To use the (9, ¢) formulation instead of the (p, ¢) formulation is an easy
matter. Simply substitute 0 for pand ¢ for g in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW
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Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical flow. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘“‘retinal velocity’” at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are

given in Chapter 7. ;

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function f (x, y, t) in a Taylor series.

fOc+dx, y+dy, t +dt)= (3.53)
9 g+ 8L g 4 BF 4o+ higher-ordert
fOop, t) + e dx + oy dy + 51 dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time ¢ + dtis
the result of the original image at time ¢ being moved translationally by dx and dy,
then in fact

SOe+dx, y+dy, t+dt)=f(x, » 1) (3.54)
Consequently, from Egs. (3.53) and (3.54),
L 9f o Qfedx, OF d (3.55)

ot dx dr dy dr
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Now 9f 9f ,and af are all measurable quantities, and o and Y are estimates

dt’ ox ay dt dt
of what we are lookmg for—the velocity in the x and y directions. Writing
s A
dt dt
gives
_8f_9of L 8f (3.56)
at ax ady

or equivalently,

_ g,
L=V (3.57)

where V fis the spatial gradient of the image and u = (, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say that the time rate of change in intensity of a
point in the image is (to first order) explained as the spatial rate of change in the
intensity of the scene multiplied by the velocity that points of the scene move past
the camera.

This equation also indicates that the velocity (u, v) must lie on a line
perpendicular to the vector (f,, fy) where f, and f, are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the direction (f,, fy) is (from
2.57)

—Ji
672 = 7008

3.6.2 Calculating Optical Flow by Relaxation

Equation (3.57) constrains the velocity but does not determine it uniquely. The
development of Section 3.5.4 motivates the search for a solution that satisfies Eq.

rl

(£, )

xr 'y
futfy+f=0

Fig. 3.33 Relation between (», v) and
(fxl fy)-
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(3.57) as closely as possible and also is locally smooth [Horn and Schunck 1980].
In this case as well, the Laplacians of the two velocity components, V 2y and ¥V 2y,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

EXNx, p) = (fu + fv + )2+ 22UV + (V)2 (3.58)
Differentiating this equation with respect to & and v provides equations for the

change in error with respect to # and v, which must be zero for a minimum.
Writing V2uasu — u,, and V2vas v — v,,, these equations are

A2+ LDu + fiofyv = Nug, — fof: (3.59)
Lt £ 02+ £y = X2u = £ (3.60)
These equations may be solved for » and v, yielding
P
U= Uy — fx_D_ (361)
P
V= Vay — fy‘i')" (3.62)
where

P=fxuav+fyvav+fr
D=\t ¥ g1+ 1}

To turn this into an iterative equation for solving u (x, y) and v(x, y), again use
the Gauss-Seidel method.

Algorithm 3.4: Optical Flow [Horn and Schunck 1980].

k=0.
Initialize all #* and v* to zero.
Until some error measure is satisfied, do

= P
uk = u{e‘vl _fxB

L P
vk = v§vl _f:vB

As Horn and Schunck demonstrate, this method derives the flow for two time
frames, but it can be improved by using several time frames and using the final sol-
ution after one iteration at one time for the initial solution at the following time
frame. That is:
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Algorithm 3.5: Multiframe Optical Flow.

t=0.
Initialize all u (x, y, 0), v(x, y, 0)
Jor t =1 until maxframes do

ul, y, t) = uulx, y, t—1) —fxg

vy, 1) = v (g, t—1) - fyg

The results of using synthetic data from a rotating checkered sphere are shown in
Fig. 3.34.
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Fig. 3.34 Optical flow results. (a}, (b) and (c) are three frames from the rotating
sphere, (d) is the derived three-dimensional flow after 32 such time frames.
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3.7 RESOLUTION PYRAMIDS
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What is the best spatial resolution for an image? The sampling theorem states that
the maximum spatial frequency in the image data must be less than half the sam-
pling frequency in order that the sampled image represent the original unambigu-
ously. However, the sampling theorem is not a good predictor of how easily objects
can be recognized by computer programs. Often objects can be more easily recog-
nized in images that have a very low sampling rate. There are two reasons for this.
First, the computations are fewer because of the reduction in dimensionality. Se-
cond, confusing detail present in the high-resolution versions of the images may
not appear at the reduced resolution. But even though some objects are more easily
found at low resolutions, usually an object description needs detail only revealed at
the higher resolutions. This leads naturally to the notion of a pyramidal image data
structure in which the search for objects is begun at a low resolution, and refined at
ever-increasing resolutions until one reaches the highest resolution of interest.
Figure 3.35 shows the correspondence between pixels for the pyramidal structure.

