Early Processing 3

3.1 RECOVERING INTRINSIC STRUCTURE

The imaging process confounds much useful physical information into the gray-
level array. In this respect, the imaging process is a collection of degenerate
transformations. However, this information is not irrevocably lost, because there
is much spatial redundancy: Neighboring pixels in the image have the same or
nearly the same physical parameters. A collection of techniques, which we call
early processing, exploits this redundancy in order to undo the degeneracies in the
imaging process. These techniques have the character of transformations for
changing the image into ‘“‘parameter images’’ or intrinsic images [Barrow and
Tenenbaum 1978; 1981] which reflect the spatial properties of the scene. Common
intrinsic parameters are surface discontinuities, range, surface orientation, and
velocity.

In this chapter we neglect high-level internal model information even though
it is important and can affect early processing. Consider the case of the perceived
central edge in Fig. 3.1a. As shown by Fig. 3.1b, which shows portions of the same
image, the central edge of Fig. 3.1a is not present in the data. Nevertheless, the hu-
man perceiver ‘‘sees’’ the edge, and one reasonable explanation is that it is a prod-
uct of an internal block model. Model-directed activity is taken up in later
chapters. These examples show how high level models (e.g., circles) can affect
low-level processors (e.g., edge finders). However, for the purposes of study it is
often helpful to neglect these effects. These simplifications make it easier to derive
the fundamental constraints between the physical parameters and gray levels. Once
these are understood, they can be modified using the more abstract structures of
later chapters.

Most early computer vision processing can be done with parallel computa-
tions whose inputs tend to be spatially localized. When computing intrinsic images
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(a) (b)

Fig. 3.1 (a) A perceived edge. (b) Portions of image in (a) showing the lack of image data.

the parallel computations are iterated until the intrinsic parameter measurements
converge to a set of values. A computation that falls in the parallel-iterative
category is known in computer vision as relaxation [Rosenfeld et al. 1976]. Relaxa-
tion is a very general computational technique that is useful in computer vision.
Specific examples of relaxation computations appear throughout the book; general
observations on relaxation appear in Chapter 12.

This chapter covers six categories of early processing techniques:

1. Filtering is a generic name for techniques of changing image gray levels to
enhance the appearance of objects. Most often this means transformations
that make the intensity discontinuities between regions more prominent.
These transformations are often dependent on gross object characteristics. For
example, if the objects of interest are expected to be relatively large, the image
can be blurred to erase small intensity discontinuities while retaining those of
the object’s boundary. Conversely, if the objects are relatively small, a
transformation that selectively removes large discontinuities may be appropri-
ate. Filtering can also compensate for spatially varying illumination.

2. Edge operators detect and measure very local discontinuities in intensity or its
gradient. The result of an edge operator is usually the magnitude and orienta-
tion of the discontinuity.

3. Range transforms use known geometry about stereo images to infer the dis-
tance of points from the viewer. These transforms make use of the inverse per-
spective transform to'interpret how points in three-dimensional space project
onto stereo pairs. A correspondence between points in two stereo images of
known geometry determines the range of those points. Relative range may
also be derived from local correspondences without knowing the imaging
geometry precisely.

4. Surface orientation can be calculated if the source illumination and reflectance
properties of the surface are known. This calculation is sometimes called
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“‘shape from shading.”” Surface orientation is particularly simple to calculate
when the source illumination can be controlled.

5. Optical flow, or velocity fields of image points, can be calculated from local
temporal and spatial variations in sequences of gray-level images.

6. A pyramid is a general structure for representing copies of the image at multi-
ple resolutions. A pyramid is a “‘utility structure’ which can dramatically im-
prove the speed and effectiveness of many early processing and later segmen-
tation algorithms.

3.2 FILTERING THE IMAGE

Filtering is a very general notion of transforming the image intensities in some way
so as to enhance or deemphasize certain features. We consider only transforms
that leave the image in its original format: a spatial array of gray levels. Spurred on
by the needs of planetary probes and aerial reconnaissance, filtering initially
received more attention than any other area of image processing and there are ex-
cellent detailed reference works (e.g., [Andrews and Hunt 1977; Pratt 1978; Gon-
zalez and Wintz 19771). We cannot afford to examine these techniques in great
detail here; instead, our intent is to describe a set of techniques that conveys the
principal ideas.

