use something already located to
limit and direct search for something else.

Plan Generation

A plan such as Fig. 13.7 is ““elaborated’’ from the basic Find Chair goal by re-
cursively expanding goals. Some goals (such as to find a chair) are not directly exe-
cutable; they need further elaboration. Elaboration continues until all the subgoals
are executable. Executable subgoals are those that analyze the image, run filters
and detectors over parts of it, and generate decisions about the presence or absence
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(a) (b)

(c) (a)

Fig. 13.8 The plan of Fig. 13.7 finds the most promising execution sequence for finding
the chair in the scene of Fig. 13.6: find the seat first, then scan upwards from the seat
looking for the back. Acquisition of the seat proceeds by sampling (a), followed by
classification (b). The Validation procedure eliminates non-chair points (c), and the
Bounding procedure produces the seat region (d). To find the back, scanning proceeds in
the manner indicated by (e) (actually fewer points are examined in each scan). The back
is acquired and bounded, leading to the final location of the chair regions (f).
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Fig. 13.8 (cont.)

of image phenomena. This straightforward elaboration is akin to macro expansion,
and is not a very sophisticated planning mechanism (the program cannot criticize
and manipulate the plan, only score it). A fully elaborated plan is presented for
scoring and execution.

The elaboration process, or planner, has at its disposal several sorts of
knowledge embodied as modules that can generate subgoals for a goal. Some are
general (to find something, find all its parts); some are less general (a chair has a
back and a seat); some are quite specific, being perhaps programs arising from an
earlier interactive method-generation phase. The elaborator is guided by informa-
tion stored about objects, for instance this about a tabletop:

OBJECT PROPERTIES RELATIONS

Table TOP  Hue:26-58 Supports Telephone 0.6
Sat.: 0.23-0.32  Supports Book 0.4
Bright.: 18-26  Occludes Wall 1
Height: 26-28
Orient.: —7-7

Here the orientation information indicates a vertical surface normal. The
planner knows that it has a method of locating horizontal surfaces, and the plan
elaborator can thus create a goal of direct acquisition by first locating a horizontal
plane. The relational information allows for indirect acquisition plans. The elabora-
tor puts direct and indirect alternatives under an OR node in the plan. Information
not used for acquisition (height, color) may be used for validation.

Loops may occur in an elaborated plan because each newly generated goal is
checked against goals already existing. Should it or an equivalent goal already ex-
ist, the existing goal is substituted for the newly generated one. Goals may thus
have more than one ancestor, and may depend on one another.
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At this stage, the planner does not use any planning parameters (cost, utili-
ties, etc.); it is strictly symbolic. As mentioned above, important information
about execution sequences in an enhanced plan is provided by scoring.

Plan Scoring and Execution

The scoring in the vision plan is a version of that explained in Sections 13.2.2
through 13.2.4. Each action in a plan is assumed either to succeed (S) in locating
an object or to fail. Each action may report either success (‘‘S’’) or failure. An ac-
tion is assumed to report failure correctly, but possibly to be in error in reporting
success. Each action has three ““planning parameters’” associated with it. They are
C, its “‘cost”” (in machine cycles), P(*‘S’’) the probability of it reporting success,
and P (S]¢“S’"), the probability of success given a report of success.

As shown earlier, the product

P(S|*S™)P(“S™) (13.19)

is the probability that the action has correctly located an object and reported suc-
cess. This product is called the ‘‘confidence’ of the action. An action has structure
as shown in Fig. 13.9.

The score of an action is computed as

score = —oo3t__ (13.20)
confidence
The planner thus must minimize the score.

The initial planning parameters of an executable action typically are deter-
mined by experimentation. The parameters of internal (AND, OR, SEQUENCE)
actions by scoring methods alluded to in Sections 13.2.2, 13.2.3, and the Exercises
(there are a few idiosyncratic ad hoc adjustments.).

It may bear repeating that planning, scoring, and execution are not separated
temporally in this sytem. Scoring is used after the enhanced plan is generated to
derive a simple plan (with ordered subgoals). Execution can affect the scores of
nodes, and so execution can alternate with “‘replanning” (really rescoring result-
ing in a reordering). Recall the example of failure of an AND or SEQUENCE
subgoal, which can immediately fail the entire goal. More generally, the entire goal
and ultimately the plan may be rescored. For instance, the parameters of a success-
ful action are modified by setting the cost of the executed action to 0 and its
confidence to its second parameter, P (S|‘S™).

Given a scored plan, execution is then easy; the execution program starts at
the top goal of the plan, working its way down the best path as defined by the scores
of nodes it encounters. When an executable subgoal is found (e.g. “‘look for a
green region”’), it is passed to an evaluation function that “‘runs’’ the action asso-
ciated with the subgoal. :

The subgoal is either achieved or not; in either case, information about its
outcome is propagated back up the plan. Failure is easy; a failed subgoal of an
AND or SEQUENCE goal fails the goal, and this failure is propagated. A failed
subgoal of an OR goal is removed from the plan. The use of success information is
more complex, involving the adjustment of confidences and planning parameters
illustrated above.
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Exercises

Detector for
object

P ("success”’)

Detector reports
’success”’

Decide
object
present

P (object |“success™)

1-P (“success")

Detector reports
failure”

Object not

Object present present

Incorrectly
decide object
present

Correctly
decide object
present

Fig. 13.9 This is the microstructure of a node (“‘action’’) of Garvey’s planning
system in terms of simple plans. Think of actions as being object detectors which
announce ‘‘Found™ or “‘Not Found.” Garvey’s planning parameters are
P(“Found’’) and P(Object is there|*‘Found’). Confidence in the action is their
product; it is the probability of correctly detecting the object. All other outcomes

are lumped together and not used for planning.