In the next three sections, pyramids are applied to gray-level images and edge
images. Pyramids, however, are a very general tool and can be used to represent
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a way
to reduce the number of samples. However, most digitizer parameters are difficult
to change, so that often computational means of reduction are needed. A
straightforward method is to partition the digitized image into nonoverlapping

L

Fig. 3.35 Pyramidal image structure.
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neighborhoods of equal size and shape and to replace each of those neighborhoods
by the average pixel densities in that neighborhood. This operation is consolidation.
For an n X n neighborhood, consolidation is equivalent to averaging the original
image over the neighborhood followed by sampling at intervals n units apart.

Consolidation tends to offset the aliasing that would be introduced by sam-
pling the sensed data at a reduced rate. This is due to the effects of the averaging
step in the consolidation process. For the one-dimensional case where

Flx) = %[f(x) +r(x + )] (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

H(u) = %[1 + eﬁﬂ”"’]F(u) (3.64)

which has magnitude |H («)| = coslw (u/u,)] and phase —7 (u/u,). The sampling
frequency u, = 1/A where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F(u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation

With correlation matching, the use of multiple resolution techniques can some-
times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

Flu) | H{w) |

Uy v

(a) (b}

Uy

(c)

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain. (a) Original
transform. (b) Transform of averaging operator. (c) Transform of averaged image.
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patterns. The algorithm partakes of the computational efficiency of binary (as op-
posed to linear) search [Knuth 1973]. Further, the low-resolution correlation
operations at high levels in the pyramid ensure that the earlier correlations are on
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown loca-
tion in the input image. The reference version of the feature originates in another
image, the reference image. The feature in the reference image is contained in a
window of n X n pixels. The task of the correlator is to find an n X n window in
the input image that best matches the reference image window containing the
feature. The details of the correlation processes are given in the following algo-
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference: an N x N image containing a feature centered at (Fea-
tureX, FeatureY).

Origlnput:  an M x M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

n: a window size; an n X n window in OrigReference is
large enough to contain the Feature.
Window: an n X n array containing a varying-resolution subim-
age of OrigReference centered on the Feature.
Input:  a2n X 2narray containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference:  atemporary array.

Algorithm

1. Input:= Consolidate Origlnput by a factor of 2n/Mto size 2n X 2n.

2. Reference := Consolidate OrigReference by the same factor 2n/M to size
2nN/M x 2nN/M. This consolidation takes the Feature'to a new (FeatureX,
Feature ).

3. Window := n X n window from Reference centered on the new (FeatureX,
Feature ¥).

4. Calculate the match metric of the window at the (n + 1)? locations in Input at
which it is wholly contained. Say that the best match occurs at (BestMatchX,

BestMatch ¥) in Input.
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5. Input := n X n window from Input centered at (BestMatchX, BestMatchY),

enlarged by a factor of 2.

6. Reference := Reference enlarged by a factor of 2. This takes Feature to a new
(Feature X, Feature ¥).

7. Gotol.

Through time, the algorithm uses a reference image for matching that is al-
ways centered on the feature to be matched, but that homes in on the feature by
being increased in resolution and thus reduced in linear image coverage by a factor
of 2 each time. In the input image, a similar homing-in is going on, but the search
area is usually twice the linear dimension of the reference window. Further, the
center of the search area varies in the input image as the improved resolution
refines the point of best match.

Binary search correlation is for matching features with context. The template
at low resolution possibly corresponds to much of the area around the feature,
while the feature may be so small in the initial consolidated images as to be invisi-
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gross
features to be matched first and to guide the later high-resolution search for best
match. Such matching with context is less useful for locating several instances of a
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use of
such structures in edge detection. This application, after [Tanimoto and Pavlidis
19751, uses two pyramids, one to store the image and another to store the image
edges. The idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there is
no gray-level change (edge) in the neighborhood. Of course, the low-resolution
levels in the pyramid tend to blur the image and thus attenuate the gray-level
changes that denote edges. Thus the starting level in the pyramid must be picked
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (k, x, y)
begin
if k < MaxLevel then
Jordx =0 until1 do
Jordy = 0 untill do
ifEdgeOp (k, x + dx, y + dy) > Threshold(x)
thentefine (k + 1, x + dx,y + d)
end,
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Fig. 3.37 Pyramidal edge detection.
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procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
Jorx:= 0 until2° — 1 do
SJory:=0until25— 1do
ifEdgeOp (s, x, y) > Threshold(s)
thenrefine (s. x, y);
end,

Figure 3.37 shows Tanimoto’s results for a chromosome image. The table inset
shows the computational advantage in terms of the calls to the edge operator as a
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have been
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of the
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertical
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas of Egs. (3.31) to derive the digital template function for g; in a 5°
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of the
““crack’’ edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine a
surface orientation. The dual of this problem uses surface orientations to determine
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.3?

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could be
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the ‘‘grazing incidence” phenomenon—
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how these

equations are modified when total error [i.e., T E(x, y)]is minimized.
%y
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