Almost without exception, the best time to filter an image is at the image for-
mation stage, before it has been sampled. A good example of this is the way chemi-
cal stains improve the effectiveness of microscopic tissue analysis by changing the
image so that diagnostic features are obvious. In contrast, filtering after sampling
often emphasizes random variations in the image, termed noise, that are undesir-
able effects introduced in the sampling stage. However, for cases where the image
formation process cannot be changed, digital filtering techniques do exist. For ex-
ample, one may want to suppress low spatial frequencies in an image and sharpen
its edges. An image filtered in this way is shown in Fig. 3.2.

Note that in Fig. 3.2 the work of recognizing real-world objects still has to be
done. Yet the edges in the image, which constitute object boundaries, have been
made more prominent by the filtering operation. Good filtering functions are not
easy to define. For example, one hazard with Fourier techniques is that sharp
edges in the filter will produce unwanted "ringing" in the spatial domain, as evi-
denced by Fig. 2.5. Unfortunately, it would be too much of a digression to discuss
techniques of filter design. Instead, the interested reader should refer to the refer-
ences cited earlier.

3.2.1 Template Matching

Template matching is a simple filtering method of detecting a particular feature in
an image. Provided that the appearance of this feature in the image is known accu-
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() (b)

Fig. 3.2 Effects of high frequency filtering. (a) Original image. (b) Filtered image.

rately, one can try to detect it with an operator called a template. This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial image and a relevant template.

Correlation
One standard similarity measure between a function f(x) and a template ¢(x) is
the Euclidean distance d (y) squared, given by

dy)?=Y[rx) —tx—y)? (3.1)

X

M N

By ) wemean Y, 2. ,forsome M, Nwhich define the size of the template ex-
X x=—My=—N

tent. If the image at point y is an exact match, then d (y) = 0; otherwise, d (y) >0.

Expanding the expression for ¢2, we can see that

d(y) = Y [2x) - 2fx)e(x — y) + 2(x — y)] (3.2)

Notice that ¥, *(x — y) is a constant term and can be neglected. When ¥ /2(x) is
X X
approximately constant it too can be discounted, leaving what is called the cross

correlation between fand .

R,(y) =2 fx)it(x—y) (3.3)

This is maximized when the portion of the image ‘‘under” ¢ is identical to ¢
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Template

Industrial Image

Fig. 3.3 An industrial image and template for a hexagonal nut.

One may visualize the template-matching calculations by imagining the tem-
plate being shifted across the image to different offsets; then the superimposed
values at this offset are multiplied together, and the products are added. The result-
ing sum of products forms an entry in the ‘‘correlation array’’ whose coordinates
are the offsets attained by the source template.

If the template is allowed to take a/l offsets with respect to the image such that
some overlap takes place, the correlation array is larger than either the template or
the image. An n X n image with an m X m template yields an
(n+m—1xn+ m—1) correlation array. If the template is not allowed to
shift off the image, the correlation array is (n —m +1 X n—m + 1); for
m < n. Another form of correlation results from computing the offsets modulo
the size of the image; in other words, the template ““wraps around’’ the image. Be-
ing shifted off to the right, its right portion reappears on the left of the image. This
sort of correlation is called periodic correlation, and those with no such wraparound
properties are called aperiodic. We shall be concerned exclusively with aperiodic
correlation. One can always modify the input to a periodic correlation algorithm by
padding the outside with zeros so that the output is the aperiodic correlation.

