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The idea of segmentation has its roots in work by the Gestalt psychologists (e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing sets of shapes arranged in the visual field. Gestalt principles dictate cer-
tain grouping preferences based on features such as proximity, similarity, and con-
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful units that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics (or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. At this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain. For instance, the model may supply crucial parameters to segmentation
procedures.

In the segmentation process there are two important aspects to consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the ‘‘adjacency’’ relation. The *‘dual’’ of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet. Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. Of course, from the standpoint of the
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algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen-
tation enterprise .
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4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierarchy of struc-
tures that links raw image data with their interpretation [Marr 1975]. Chapter 3
described how various operators applied to raw image data can yield primitive edge
elements. However, an image of only disconnected edge elements is relatively
featureless; additional processing must be done to group edge elements into struc-
tures better suited to the process of interpretation. The goal of the techniques in
this chapter is to perform a level of segmentation, that is, to make a coherent one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary between
scene entities. The problems that edge-based segmentation algorithms have to
contend with are shown by Fig. 4.1, which is an image of the local edge elements
yielded by one common edge operator applied to a chest radiograph. As can be
seen, the edge elements often exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount of
knowledge incorporated into the grouping operation that maps edge elements into
boundaries. ‘‘Knowledge’” means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies that
the global form of the boundary and its relation to other image structures is very
constrained. Little prior knowledge means that the segmentation must proceed
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.
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Fig. 4.1 Edge elements in a chest
radiograph.

These constraints take many forms. Knowledge of where to expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (its parameterization or func-
tional form) as well as the relevant ‘‘noise processes.”” In images of polyhedra,
only straight-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows of corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall back
on general world knowledge or heuristics that are true for most domains. For in-
stance, in the absence of evidence to the contrary, the shorter line between two
points might be selected over a longer line. This sort of general principle is easily
built into evaluation functions for boundaries, and used in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are no a
priori restrictions on boundary shapes, a general contour-extraction method is
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching near an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough transform. This elegant and versatile technique appears in various
guises throughout computer vision. In this chapter it is used to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represents the image of edge elements as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.
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4. Dynamic programming. This method is also very general. It uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contour following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below ap-
plied to a lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 1977] (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular to the approximate (a priori)
boundary. An edge operator is applied to each of the discrete points along each of
these perpendicular directions. For each such direction, the edge with the highest
magnitude is selected from among those whose orientations are nearly parallel to
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. The
a priori representation thus also contains relative locations at which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application ‘‘matches’’ the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be moved
around the image, and for each location, the number of matches is computed. If
the number of matches exceeds a threshold, the boundary location is declared to
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Fig. 4.3 A template for edge-operator
application.

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary is
known to exist between two edge elements and the noise levels in the image are
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitude (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
ments formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used to outline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al. 1979].
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Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x' in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y'= mx’+ c¢. Regarding (x/, ') as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y") will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢”) which corresponds to the line
AB connecting these points. In fact, all points on the line AB will yield lines in
parameter space which interSéct at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient

Sec. 43 The Hough Method for Curve Detection 123
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