Decide object
not
present

1-P (object|*’success"’)

After the outcome of a goal is used to adjust the parameters of other goals,
the plan is rescored and another cycle of execution performed. The execution can
use knowledge about the image picked up along the way by prior execution. This is
how results (such as acquired pixels) are passed to later processing stages (such as
the validation process). Such a mechanism can even be used to remember success-

ful subplans for later use.

EXERCISES

13.1 Complete the computation of outcome probabilities in the style of Section 13.2.2,
using the assumptions given there. Check your work by showing (symbolically)
that the probabilities of getting to the terminal actions (“‘goal states’’) of the plan

sumto 1.

13.2 Assume in Section 13.2.2 that the results of the ‘‘table”” and ‘‘telephone shape’’
detectors are not independent. Formulate your assumptions and compute the new

outcome probabilities for Fig. 13.4.
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13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

Show that

e PB|(AANC)HPU4]|C)
P(B|C)

Band C are independent if P(BA C) = P(B) P(C). Assuming that Band C are
independent, show that

PUA|BAC)

P(B|C) = P(B)
PUBAC)A)=P(B|A)P(C|A)
P(B|(AAC)) = P(B|A)

Starting from the fact that
PAAB)Y=PUABAC)+ PUAUANBA(=C))

show how P;s was computed in Section 13.2.2.

A sequence D (N) of N detectors is used to detect an object; the detectors either
succeed or fail. Detector outputs are assumed independent of each other, being
conditioned only on the object. Using previous results, show that the probability of
an object being detected by applying a sequence of N detectors D (N) is recursively
rewritable in terms of the output of the first detector D1 and the remaining se-
quence D (N—1) as

P(D1|0)P(O|D(N-1))
P(D1|D(N-1))

P(O|D(N))=

Consider scoring a plan containing an OR node (action). Presumably, each subgoal
of the OR has an expected utility. The OR action is achieved as soon as one of the
subgoals is achieved. Is it possible;to order the subgoals for trial so as to maximize
the expected utility of the plan? (This amounts to a unique “‘best’’ rewriting of the
plan to make it a simple plan.)

Answer question 13.7 for an AND node; remember that the AND will fail as soon
as any of its subgoals fails.

What can you say about how the cost/confidence ratio of Garvey’s planner is re-
lated to the expected utility calculations of Section 13.2.2?

You are at Dandy Dan’s used car lot. Consumer Reports says that the a priori proba-
bility that any car at Dandy Dan’s is a lemon is high. You know, though, that to test
a car you kick its tire. In fact, with probability:

P(““C”’|C) : akick correctly announces ‘‘creampuff>> when the
car actually is a creampuff

P(““C”|L) : akick incorrectly announces ‘‘creampuff”’ when
the car is actually a lemon

P(L) : the a priori probability that the car is a lemon

Your plan for dealing with Dandy Dan is shown below; give expressions for the
probabilities of arriving at the nodes labeled S, S;, Fi, F,, and F3. Give numeric
answers using the following values

PCCCY=105, P(“C”|L) = 0.5, P(L) =0.75

Ch. 13 Goal Achievement



Kick reports Kick reports
"creampuff” “lemon'’
Buy
Ford
Fordisa Ford is a Kick reports Kick reports
creampuff lemon “creampuff’’ “lemon”’

F;: Goto
“Krazy Ken’s"
Kar lot

Sy: Fq:
happiness unhappiness

Chevy is a Chevy is a
creampuff lemon

Syt
happiness

Ex. 13.10

Fy:
unhappiness

13.11 Two bunches of bananas are in a room with a monkey and a box. One of the
bunches is lying on the floor, the other is hanging from the ceiling. One of the
bunches is made of wax. The box may be made of flimsy cardboard. Given that:

P(WH) = 0.2:probability that the hanging bananas are wax
P(WL) = 0.8:probability that the lying bananas are wax

P(C) = 0.5 :probability that the box is cardboard
Uleat) = 200:utility of eating a bunch of bananas
C(walk) = —10:cost of walking a unit distance
C(push) = —20:cost of pushing the box a unit distance
C(climb) = —20:cost of climbing up on box

(a) Analyze two different plans for the monkey, showing all paths and calcula-
tions. Give criteria (based upon extra information not given here) that
would allow the monkey to choose between these plans.
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(b) Suppose the monkey knows that the probability that the box will collapse is
inversely proportional to the cost of pushing the box a unit distance (and
that he can sense this cost after pushing the box 1 unit distance). For

example,
P(C) = 1.0 — [C(push) x 0.01]
P(C(push) = 10)=0.1
P(C(push) = 20) =0.1
P(C(push) = 100) = 0.1
Repeat part(a) (in detail).
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