Figure 3.4 provides an example of (aperiodic) ‘‘shift, add, multiply”’ tem-
plate matching. This figure illustrates some difficulties with the simple correlation
measure of similarity. Many of the advantages and disadvantages of this measure
stem from the fact that it is linear. The advantages of this simplicity have mainly to
do with the existence of algorithms for performing the calculation efficiently (in a-
transform domain) for the entire set of offsets. The disadvantages have to do with

Template Image Correlation ’ ) .
Fig. 3.4 (a) A simple template. (b) An image
with noise. (¢) The aperiodic correlation array of
111 11000 T42xx the template and image. Ideally peaks in the

111 11100 532xx correlation indicate positions of good match. Here

111 10100 219xx the correlation is only calculated for offsets that
00000 XXXXX leave the template entirely within the image. The
00008 XXX XX correct peak is the upper left one at 0, 0 offset. The

x = undefined *““false alarm’’ at offset 2, 2 is caused by the bright

“‘noise point’” in the lower right of the image.
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the fact that the metric is sensitive to properties of the image that may vary with
the offset, such as its average brightness. Slight changes in the shape of the object,
its size, orientation, or intensity values can also disturb the match.

Nonetheless, the idea of template matching is important, particularly if Eq.
(3.3) is viewed as a filtering operation instead of an algorithm that does all the work
of object detection. With this viewpoint one chooses one or more templates
(filters) that transform the image so that certain features of an object are more
readily apparent. These templates generally highlight subparts of the objects. One
such class of templates is edge templates (discussed in detail in Section 3.3).

We showed in Section 2.2.4 that convolution and multiplication are Fourier
transform pairs. Now note that the correlation operation in (3.3) is essentially the
same as a convolution with a function ¢#'(x) = t(—x). Thus in a mathematical
sense cross correlation and convolution are equivalent. Consequently, if the size of
the template is sufficiently large, it is cheaper to perform the template matching
operation in the spatial frequency domain, by the same transform techniques as for
filtering.

Normalized Correlation

A crucial assumption in the development of Eq. (3.3) was that the image en-
ergy covered by the matching template at any offset was constant; this leads to a
linear correlation matching technique. This assumption is approximately correct if
the average image intensity varies slowly compared to the template size, but a
bright spot in the image can heavily influence the correlation by affecting the sum
of products violently in a small area (Fig. 3.4). Even if the image is well behaved,
the range of values of the metric can vary with the size of the matching template.
Are there ways of normalizing the correlation metric to make it insensitive to these
variations?

There is a well-known treatment of the normalized correlation operation. It
has been used for a variety of tasks involving registration and stereopsis of images
[Quam and Hannah 1974]. Let us say that two input images are being matched to
find the best offset that aligns them.

Let £, (x) and f,(x) be the images to be matched. g, is the patch of £, (possi-
bly all of it) that is to be matched with a similar-sized patch of f,. ¢, is the patch of
/1 that is covered by ¢, when g, is offset by y.

Let £ () be the expectation operator. Then

olgqy) = [E(g}) — (E(g))3” (3.4)
o(gy) = [E(g}) — (E(gy)4"” (3.5)

give the standard deviations of points in patches ¢; and g,. (For notational con-
venience, we have dropped the spatial arguments of ¢, and g,.) Finally, the nor-
malized correlation is

_ E(Q1Q2) - E(ql)E(qg)
R = eatoke)

(3.6)

and E (q,q,) is the expected value of the product of intensities of points that are
superimposed by the translation by y.
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The normalized correlation metric is less dependent on the local properties of
the reference and input images than is the unnormalized correlation, but it is sensi-
tive to the signal-to-noise content of the images. High uncorrelated noise in the
two images, or the image and the reference, decreases the value of the correlation.
As a result, one should exercise some care in interpreting the metric. If the noise
properties of the image are known, one indication of reliability is given by the
““(signal + noise)-to-noise’’ ratio. For the normalized correlation to be useful, the
standard deviation of the patches of images to be matched (i.e., of the areas of im-
age including noise) should be significantly greater than that of the noise. Then a
correlation value may be considered significant if it is approximately equal to the
theoretically expected one. Consider uncorrelated noise of identical standard devi-
ation, in a patch of true value f(x, y). Let the noise component of the image be
n (x, y). Then the theoretical maximum correlation is

|- o) (3.7)

a? (f +n)
In matching an idealized, noise-free reference pattern, the best expected
value of the cross correlation is
_o() (3.8)
o(f+n)

If the noise and signal characteristics of the data are known, the patch size
may be optimized by using that information and the simple statistical arguments
above. However, such considerations leave out the effects of systematic, nonsta-
tistical error (such as imaging distortions, rotations, and scale differences between

“images). These systematic errors grow with patch size, and may swamp the statisti-
cal advantages of large patches. In the worst case, they may vitiate the advantages
of the correlation process altogether.

Since correlation is expensive, it is advantageous to ensure that there is
enough information in the patches chosen for correlation before the operation is
done. One way to do this is to apply a cheap “‘interest operator’’ before the rela-
tively expensive correlation. The idea here is to make sure that the image varies
enough to give a usable correlation image. If the image is of uniform intensity,
gven its correlation with itself (autocorrelation) is flat everywhere, and no infor-
mation about where the image is registered with itself is derivable. The “‘interest
operator’’ is a way of finding areas of image with high variance. In fact, a common
and useful interest measure is exactly the (directional) variance over small areas of
image. One directional variance algorithm works as follows.

The Moravec interest operator [Moravec 1977] produces candidate match
points by measuring the distinctness of a local piece of the image from its sur-
round. To explain the operator, we first define a variance measure at a pixel (x) as

var (x, y) = [ Y ) —fx+ky+ 1}]2’% (3.9)

k, lins

5= '(O, a), (0, —a), (a, 0), (—a, 0)]
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where a is a parameter. Now the interest operator value is initially the minimum of
itself and surrounding points:

IntOpVal (x) = m<1r11 [var (x + y)] (3.10)
y

Next a check is made to see if the operator is a local maximum by checking neigh-
bors again. Only local maxima are kept.

IntOpVal(x) := 0 if
IntOpVal(x) = IntOpVal(x + y) (3.11)
fory <1

Finally, candidate points are chosen from the IntOpVal array by thresholding.
x is a candidate point iff IntOpVal (x) > T (3.12)

The threshold is chosen empirically to produce some fraction of the total image
points.

3.2.2 Histogram Transformations

A gray-level histogram of an image is a function that gives the frequency of oc-
currence of each gray level in the image. Where the gray levels are quantized from
0 to n, the value of the histogram at a particular gray level p, denoted s (p), is the
number or fraction of pixels in the image with that gray level. Figure 3.5 shows an
image with its histogram.

A histogram is useful in many different ways. In this section we consider the
histogram as a tool to guide gray-level transformation algorithms that are akin to
filtering. A very useful image transform is called histogram equalization. Histogram
equalization defines a mapping of gray levels p into gray levels ¢ such that the dis-
tribution of gray levels g is uniform. This mapping stretches contrast (expands the

(b)

J

(a) Fig. 3.5 (a) Animage. (b) Its intensity histogram.
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range of gray levels) for gray levels near histogram maxima and compresses con-
trast in areas with gray levels near histogram minima. Since contrast is expanded
for most of the image pixels, the transformation usually improves the detectability
of many image features.

The histogram equalization mapping may be defined in terms of the cumula-
tive histogram for the image. To see this, consider Fig. 3.6a. To map a small inter-
val of gray levels dp onto an interval dqg in the general case, it must be true that

glg)dg = h(p)dp (3.13)

where g (g) is the new histogram. If, in the histogram equalization case, g (g) is to
be uniform, then

(3.14)

2
g(flz) - ‘“ﬂ

g hipl

hig) p

(b)

Fig. 3.6 {(a) Basis for a histogram equalization technique. (b) Results of histo-
gram equalization.
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where N? is the number of pixels in the image and M is the number of gray levels.
Thus combining Egs. (3.13) and (3.14) and integrating, we have

M
glg) = F_z‘h(p) dp (3.15)

But Eq. (3.15) is simply the equation for the normalized cumulative histogram.
Figure 3.6b shows the histogram-equalized image.

3.2.3 Background Subtraction

Background subtraction can be another important filtering step in early processing.
Many images can have slowly varying background gray levels which are incidental
to the task at hand. Examples of such variations are:

« Solution gradients in cell slides
« Lighting variations on surfaces in office scenes
« Lungimages in a chest radiograph

Note that the last example is only a ‘‘background’” in the context of looking for
some smaller variations such as tumors or pneumoconiosis.

Background subtraction attempts to remove these variations by first approxi-
mating them (perhaps analytically) with a background image f, and then subtract-
ing this approximation from the original image. That is, the new image f,, is

fo(x) = f(x) — f,(x) (3.16)

Various functional forms have been tried for analytic representations of slowly
varying backgrounds. In the simplest cases, f, (x) may be a constant,

f(x) =¢ (3.17)
or linear,
f(x) =mx+c (3.18)

A more sophisticated background model is to use a low-pass filtered variant of the
original image:

£ (x) =57 H @) F(a)] (3.19)

where H (u) is a low-pass filtering function. The problem with this technique is
that it is global; one cannot count on the ‘“‘best’’ effect in any local area since the
filter treats all parts of the image identically. For the same reason, it is difficult to
design a Fourier filter that works for a number of very different images.

A workable alternative is to approximate f,(x), using splines, which are
piecewise polynomial approximation functions. The mathematics of splines is
treated in Chapter 8 since they find more general application as representations of
shape. The filtering application is important but specialized. The attractive feature
of a spline approximation for filtering is that it is variation diminishing and spatially
variant. The spline approximation is guaranteed to be ‘“‘smoother”’ than the origi-
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nal function and will approximate the background differently in different parts of
the image. The latter feature distinguishes the method from Fourier-domain tech-
niques which are spatially invariant. Figure 3.7 shows the results of spline filtering.

3.2.4 Filtering and Reflectance Models

Leaving the effects of imaging geometry implicit (Section 2.2.2), the definitions in
Section 2.2.3 imply that the image irradiance (gray level) at the image point x'is
proportional to the product of the scene irradiance E and the reflectance r at its
corresponding world point x.

f&X) = EX)rx) (3.20)

The irradiance at x is the sum of contributions from all illumination sources, and
the reflectance is that portion of the irradiance which is reflected toward the ob-
server (camera). Usually Echanges slowly over a scene, whereas rchanges quickly
over edges, due to varying face angles, paint, and so forth. In many cases one
would like to detect these changes in r while ignoring changes in £. One way of do-
ing this is to filter the image f(x') to eliminate the slowly varying component.
However, as fis the product of illumination and reflectance, it is difficult to define
an operation that selectively diminishes E while retaining r. Furthermore, such an
operation must retain the positivity of f. One solution is to take the logarithm of
Eq. (3.20). Then

logf = logE + logr (3.21)

Equation (3.21) shows two desirable properties of the logarithmic transformation:
(1) the logarithmic image is positive in sign, and (2) the image is a superposition of
the irradiance component and reflectance component. Since reflectance is an in-

Fig. 3.7 The results of spline filtering to remove background variation.
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trinsic characteristic of objects, the obvious goal of image analysis is to recognize
the reflectance component under various conditions of illumination. Since the
separation of two components is preserved under linear transformations and the ir-
radiance component is usually of low spatial frequency compared to the reflectance
component, filtering techniques can suppress the irradiance component of the sig-
nal relative to the reflectance component.

If the changes in r occur over very short distances in the images, r may be iso-
lated by a three-step process [Horn 1974]. First, to enhance reflectance changes,
the image function is differentiated (Section 3.3.1). The second step removes the
low irradiance gradients by thresholding. Finally, the resultant image is integrated
to obtain an image of perceived ‘‘lightness” or reflectance. Figure 3.8 shows these
steps for the one-dimensional case.

A basic film parameter is density, which is proportional to the logarithm of
transmitted intensity; the logarithmically transformed image is effectively a density
image. In addition to facilitating the extraction of lightness, another advantage of
the density image is that it is well matched to our visual experience. The ideas for
many image analysis programs stem from our visual inspection of the image. How-
ever, the human visual system responds logarithmically to light intensity and also
enhances high spatial frequencies [Stockham 1972]. Algorithms derived from

(a)

(b)

—-I_r——— Fig. 3.8 Stepsin processing an image
to detect reflectance. (a) Original image.
(b) Differentiation followed by
X thresholding. (c) Integration of function
{c) in (b).
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introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
‘“‘seeing’’ more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of ““edge profiles’’ that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow’’ on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge
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